1
|
Yang XW, Liu J. Observing Protein One-Dimensional Sliding: Methodology and Biological Significance. Biomolecules 2021; 11:1618. [PMID: 34827616 PMCID: PMC8615959 DOI: 10.3390/biom11111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022] Open
Abstract
One-dimensional (1D) sliding of DNA-binding proteins has been observed by numerous kinetic studies. It appears that many of these sliding events play important roles in a wide range of biological processes. However, one challenge is to determine the physiological relevance of these motions in the context of the protein's biological function. Here, we discuss methods of measuring protein 1D sliding by highlighting the single-molecule approaches that are capable of visualizing particle movement in real time. We also present recent findings that show how protein sliding contributes to function.
Collapse
Affiliation(s)
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
2
|
Ding T, Huang C, Liang Z, Ma X, Wang N, Huo YX. Reversed paired-gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli. Microb Cell Fact 2020; 19:63. [PMID: 32156270 PMCID: PMC7063769 DOI: 10.1186/s12934-020-01321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Co-expression of two distinct guide RNAs (gRNAs) has been used to facilitate the application of CRISPR/Cas9 system in fields such as large genomic deletion. The paired gRNAs are often placed adjacently in the same direction and expressed individually by two identical promoters, constituting direct repeats (DRs) which are susceptible to self-homologous recombination. As a result, the paired-gRNA plasmids cannot remain stable, which greatly prevents extensible applications of CRISPR/Cas9 system. RESULTS To address this limitation, different DRs-involved paired-gRNA plasmids were designed and the events of recombination were characterized. Deletion between DRs occurred with high frequencies during plasmid construction and subsequent plasmid propagation. This recombination event was RecA-independent, which agreed with the replication slippage model. To increase plasmid stability, a reversed paired-gRNA plasmids (RPGPs) cloning strategy was developed by converting DRs to the more stable invert repeats (IRs), which completely eliminated DRs-induced recombination. Using RPGPs, rapid deletion of chromosome fragments up to 100 kb with an efficiency of 83.33% was achieved in Escherichia coli. CONCLUSIONS The RPGPs cloning strategy serves as a general solution to avoid plasmid RecA-independent recombination. It can be adapted to applications that rely on paired gRNAs or repeated genetic parts.
Collapse
Affiliation(s)
- Tingting Ding
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zeyu Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
- SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| |
Collapse
|
3
|
Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 2014; 98:3877-87. [PMID: 24595425 DOI: 10.1007/s00253-014-5616-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/28/2023]
Abstract
An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed.
Collapse
|
4
|
Gall AD, Gall A, Moore AC, Aune MK, Heid S, Mori A, Burgis NE. Analysis of human ITPase nucleobase specificity by site-directed mutagenesis. Biochimie 2013; 95:1711-21. [PMID: 23770441 DOI: 10.1016/j.biochi.2013.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
Inosine triphosphate (ITP) pyrophosphohydrolase, or ITPase, is an intracellular enzyme that is responsible for the hydrolysis of the acidic anhydride bond between the alpha and beta phosphates in ITP, and other noncanonical nucleoside triphosphates, producing the corresponding nucleoside monophosphate and pyrophosphate. This activity protects the cell by preventing noncanonical nucleoside triphosphates from accumulating in (deoxy) nucleoside triphosphate ((d)NTP) pools and/or being integrated into nucleic acids. This enzyme is encoded by the ITPA gene in mammals. It has been reported that Itpa homozygous-null knock-out mice die before weaning and have gross cardiac abnormalities. Additionally, certain variations in the human ITPA gene have been linked to adverse reactions to the immunosuppressive prodrugs azathioprine and 6-mercaptopurine and protection against ribavirin-induced hemolytic anemia. These drugs are bioactivated to form noncanonical nucleoside triphosphates. Human ITPase enzymes engineered to modulate nucleobase specificity may be valuable tools for studying the role of ITPase in heart development and drug metabolism or developing gain-of-function mutants or inhibitory molecules. Based on x-ray crystallography and amino acid sequence data, a panel of putative human ITPase nucleobase specificity mutants has been generated. We targeted eight highly conserved amino acid positions within the ITPase sequence that correspond to amino acids predicted to directly interact with the nucleobase or help organize the nucleobase binding pocket. The ability of the mutants to protect against exogenous and endogenous noncanonical purines was tested with two Escherichia coli complementation assays. Nucleobase specificity of the mutants was investigated with an in vitro biochemical assay using ITP, GTP and ATP as substrates. This methodology allowed us to identify gain-of-function mutants and categorize the eight amino acid positions according to their ability to protect against noncanonical purines as follows: Glu-22, Trp-151 and Arg-178, essential for protection; Phe-149, Asp-152, Lys-172 and Ser-176, intermediate protection; His-177, dispensable for protection against noncanonical purines.
Collapse
Affiliation(s)
- Amanda D Gall
- Department of Chemistry and Biochemistry, Eastern Washington University, 226 Science Building, Cheney, WA 99004, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Sluijter M, Estevão S, Hoogenboezem T, Hartwig NG, van Rossum AMC, Vink C. The RuvA homologues from Mycoplasma genitalium and Mycoplasma pneumoniae exhibit unique functional characteristics. PLoS One 2012; 7:e38301. [PMID: 22666500 PMCID: PMC3364216 DOI: 10.1371/journal.pone.0038301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The DNA recombination and repair machineries of Mycoplasma genitalium and Mycoplasma pneumoniae differ considerably from those of gram-positive and gram-negative bacteria. Most notably, M. pneumoniae is unable to express a functional RecU Holliday junction (HJ) resolvase. In addition, the RuvB homologues from both M. pneumoniae and M. genitalium only exhibit DNA helicase activity but not HJ branch migration activity in vitro. To identify a putative role of the RuvA homologues of these mycoplasmas in DNA recombination, both proteins (RuvAMpn and RuvAMge, respectively) were studied for their ability to bind DNA and to interact with RuvB and RecU. In spite of a high level of sequence conservation between RuvAMpn and RuvAMge (68.8% identity), substantial differences were found between these proteins in their activities. First, RuvAMge was found to preferentially bind to HJs, whereas RuvAMpn displayed similar affinities for both HJs and single-stranded DNA. Second, while RuvAMpn is able to form two distinct complexes with HJs, RuvAMge only produced a single HJ complex. Third, RuvAMge stimulated the DNA helicase and ATPase activities of RuvBMge, whereas RuvAMpn did not augment RuvB activity. Finally, while both RuvAMge and RecUMge efficiently bind to HJs, they did not compete with each other for HJ binding, but formed stable complexes with HJs over a wide protein concentration range. This interaction, however, resulted in inhibition of the HJ resolution activity of RecUMge.
