1
|
Jackobel AJ, Zeberl BJ, Glover DM, Fakhouri AM, Knutson BA. DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194408. [PMID: 31382053 DOI: 10.1016/j.bbagrm.2019.194408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/03/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anti-cancer compounds.
Collapse
Affiliation(s)
- Ashleigh J Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian J Zeberl
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Danea M Glover
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
2
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
3
|
|
4
|
Cavender JF, Mummert C, Tevethia MJ. Transactivation of a ribosomal gene by simian virus 40 large-T antigen requires at least three activities of the protein. J Virol 1999; 73:214-24. [PMID: 9847324 PMCID: PMC103825 DOI: 10.1128/jvi.73.1.214-224.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 large-T antigen transactivates the ribosomal genes which are transcribed by RNA polymerase (pol I), as well as genes that are dependent on either pol II or pol III. This report identifies regions and activities of T antigen that are required to transactivate a pol I-dependent rat ribosomal gene promoter. By using the rat ribosomal gene (rDNA) promoter linked to a chloramphenicol acetyltransferase gene, we show that at least three separable T-antigen regions are necessary to achieve wild-type levels of transactivation of rDNA in transiently transfected monkey cells. One activity depends on the region of T antigen shared with small-t antigen (T/t common region). A second activity maps to amino acids 109 to 626 and is highly sensitive to mutational inactivation. Complementation analyses suggest that at least one activity in this region is independent of and must be in cis with the activity within the T/t common region. In addition, a functional nuclear localization signal is required for maximal T-antigen-mediated transactivation of rat rDNA. The three activities work in concert to override cellular species-specific controls and transactivate the rat ribosomal gene promoter. Finally, we provide evidence that although the tumor suppressor protein Rb has been shown to repress a pol I-dependent promoter, transactivation of the rat rDNA promoter does not depend on T antigen's ability to bind the tumor suppressor product Rb.
Collapse
Affiliation(s)
- J F Cavender
- Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania 17022, USA.
| | | | | |
Collapse
|
5
|
Keys DA, Lee BS, Dodd JA, Nguyen TT, Vu L, Fantino E, Burson LM, Nogi Y, Nomura M. Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. Genes Dev 1996; 10:887-903. [PMID: 8846924 DOI: 10.1101/gad.10.7.887] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Like most eukaryotic rDNA promoters, the promoter for rDNA in Saccharomyces cerevisiae consists of two elements: a core element, which is essential, and an upstream element, which is not essential but is required for a high level of transcription. We have demonstrated that stimulation of transcription by the upstream element is mediated by a multiprotein transcription factor, UAF (upstream activation factor) which contains three proteins encoded by RRN5, RRN9, and RRN10 genes, respectively, and probably two additional uncharacterized proteins. The three genes were originally defined by mutants that show specific reduction in the transcription of rDNA. These genes were cloned and characterized. Epitope tagging of RRN5 (or RRN9), combined with immunoaffinity purification was used to purify UAF, which complemented all three (rrn5, rrn9, and rrn10) mutant extracts. Using rrn10 mutant extracts, a large stimulation by UAF was demonstrated for template containing both the core element and the upstream element but not for a template lacking the upstream element. In the absence of UAF, the mutant extracts showed the same weak transcriptional activity regardless of the presence or absence of the upstream element. We have also demonstrated that UAF alone makes a stable complex with the rDNA template, committing that template to transcription. Conversely, no such template commitment was observed with rrn10 extracts without UAF. By using a series of deletion templates, we have found that the region necessary for the stable binding of UAF corresponds roughly to the upstream element defined previously based on its ability to stimulate rDNA transcription. Differences between the yeast UAF and the previously studied metazoan UBF are discussed.