Collapse
Affiliation(s)
- Marcel Sluijter
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Silvia Estevão
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Theo Hoogenboezem
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Nico G. Hartwig
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Annemarie M. C. van Rossum
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cornelis Vink
- Laboratory of Pediatrics, Pediatric Infectious Diseases and Immunity, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Lanzov VA. RecA homologous DNA transferase: Functional activities and a search for homology by recombining DNA molecules. Mol Biol 2007. [DOI: 10.1134/s0026893307030077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nishinaka T, Doi Y, Hara R, Yashima E. Elastic behavior of RecA-DNA helical filaments. J Mol Biol 2007; 370:837-45. [PMID: 17559876 DOI: 10.1016/j.jmb.2007.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli RecA protein forms a right-handed helical filament with DNA molecules and has an ATP-dependent activity that exchanges homologous strands between single-stranded DNA (ssDNA) and duplex DNA. We show that the RecA-ssDNA filamentous complex is an elastic helical molecule whose length is controlled by the binding and release of nucleotide cofactors. RecA-ssDNA filaments were fluorescently labelled and attached to a glass surface inside a flow chamber. When the chamber solution was replaced by a buffer solution without nucleotide cofactors, the RecA-ssDNA filament rapidly contracted approximately 0.68-fold with partial filament dissociation. The contracted filament elongated up to 1.25-fold when a buffer solution containing ATPgammaS was injected, and elongated up to 1.17-fold when a buffer solution containing ATP or dATP was injected. This contraction-elongation behavior was able to be repeated by the successive injection of dATP and non-nucleotide buffers. We propose that this elastic motion couples to the elastic motion and/or the twisting rotation of DNA strands within the filament by adjusting their helical phases.
Collapse
Affiliation(s)
- Taro Nishinaka
- Yashima Super-structured Helix Project, ERATO, Japan Science and Technology Agency, 101 Creation Core Nagoya, 2266-22 Anagahora, Shimoshidami, Nagoya 463-0003, Japan.
| | | | | | | |
Collapse
|
8
|
Anand SP, Zheng H, Bianco PR, Leuba SH, Khan SA. DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J Bacteriol 2007; 189:4502-9. [PMID: 17449621 PMCID: PMC1913354 DOI: 10.1128/jb.00376-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PcrA is a conserved DNA helicase present in all gram-positive bacteria. Bacteria lacking PcrA show high levels of recombination. Lethality induced by PcrA depletion can be overcome by suppressor mutations in the recombination genes recFOR. RecFOR proteins load RecA onto single-stranded DNA during recombination. Here we test whether an essential function of PcrA is to interfere with RecA-mediated DNA recombination in vitro. We demonstrate that PcrA can inhibit the RecA-mediated DNA strand exchange reaction in vitro. Furthermore, PcrA displaced RecA from RecA nucleoprotein filaments. Interestingly, helicase mutants of PcrA also displaced RecA from DNA and inhibited RecA-mediated DNA strand exchange. Employing a novel single-pair fluorescence resonance energy transfer-based assay, we demonstrate a lengthening of double-stranded DNA upon polymerization of RecA and show that PcrA and its helicase mutants can reverse this process. Our results show that the displacement of RecA from DNA by PcrA is not dependent on its translocase activity. Further, our results show that the helicase activity of PcrA, although not essential, might play a facilitatory role in the RecA displacement reaction.
Collapse
Affiliation(s)
- Syam P Anand
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
9
|
Forget AL, Loftus MS, McGrew DA, Bennett BT, Knight KL. The human Rad51 K133A mutant is functional for DNA double-strand break repair in human cells. Biochemistry 2007; 46:3566-75. [PMID: 17302439 PMCID: PMC2952636 DOI: 10.1021/bi062128k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human Rad51 protein requires ATP for the catalysis of DNA strand exchange, as do all Rad51 and RecA-like recombinases. However, understanding the specific mechanistic requirements for ATP binding and hydrolysis has been complicated by the fact that ATP appears to have distinctly different effects on the functional properties of human Rad51 versus yeast Rad51 and bacterial RecA. Here we use RNAi methods to test the function of two ATP binding site mutants, K133R and K133A, in human cells. Unexpectedly, we find that the K133A mutant is functional for repair of DNA double-strand breaks when endogenous Rad51 is depleted. We also find that the K133A protein maintains wild-type-like DNA binding activity and interactions with Brca2 and Xrcc3, properties that undoubtedly promote its DNA repair capability in the cell-based assay used here. Although a Lys to Ala substitution in the Walker A motif is commonly assumed to prevent ATP binding, we show that the K133A protein binds ATP, but with an affinity approximately 100-fold lower than that of wild-type Rad51. Our data suggest that ATP binding and release without hydrolysis by the K133A protein act as a mechanistic surrogate in a catalytic process that applies to all RecA-like recombinases. ATP binding promotes assembly and stabilization of a catalytically active nucleoprotein filament, while ATP hydrolysis promotes filament disassembly and release from DNA.
Collapse
|
10
|
Forget AL, Kudron MM, McGrew DA, Calmann MA, Schiffer C, Knight KL. RecA dimers serve as a functional unit for assembly of active nucleoprotein filaments. Biochemistry 2007; 45:13537-42. [PMID: 17087507 PMCID: PMC2522307 DOI: 10.1021/bi060938q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the catalysis of homologous recombination.
Collapse
|
11
|
Nishinaka T, Doi Y, Hashimoto M, Hara R, Shibata T, Harada Y, Kinosita K, Noji H, Yashima E. Visualization of RecA filaments and DNA by fluorescence microscopy. J Biochem 2007; 141:147-56. [PMID: 17202195 DOI: 10.1093/jb/mvm033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed two experimental methods for observing Escherichia coli RecA-DNA filament under a fluorescence microscope. First, RecA-DNA filaments were visualized by immunofluorescence staining with anti-RecA monoclonal antibody. Although the detailed filament structures below submicron scale were unable to be measured accurately due to optical resolution limit, this method has an advantage to analyse a large number of RecA-DNA filaments in a single experiment. Thus, it provides a reliable statistical distribution of the filament morphology. Moreover, not only RecA filament, but also naked DNA region was visualized separately in combination with immunofluorescence staining using anti-DNA monoclonal antibody. Second, by using cysteine derivative RecA protein, RecA-DNA filament was directly labelled by fluorescent reagent, and was able to observe directly under a fluorescence microscope with its enzymatic activity maintained. We showed that the RecA-DNA filament disassembled in the direction from 5' to 3' of ssDNA as dATP hydrolysis proceeded.
Collapse
Affiliation(s)
- Taro Nishinaka
- Yashima Super-structured Helix Project, ERATO, Japan Science and Technology Agency, 101 Creation Core Nagoya, 2266-22 Anagahora, Nagoya 463-0003, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | |
Collapse
|
13
|
Maga EA. The use of recombinase proteins to generate transgenic large animals. CLONING AND STEM CELLS 2002; 3:233-41. [PMID: 11945233 DOI: 10.1089/15362300152725954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The endogenous properties of recombinase proteins allow them to associate with and bind DNA to catalyze homologous recombination. These endogenous properties of cellular recombination enzymes may be useful to the field of transgenesis. The production of transgenic animals, in particular livestock, is an inefficient process by both conventional pronuclear microinjection techniques and nuclear transfer. Furthermore, the use of pronuclear microinjection is currently limited to the random addition of genes and does not allow for the replacement of an endogenous gene with a more desired one. The functions of cellular recombination enzymes have been exploited to develop a technique that is compatible with pronuclear microinjection and may make the process of generating transgenic livestock more efficient while also enabling the targeting of homologous chromosomal genes. In our hands, transgenic animals generated by the pronuclear microinjection of various recombinase protein-coated DNA fragments led to a higher than expected birth rate as well as transgene integration frequency. Most founder animals generated were likely mosaic, indicating that integration occurred after cell division. The presence of multiple related genes makes detection of any recombination event difficult. Overall, this technique is a straightforward, rapid, and efficient procedure that can be applied to any segment of DNA and any microinjection apparatus, and is less labor intensive than nuclear transfer.
Collapse
Affiliation(s)
- E A Maga
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA.
| |
Collapse
|
14
|
Seitz EM, Haseltine CA, Kowalczykowski SC. DNA recombination and repair in the archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:101-69. [PMID: 11677683 DOI: 10.1016/s0065-2164(01)50005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E M Seitz
- Sections of Microbiology and of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
15
|
Umemura K, Komatsu J, Uchihashi T, Choi N, Ikawa S, Nishinaka T, Shibata T, Nakayama Y, Katsura S, Mizuno A, Tokumoto H, Ishikawa M, Kuroda R. Atomic force microscopy of RecA--DNA complexes using a carbon nanotube tip. Biochem Biophys Res Commun 2001; 281:390-5. [PMID: 11181060 DOI: 10.1006/bbrc.2001.4333] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report high resolution images of RecA-double stranded (ds) DNA complexes obtained by atomic force microscopy (AFM). When a carbon nanotube (CNT) tip was used, AFM images visualized the 10-nm pitch of RecA-dsDNA complexes and RecA filaments as three-dimensional surface topography without reconstruction analysis. The depth of the notch between two pitches was less than 1 nm. When adsorbed on a soft surface covered with proteins, naked DNA, RecA monomers, RecA hexamers, and short RecA filaments were all clearly resolved in one image. The high resolution images with a CNT tip provided valuable information on the initiation process of RecA-dsDNA complex formation.
Collapse
Affiliation(s)
- K Umemura
- Joint Research Center for Atom Technology, 1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lambert S, Lopez BS. Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms. EMBO J 2000; 19:3090-9. [PMID: 10856252 PMCID: PMC203369 DOI: 10.1093/emboj/19.12.3090] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to yeast RAD51, mammalian mRAD51 is an essential gene. Its role in double strand break (DSB) repair and its consequences on cell viability remain to be characterized precisely. Here, we used a hamster cell line carrying tandem repeat sequences with an I-SCE:I cleavage site. We characterized conservative recombination after I-SCE:I cleavage as gene conversion or intrachromatid crossing over associated with random reintegration of the excised reciprocal product. We identified two dominant-negative RAD51 forms that specifically inhibit conservative recombination: the yeast ScRAD51 or the yeast-mouse chimera SMRAD51. In contrast, the mouse MmRAD51 stimulates conservative recombination. None of these RAD51 forms affects non-conservative recombination or global DSB healing. Consistently, although resistance to gamma-rays remains unaffected, MmRAD51 stimulates whereas ScRAD51 or SMRAD51 prevents radiation-induced recombination. This suggests that mRAD51 does not significantly affect the global DSB repair efficiency but controls the classes of recombination events. Finally, both ScRAD51 and SMRAD51 drastically inhibit spontaneous recombination but not cell proliferation, showing that RAD51-dependent spontaneous and DSB-induced conservative recombination can be impaired significantly without affecting cell viability.