Collapse
Affiliation(s)
- D A Keys
- Department of Biological Chemistry, University of California-Irvine 92717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
|
8
|
Abstract
Efficient transcription from the rat rDNA promoter results from an undefined interaction between the core (CPE) and upstream (UPE) promoter elements or the protein complexes which form on them. These interactions were demonstrated by the behavior of promoters that contained either linker-scanning or deletion mutations of the UPE in combination with point mutations of the CPE (bidomain mutants). In vivo transcription experiments using point mutations within the CPE (G----A mutation at either -16 or -7) demonstrated that the CPE may in fact consist of two domains. Whereas both of these mutants were rescued by the addition of UBF to in vitro transcription reactions, the CPE mutant -7A/G was inactive in vivo. Experiments with these bidomain mutants demonstrated that the UPE was required for the rescue of the CPE mutants. We also examined the hypothesis that this interaction might require a stereospecific alignment of the promoter elements. Our results indicate that the promoter consists of several domains with differing responses to mutations that alter the distance between, or within, the promoter elements. For example, the insertion or deletion of half-multiples of the helical repeat distance between -167 and -147 had no significant effect on transcription. On the other hand, some sites were sensitive to deletions of any size but not to insertions of up to 20 bp. The analyses of two sites yielded results suggesting that they lay between domains of the promoter that must be on the same side of the DNA helix for promoter activity. The first of these sites mapped between -106 and -95.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
9
|
Xie W, O'Mahony DJ, Smith SD, Lowe D, Rothblum LI. Analysis of the rat ribosomal DNA promoter: characterization of linker-scanning mutants and of the binding of UBF. Nucleic Acids Res 1992; 20:1587-92. [PMID: 1579451 PMCID: PMC312242 DOI: 10.1093/nar/20.7.1587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To investigate the mechanism of transcription of the rat ribosomal DNA (rDNA) promoter, a series of 23 linker-scanning mutants were constructed and assayed in transfected CHO cells and with cell-free extracts. With minor variation, the results of the in vitro and in vivo assays paralleled one another. For example, these assays demonstrated that the mutagenesis of bases from -133 to -124, and those from -106 to -101 of the rDNA promoter significantly inhibited transcription both in vivo and in vitro. Both of these sites lie within the upstream promoter element (UPE) of the rDNA promoter. Several constructs, in particular one that mutated the bases between -49 and -45, were better promoters in vivo than the wild-type promoter. DNAse footprinting experiments with purified UBF, an RNA polymerase I transcription factor, demonstrated the importance of the bases between -106 and -101 for the binding of that factor, providing a positive correlation between the transcription experiments and the binding of UBF to the rDNA promoter.
Collapse
Affiliation(s)
- W Xie
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822-2618
| | | | | | | | | |
Collapse
|
10
|
Abstract
Efficient transcription from the rat rDNA promoter results from an undefined interaction between the core (CPE) and upstream (UPE) promoter elements or the protein complexes which form on them. These interactions were demonstrated by the behavior of promoters that contained either linker-scanning or deletion mutations of the UPE in combination with point mutations of the CPE (bidomain mutants). In vivo transcription experiments using point mutations within the CPE (G----A mutation at either -16 or -7) demonstrated that the CPE may in fact consist of two domains. Whereas both of these mutants were rescued by the addition of UBF to in vitro transcription reactions, the CPE mutant -7A/G was inactive in vivo. Experiments with these bidomain mutants demonstrated that the UPE was required for the rescue of the CPE mutants. We also examined the hypothesis that this interaction might require a stereospecific alignment of the promoter elements. Our results indicate that the promoter consists of several domains with differing responses to mutations that alter the distance between, or within, the promoter elements. For example, the insertion or deletion of half-multiples of the helical repeat distance between -167 and -147 had no significant effect on transcription. On the other hand, some sites were sensitive to deletions of any size but not to insertions of up to 20 bp. The analyses of two sites yielded results suggesting that they lay between domains of the promoter that must be on the same side of the DNA helix for promoter activity. The first of these sites mapped between -106 and -95.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Q Xie
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2618
| | | |
Collapse
|
11
|
Choe SY, Schultz MC, Reeder RH. In vitro definition of the yeast RNA polymerase I promoter. Nucleic Acids Res 1992; 20:279-85. [PMID: 1741253 PMCID: PMC310367 DOI: 10.1093/nar/20.2.279] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structure of the ribosomal gene promoter from Saccharomyces cerevisiae has been analyzed in a whole cell in vitro extract. The promoter contains at least two essential domains, an upstream domain located at the 5' boundary near position -150 and a core promoter domain around the site of transcription initiation at +1. The upstream domain augments transcription in vitro but is not absolutely required. Maintenance of correct spacing between the two domains is critical. The in vitro analysis agrees well with prior in vivo analysis and it appears that the yeast promoter has a structure very similar to that of vertebrate ribosomal gene promoters.