Collapse
Affiliation(s)
- S Lambert
- UMR217 CNRS-CEA, CEA, Direction des Sciences du Vivant, Département de Radiobiologie et Radiopathologie, 60-68 avenue du Général Leclerc, 92265 Fontenay aux Roses cédex, France
| | | |
Collapse
|
17
|
Eldin S, Forget AL, Lindenmuth DM, Logan KM, Knight KL. Mutations in the N-terminal region of RecA that disrupt the stability of free protein oligomers but not RecA-DNA complexes. J Mol Biol 2000; 299:91-101. [PMID: 10860724 DOI: 10.1006/jmbi.2000.3721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have introduced targeted mutations in two areas that make up part of the RecA subunit interface. In the RecA crystal structure, cross-subunit interactions are observed between the Lys6 and Asp139 side-chains, and between the Arg28 and Asn113 side-chains. Unexpectedly, we find that mutations at Lys6 and Arg28 impose sever defects on the oligomeric stability of free RecA protein, whereas mutations at Asn113 or Asp139 do not. However, Lys6 and Arg28 mutant proteins showed an apparent normal formation of RecA-DNA complexes. These results suggest that cross-subunit contacts in this region of the protein are different for free RecA protein filaments versus RecA-DNA nucleoprotein filaments. Mutant proteins with substitutions at either Lys6 or Arg28 show partial inhibition of DNA strand exchange activity, yet the mechanistic reasons for this inhibition appear to be distinct. Although Lys6 and Arg28 appear to be more important to the stability of free RecA protein, as opposed to the stability of the catalytically active nucleoprotein filament, our results support the idea that the cross-subunit interactions made by each residue play an important role in optimizing the catalytic organization of the active RecA oligomer.
Collapse
Affiliation(s)
- S Eldin
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Medical Center, Worcester, MA 01655-0103, USA
| | | | | | | | | |
Collapse
|
18
|
Mehr IJ, Long CD, Serkin CD, Seifert HS. A homologue of the recombination-dependent growth gene, rdgC, is involved in gonococcal pilin antigenic variation. Genetics 2000; 154:523-32. [PMID: 10655208 PMCID: PMC1460959 DOI: 10.1093/genetics/154.2.523] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria gonorrhoeae pilin undergoes high-frequency changes in primary amino acid sequence that aid in the avoidance of the host immune response and alter pilus expression. The pilin amino acid changes reflect nucleotide changes in the expressed gene, pilE, which result from nonreciprocal recombination reactions with numerous silent loci, pilS. A series of mini-transposon insertions affecting pilin antigenic variation were localized to three genes in one region of the Gc chromosome. Mutational analysis with complementation showed that a Gc gene with sequence similarity to the Escherichia coli rdgC gene is involved in pilus-dependent colony phase variation and in pilin antigenic variation. Furthermore, we show that the Gc rdgC homologue is transcriptionally linked in an operon with a gene encoding a predicted GTPase. The inability to disrupt expression of this gene suggests it is an essential gene (engA, essential neisserial GTPase). While some of the transposon mutations in rdgC and insertions in the 5'-untranslated portion of engA showed a growth defect, all transposon insertions investigated conferred an aberrant cellular morphology. Complementation analysis showed that the growth deficiencies are due to the interruption of RdgC expression and not that of EngA. The requirement of RdgC for efficient pilin variation suggests a role for this protein in specialized DNA recombination reactions.
Collapse
Affiliation(s)
- I J Mehr
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
19
|
De Zutter JK, Knight KL. The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA. J Mol Biol 1999; 293:769-80. [PMID: 10543966 DOI: 10.1006/jmbi.1999.3200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human Rad51 protein (hRad51), like its bacterial homologue RecA, catalyzes genetic recombination between homologous single and double-stranded DNA substrates. Using IAsys biosensor technology, we have examined the critical first step in this process, the binding of hRad51 and RecA to ssDNA. We show that hRad51 binds cooperatively and with high affinity to an oligonucleotide substrate in both the absence and presence of nucleotide cofactors. In fact, both ATP and ATPgammaS have a slight inhibitory effect on hRad51 binding affinity. We show that this results from a decrease in the intrinsic affinity of a given monomer for ssDNA, which is counterbalanced by an increase in the cooperative assembly of protein onto DNA. In contrast, we show that the dramatic NTP-induced increase in ssDNA binding affinity of RecA is accounted for by a significant increase in cooperative filament assembly and not by an increase in the intrinsic DNA binding affinity of monomeric RecA. These results demonstrate that although the hRad51 and RecA proteins display many structural and functional similarities, they show profound inherent mechanistic differences.
Collapse
Affiliation(s)
- J K De Zutter
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655-0103, USA
| | | |
Collapse
|
20
|
Stoylov S, Stoylova E, Todorov R, Schmiedel P, Thunig C, Hoffmann H, Roques BP, Le Cam E, Coulaud D, Delain E, Gérard D, Mély Y. Aggregation of polyA–HIV-1 nucleocapsid protein NCp7 complexes and properties of the aggregates. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00674-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Mehr IJ, Seifert HS. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 1998; 30:697-710. [PMID: 10094619 DOI: 10.1046/j.1365-2958.1998.01089.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation.
Collapse
Affiliation(s)
- I J Mehr
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
22
|
Nishinaka T, Shinohara A, Ito Y, Yokoyama S, Shibata T. Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination. Proc Natl Acad Sci U S A 1998; 95:11071-6. [PMID: 9736691 PMCID: PMC21597 DOI: 10.1073/pnas.95.19.11071] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli RecA is a representative of proteins from the RecA family, which promote homologous pairing and strand exchange between double-stranded DNA and single-stranded DNA. These reactions are essential for homologous genetic recombination in various organisms. From NMR studies, we previously reported a novel deoxyribose-base stacking interaction between adjacent residues on the extended single-stranded DNA bound to RecA protein. In this study, we found that the same DNA structure was induced by the binding to Saccharomyces cerevisiae Rad51 protein, indicating that the unique DNA structure induced by the binding to RecA-homologs was conserved from prokaryotes to eukaryotes. On the basis of this structure, we have formulated the structure of duplex DNA within filaments formed by RecA protein and its homologs. Two types of molecular structures are presented. One is the duplex structure that has the N-type sugar pucker. Its helical pitch is approximately 95 A (18.6 bp/turn), corresponding to that of an active, or ATP-form of the RecA filament. The other is one that has the S-type sugar pucker. Its helical pitch is approximately 64 A (12.5 bp/turn), corresponding to that of an inactive, or ADP-form of the RecA filament. During this modeling, we found that the interconversion of sugar puckers between the N-type and the S-type rotates bases horizontally, while maintaining the deoxyribose-base stacking interaction. We propose that this base rotation enables base pair switching between double-stranded DNA and single-stranded DNA to take place, facilitating homologous pairing and strand exchange. A possible mechanism for strand exchange involving DNA rotation also is discussed.
Collapse
Affiliation(s)
- T Nishinaka
- Cellular and Molecular Biology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
23
|
Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol 1998; 276:721-31. [PMID: 9500924 DOI: 10.1006/jmbi.1997.1573] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phage lambda encodes two recombination proteins that are required for homologous recombination in a recA- host strain. Of these two recombination proteins, one is an exonuclease whose action on double-stranded DNA produces 3' single-stranded ends; the other, called beta protein, is a DNA binding protein that promotes the renaturation of complementary single strands. The enzymes of phage lambda provide a model for understanding a recombination pathway called "single-strand annealing". Further investigation of the binding of beta protein to DNA has revealed a new mechanism of renaturation. As reported before, beta protein binds directly to single-stranded DNA, but not to double-stranded DNA. However, in the experiments reported here, we observed that beta protein bound more strongly to a presumed intermediate in the renaturation reaction that beta itself catalyzed, and beta thereby protected all of a renatured duplex 83-mer oligonucleotide from nuclease digestion.
Collapse
Affiliation(s)
- G Karakousis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The effect of GT/CA dinucleotide repeat tracts on RecA-dependent homologous recombination was examined in vitro. By measuring the binding of RecA protein to oligonucleotides containing GT or CA repeats using the surface plasmon resonance (BIAcore), we show that the efficiency of RecA protein binding is sequence dependent: the protein binds to non-repetitive, poly(CA) or poly(GT) sequences with an increasing affinity. This preferential binding to repetitive sequences is specific for RecA protein and is not observed with the single-strand DNA binding (SSB) protein. Despite the fact that RecA filaments formed on GT tracts efficiently bind duplex DNAs, they are unable to promote stable joint formation. Moreover, strand exchange between a duplex DNA and a fully homologous single-stranded DNA (ssDNA) containing dinucleotide repeats, is inhibited as a function of the length of the repetitive tract. The number of molecules which underwent a complete strand exchange decreased from 100% to 80% and 30% for DNA containing seven, 16 and 39 GT repeats, respectively. The inhibition is less pronounced when the ssDNA contains CA instead of GT dinucleotide repeats. We propose that the high affinity of RecA protein for (CA)n or (GT)n tracts prevents strand exchange from progressing across such sequences. Thus, our results suggest that repetitive tracts of dinucleotides CA/GT could influence recombinational activity potentially leading to an increase in genomic rearrangements.
Collapse
Affiliation(s)
- M Dutreix
- Institut Curie, section de Recherche UMR144-CNRS, Paris, France
| |
Collapse
|
25
|
Abstract
Binding of ATP to the RecA protein induces a high affinity DNA binding required for activation of enzyme function. Screens for in vivo recombination and repressor cleavage activities show Gln194 to be intolerant of all substitutions. Analyses of three mutant proteins (Q194N, Q194E, and Q194A) show that although basal enzyme function is maintained, each protein no longer displays an ATP-induced increase in DNA binding affinity. High salt activation of RecA function is also disrupted by these mutations. In contrast, ATP-induced changes in the oligomeric structure of RecA are maintained in the mutant proteins. These results demonstrate that Gln194 is a critical "allosteric switch" for ATP-induced activation of RecA function but is not the exclusive mediator of ATP-induced changes in RecA.
Collapse
Affiliation(s)
- J A Kelley
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655-0103, USA
| | | |
Collapse
|
26
|
Tuite E, Sehlstedt U, Hagmar P, Nordén B, Takahashi M. Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:482-92. [PMID: 9030776 DOI: 10.1111/j.1432-1033.1997.0482a.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Linear and circular dichroic spectroscopies have been employed to investigate the effects of small DNA ligands on the interactions of two proteins which bind to the minor groove of DNA, viz. RecA protein from Escherichia coli and deoxyribonuclease I (bovine pancreas). Ligands representing three specific non-covalent binding modes were investigated: 4',6-diamidino-2-phenylindole and distamycin A (minor groove binders), methyl green (major groove binder), and methylene blue, ethidium bromide and ethidium dimer (intercalators). Linear dichroism was demonstrated to be an excellent detector, in real time, of DNA double-strand cleavage by deoxyribonuclease I. Ligands bound in all three modes interfered with the deoxyribonuclease I digestion of dsDNA, although the level of interference varied in a manner which could be related to the ligand binding site, the ligand charge appearing to be less important. In particular, the retardation of deoxyribonuclease I cleavage by the major groove binder methyl green demonstrates that accessibility to the minor groove can be affected by occupancy of the opposite groove. Binding of all three types of ligand also had marked effects on the interaction of RecA with dsDNA in the presence of non-hydrolyzable cofactor adenosine 5'-O-3-thiotriphosphate, decreasing the association rate to varying extents but with the strongest effects from ligands having some minor groove occupancy. Finally, each ligand was displaced from its DNA binding site upon completion of RecA association, again demonstrating that modification of either groove can affect the properties and behaviour of the other. The conclusions are discussed against the background of previous work on the use of small DNA ligands to probe DNA-protein interactions.
Collapse
Affiliation(s)
- E Tuite
- Department of Physical Chemistry, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
27
|
Corrette-Bennett SE, Lovett ST. Enhancement of RecA strand-transfer activity by the RecJ exonuclease of Escherichia coli. J Biol Chem 1995; 270:6881-5. [PMID: 7896836 DOI: 10.1074/jbc.270.12.6881] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined coupled reactions with the RecA protein of Escherichia coli, which can mediate DNA strand exchange in vitro between homologous DNA molecules, and the RecJ exonuclease, a 5' to 3' single-stranded DNA exonuclease. In RecA-mediated strand-transfer reactions between circular single-stranded and duplex linear DNA, we have found that RecJ stimulates the rate of heteroduplex product formation. Because RecJ must be present concurrent with strand transfer and RecJ does not detectably stimulate the synapsis stage of the reaction, we believe that RecJ stimulates specifically the branch migration phase of the RecA strand-transfer reaction. RecJ also dramatically enhances the efficiency with which RecA is able to transverse regions of non-homology in the substrates. We propose a model where RecJ degrades the displaced strand produced by strand exchange which competes for pairing with the transferred strand, thus driving forward the unidirectional branch migration mediated by RecA protein. This suggests a new role for exonucleases in genetic recombination, facilitating the strand-transfer reaction itself.
Collapse
|
28
|
Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31721-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Abstract
Amino acid sequence analysis has established that the homologous pairing protein of Ustilago maydis, known previously in the literature as rec1, is encoded by REC2, a gene essential for recombinational repair and meiosis with regional homology to Escherichia coli RecA. The 70-kDa rec1 protein is most likely a proteolytic degradation product of REC2, which has a predicted mass of 84 kDa but which runs anomalously during sodium dodecyl sulfate-gel electrophoresis with an apparent mass of 110 kDa. To facilitate purification of the protein product, the REC2 gene was overexpressed from a vector that fused a hexahistidine leader sequence onto the amino terminus, enabling isolation of the REC2 protein on an immobilized metal affinity column. The purified protein exhibits ATP-dependent DNA renaturation and DNA-dependent ATPase activities, which were reactions characteristic of the protein as purified from cell extracts of U. maydis. Homologous pairing activity was established in an assay that measures recognition via non-Watson-Crick bonds between identical DNA strands. A size threshold of about 50 bp was found to govern pairing between linear duplex molecules and homologous single-stranded circles. Joint molecule formation with duplex DNA well under the size threshold was efficiently catalyzed when one strand of the duplex was composed of RNA. Linear duplex molecules with hairpin caps also formed joint molecules when as few as three RNA residues were present.
Collapse
|
30
|
Kmiec EB, Cole A, Holloman WK. The REC2 gene encodes the homologous pairing protein of Ustilago maydis. Mol Cell Biol 1994; 14:7163-72. [PMID: 7935431 PMCID: PMC359250 DOI: 10.1128/mcb.14.11.7163-7172.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Amino acid sequence analysis has established that the homologous pairing protein of Ustilago maydis, known previously in the literature as rec1, is encoded by REC2, a gene essential for recombinational repair and meiosis with regional homology to Escherichia coli RecA. The 70-kDa rec1 protein is most likely a proteolytic degradation product of REC2, which has a predicted mass of 84 kDa but which runs anomalously during sodium dodecyl sulfate-gel electrophoresis with an apparent mass of 110 kDa. To facilitate purification of the protein product, the REC2 gene was overexpressed from a vector that fused a hexahistidine leader sequence onto the amino terminus, enabling isolation of the REC2 protein on an immobilized metal affinity column. The purified protein exhibits ATP-dependent DNA renaturation and DNA-dependent ATPase activities, which were reactions characteristic of the protein as purified from cell extracts of U. maydis. Homologous pairing activity was established in an assay that measures recognition via non-Watson-Crick bonds between identical DNA strands. A size threshold of about 50 bp was found to govern pairing between linear duplex molecules and homologous single-stranded circles. Joint molecule formation with duplex DNA well under the size threshold was efficiently catalyzed when one strand of the duplex was composed of RNA. Linear duplex molecules with hairpin caps also formed joint molecules when as few as three RNA residues were present.
Collapse
Affiliation(s)
- E B Kmiec
- Department of Pharmacology, Jefferson Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19117
| | | | | |
Collapse
|
31
|
RuvA and RuvB proteins facilitate the bypass of heterologous DNA insertions during RecA protein-mediated DNA strand exchange. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31484-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Structure of REC2, a recombinational repair gene of Ustilago maydis, and its function in homologous recombination between plasmid and chromosomal sequences. Mol Cell Biol 1994. [PMID: 8065360 DOI: 10.1128/mcb.14.9.6287] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.
Collapse
|
33
|
Takahashi M, Nordén B. The cofactor ATP in DNA-RecA complexes is not intercalated between DNA bases. J Mol Recognit 1994; 7:221-6. [PMID: 7880547 DOI: 10.1002/jmr.300070311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In an attempt to understand the role of ATP as a cofactor at the interaction of the RecA protein with DNA, we have studied the orientation geometries of the cofactor analogs adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in RecA-DNA complexes using flow linear dichroism spectroscopy. Both cofactors promote the formation of RecA-DNA complexes of similar structure as judged from similar orientations of DNA bases. The DNA orientation was probed through the dichroism of the long-wavelength absorption of a DNA analog, poly(d epsilon A). In this way differences between the dichroic spectra of the ATP gamma S-RecA-DNA and GTP gamma S-RecA-DNA complexes, observed in the shorter-wavelength region, are related to orientation at variations of the cofactor chromophores. The results show that the guanine plane of GTP gamma S is oriented parallel with the principal axis of the complex in contrast to the more perpendicular orientation of the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. The orientation of the adenine base of ATP gamma S, which may be similar to that of guanine of GTP gamma S albeit not exactly the same, is also inconsistent with intercalation. The possibility that the cofactor bound to the protein could be intercalated in DNA had been speculated from the observation that some DNA intercalators can induce RecA binding to DNA in the absence of cofactor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Takahashi
- Groupe d'Etude Mutagénèse et Cancérogénèse, URA 1342 CNRS, Université Paris Sud, Orsay, France
| | | |
Collapse
|
34
|
Rubin BP, Ferguson DO, Holloman WK. Structure of REC2, a recombinational repair gene of Ustilago maydis, and its function in homologous recombination between plasmid and chromosomal sequences. Mol Cell Biol 1994; 14:6287-96. [PMID: 8065360 PMCID: PMC359155 DOI: 10.1128/mcb.14.9.6287-6296.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutation in the REC2 gene of Ustilago maydis leads to defects in DNA repair, recombination, and meiosis. Analysis of the primary sequence of the Rec2 protein reveals a region with significant homology to bacterial RecA protein and to the yeast recombination proteins Dmc1, Rad51, and Rad57. This homologous region in the U. maydis Rec2 protein was found to be functionally sensitive to mutation, lending support to the hypothesis that Rec2 has a functional RecA-like domain essential for activity in recombination and repair. Homologous recombination between plasmid and chromosomal DNA sequences is reduced substantially in the rec2 mutant following transformation. The frequency can be restored to a level approaching, but not exceeding, that observed in the wild-type strain if transformation is performed with cells containing multiple copies of REC2.
Collapse
Affiliation(s)
- B P Rubin
- Department of Microbiology, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
35
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 778] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
36
|
Kurumizaka H, Rao BJ, Ogawa T, Radding CM, Shibata T. A chimeric Rec-A protein that implicates non-Watson-Crick interactions in homologous pairing. Nucleic Acids Res 1994; 22:3387-91. [PMID: 8078775 PMCID: PMC523733 DOI: 10.1093/nar/22.16.3387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.
Collapse
Affiliation(s)
- H Kurumizaka
- Laboratory of Cellular and Molecular Biology, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | |
Collapse
|
37
|
Volodin AA, Smirnova HA, Bocharova TN. Efficient interaction of recA protein with fluorescent dye-labeled oligonucleotides. FEBS Lett 1994; 349:65-8. [PMID: 8045304 DOI: 10.1016/0014-5793(94)00640-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some fluorescein derivatives attached to the 5'-end of oligonucleotides stimulate recA protein-oligonucleotide binding. The complex formation at near stoichiometric DNA/protein ratios is demonstrated for 18-bases-long oligonucleotides. The complexes with dye-labeled oligonucleotides are shown to be active in the reaction of homologous strand exchange. The strand exchange reaction in the presence of adenosine-5'-O-(3-thiotriphosphate) proceeds with the formation of a stable complex of recA protein with the double stranded oligonucleotide, which is a product of the strand exchange. The displaced single-stranded oligonucleotide is shown to be bound weakly.
Collapse
Affiliation(s)
- A A Volodin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
38
|
Hall SD, Kolodner RD. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc Natl Acad Sci U S A 1994; 91:3205-9. [PMID: 8159725 PMCID: PMC43544 DOI: 10.1073/pnas.91.8.3205] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecT protein of Escherichia coli promotes the formation of joint molecules between homologous linear double-stranded M13mp19 replicative-form bacteriophage DNA and circular single-stranded M13mp19 DNA in the presence of exonuclease VIII, the recE gene product. The joint molecules were formed by a mechanism involving the pairing of the complementary strand of the linear double-stranded DNA substrate with the circular single-stranded DNA substrate coupled with the displacement of the noncomplementary strand. When the homologous linear double-stranded DNA substrate had homologous 3' or 5' single-stranded tails, then RecT promoted homologous pairing and strand exchange in the absence of exonuclease VIII. Histone H1 could substitute for RecT protein; however, joint molecules formed in the presence of histone H1 did not undergo strand exchange. These results indicate that under the reaction conditions used, the observed strand exchange reaction is promoted by RecT and is not the result of spontaneous branch migration. These results are consistent with the observation that expression of RecE (exonuclease VIII) and RecT substitutes for RecA in some recombination reactions in E. coli.
Collapse
Affiliation(s)
- S D Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
39
|
|
40
|
Kmiec EB, Holloman WK. ATP-dependent DNA renaturation and DNA-dependent ATPase reactions catalyzed by the Ustilago maydis homologous pairing protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:865-75. [PMID: 8112338 DOI: 10.1111/j.1432-1033.1994.tb18568.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purification of the ATP-dependent homologous pairing activity from Ustilago maydis yields a protein preparation that is enriched for a 70-kDa polypeptide as determined by SDS-gel electrophoresis. The protein responsible for the ATP-dependent pairing activity, using renaturation of complementary single strands of DNA as an assay, has a Stokes radius of 3.6 nm and a sedimentation coefficient of 4.3 S consistent with the interpretation that the activity arises from a monomeric globular protein of 70 kDa. Including heparin-agarose and FPLC gel filtration chromatography steps in the previously published protocol improves the purification of the protein. ATP and Mg2+ are necessary cofactors for optimal DNA renaturation activity. ADP inhibits the reaction. Analysis of the ATP-dependent renaturation kinetics indicates the reaction proceeds through a first-order mechanism. The protein has an associated DNA-dependent ATPase as indicated by co-chromatography with the purified ATP-dependent renaturation activity through an FPLC gel-filtration column. Single-stranded DNA and Mg2+ are required for optimal ATP hydrolytic activity, although a number of other polynucleotides and divalent cations can substitute to varying degrees. Hydrolysis of ATP is activated in a sigmoidal manner with increasing amounts of the protein. At ATP concentrations below 0.1 mM the ATPase activity exhibits positive cooperativity as indicated from the Hill coefficient of 1.8 determined by steady-state kinetic analysis of the reaction. ADP and adenosine 5'-[beta,gamma-imido]triphosphate are inhibitors of the ATPase activity although they appear to exert their inhibitory effects through different modes. These results are interpreted as evidence for protein-protein interactions.
Collapse
Affiliation(s)
- E B Kmiec
- Department of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia
| | | |
Collapse
|
41
|
Kolodner R, Hall SD, Luisi-DeLuca C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol 1994; 11:23-30. [PMID: 8145642 DOI: 10.1111/j.1365-2958.1994.tb00286.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Early genetic analysis of alternate recombination pathways in Escherichia coli identified the RecE recombination pathway and the required exonuclease VIII encoded by the recE gene. Observations that not all recombination events promoted by the RecE pathway require recA suggest the existence of an additional homologous pairing protein besides RecA in E. coli. Genetic and biochemical analysis of the recE gene region indicates there are two partially overlapping genes, recE and recT, encoding at least two proteins: exoVIII and the RecT protein. Biochemical analysis has shown that the RecT protein, in combination with exoVIII, promotes homologous pairing and strand exchange in reactions containing linear duplex DNA and homologous, circular, singlestranded DNA as substrates. This reaction occurs in the absence of any high-energy cofactor. These two proteins, RecT and exoVIII, appear to be members of a second class of homologous pairing proteins that are required in genetic recombination and differ from the class of homologous pairing proteins that includes RecA. Members of this second class of proteins appear to include both bacteriophage-encoded proteins and proteins from eukaryotes and their viruses.
Collapse
Affiliation(s)
- R Kolodner
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
42
|
Takahashi M, Nordén B. Accessibility to modification of histidine residues of RecA protein upon DNA and cofactor binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:665-70. [PMID: 8223609 DOI: 10.1111/j.1432-1033.1993.tb18291.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The potential role of histidine residues of RecA protein in binding DNA has been investigated by monitoring their accessibility to diethylpyrocarbonate. In the absence of both DNA and cofactor, only one of two histidine residues is modified by the reagent, indicating that the other residue is buried. However, both histidine residues become accessible after addition of cofactor analog adenosine 5'-O-(3-thiotriphosphate) (ATP[S]) indicating a change in the organization of the RecA filament and/or a change in the conformation of protein. The diethylpyrocarbonate-modified RecA is found to be able to polymerize just as the unmodified protein. The binding of double-stranded DNA, in the presence of ATP[S], reduces the reactivity of both histidine residues to diethylpyrocarbonate. The binding of single-stranded DNA (with ATP[S]) has a similar, though smaller, protective effect. However, no significant dissociation of either of the complexes as a result of the modification was observed and a RecA molecule which had been modified in the absence of DNA could still bind DNA. A protection of the histidine residues is also effected by high salt concentration which promotes, just as DNA binding, ATPase and coprotease activity in RecA. The protection of histidine residues to diethylpyrocarbonate upon DNA binding probably relates to a conformational change of RecA and may not be any direct effect of shielding by the DNA. Nonetheless, the domains including the histidine residues could be centers of allosteric effects and are concluded to be close to the DNA binding site.
Collapse
Affiliation(s)
- M Takahashi
- URA 1342 CNRS, Institut Curie, Université Paris Sud, Orsay, France
| | | |
Collapse
|
43
|
Bertrand P, Corteggiani E, Dutreix M, Coppey J, Lopez BS. Homologous pairing between single-stranded DNA immobilized on a nitrocellulose membrane and duplex DNA is specific for RecA activity in bacterial crude extract. Nucleic Acids Res 1993; 21:3653-7. [PMID: 8367282 PMCID: PMC309861 DOI: 10.1093/nar/21.16.3653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Reaction between a circular single stranded and a linear double stranded DNA molecule (ssDNA and dsDNA) provides an efficient system to study recombination mediated by RecA protein. However, classical assays using reaction in solution require highly purified enzymes. This limits biochemical studies of mutant RecA proteins from Escherichia coli or of RecA proteins from other organisms. We describe here an assay that is specific for RecA activity even in bacterial crude extracts. In this assay, the ssDNA is bound to a nitrocellulose membrane, proteins are loaded on this membrane and it is then incubated with a labeled homologous dsDNA. Joint molecules are visualized by autoradiography. We have shown that, despite the reduced mobility of the DNA due to its binding to the membrane, RecA protein is able to promote formation of stable plectonemic joints, in a homology dependent manner. Fourteen other proteins involved in DNA metabolism were checked and did not produce a signal in our assay. Moreover, in Dot blot analysis as well as after native electrophoresis and electrotransfer on a ssDNA coated membrane, production of a signal was strictly dependent on the presence of active RecA protein in the bacterial crude extracts used. We named this assay Pairing On Membrane blot (POM blot).
Collapse
Affiliation(s)
- P Bertrand
- Institut Curie, Section de Biologie, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Kim S, Nordén B, Takahashi M. Role of DNA intercalators in the binding of RecA to double-stranded DNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82404-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Bedale W, Inman R, Cox M. A reverse DNA strand exchange mediated by recA protein and exonuclease I. The generation of apparent DNA strand breaks by recA protein is explained. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82431-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
|
47
|
Eriksson S, Nordén B, Morimatsu K, Horii T, Takahashi M. Role of tyrosine residue 264 of RecA for the binding of cofactor and DNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53926-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
McCormack WT, Tjoelker LW, Thompson CB. Immunoglobulin gene diversification by gene conversion. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:27-45. [PMID: 8341802 DOI: 10.1016/s0079-6603(08)60865-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- W T McCormack
- Department of Pathology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
49
|
Alonso J, Stiege A, Dobrinski B, Lurz R. Purification and properties of the RecR protein from Bacillus subtilis 168. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54092-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Affiliation(s)
- E C Conley
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|