Collapse
Affiliation(s)
- S Y Choe
- Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
12
|
Bogomolova AE, Nikolaev LG. Identification of a sequence-specific protein binding the 5'-transcribed spacer of rat ribosomal genes. Nucleic Acids Res 1991; 19:6633-7. [PMID: 1754399 PMCID: PMC329234 DOI: 10.1093/nar/19.23.6633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel 85-kD protein factor which interacts specifically with the 5'-transcribed spacer of rat ribosomal genes was identified using the gel mobility shift, DNase I protection and UV-crosslinking techniques. The binding site of the factor is located inside the 36 bp Alul-HindIII fragment of transcribed spacer, most probably in the region +94 to +115 with respect to the transcription initiation site. Factors giving very similar gel mobility shift patterns were also found in mouse and human cell extracts. Sequences resembling the binding site of this factor were revealed in corresponding regions of mouse and human ribosomal genes. The biological function of FTS remains to be elucidated.
Collapse
Affiliation(s)
- A E Bogomolova
- All-Union Research Institute Biotechnology, Moscow, USSR
| | | |
Collapse
|
13
|
Kulkens T, Riggs DL, Heck JD, Planta RJ, Nomura M. The yeast RNA polymerase I promoter: ribosomal DNA sequences involved in transcription initiation and complex formation in vitro. Nucleic Acids Res 1991; 19:5363-70. [PMID: 1923820 PMCID: PMC328900 DOI: 10.1093/nar/19.19.5363] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using an in vitro transcription system for Saccharomyces cerevisiae RNA polymerase I, we have analyzed Pol I promoter deletion mutants and mapped the boundaries of the promoter between positions -155 and +27. The 5'-boundary of the minimal core promoter capable of transcription initiation, however, was found to lie between -38 and -26. The 3'-deletion extending to -2 and -5 still allowed some transcription, suggesting that the positioning of Pol I is directed by upstream sequences. The results of in vitro analysis of linker scanning mutants (LSMs) combined with the deletion analysis showed that the promoter consists of three domains: two essential core domains (I: -28 to +8 and II: -76 to -51) and a transcription modulating upstream domain (III: -146 to -91). These results are in general agreement with those obtained in vivo (1). Using a template competition assay we also analyzed these mutant promoters for their ability to form a stable preinitiation complex. We found that the ability of 5'-deletion mutants to sequester an essential factor(s) correlates with their transcriptional activity. In contrast, several 3'-deletions and some LSMs in domain I and II decrease transcription activity greatly without significantly decreasing competition ability. The results indicate that the stimulatory function of domain III is achieved through its interaction with an essential transcription factor(s), although the other domains also participate in this interaction, perhaps directly or through another protein factor.
Collapse
Affiliation(s)
- T Kulkens
- Department of Biological Chemistry, University of California, Irvine 92717
| | | | | | | | | |
Collapse
|
14
|
Hisatake K, Nishimura T, Maeda Y, Hanada K, Song CZ, Muramatsu M. Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Res 1991; 19:4631-7. [PMID: 1891354 PMCID: PMC328702 DOI: 10.1093/nar/19.17.4631] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The gene and protein structure of the mouse UBF (mUBF), a transcription factor for mouse ribosomal RNA gene, have been determined by cDNA and genomic clones. The unique mUBF gene consists of 21 exons spanning over 13 kb. Two mRNAs coding for mUBF1 and mUBF2 having 765 a.a. and 728 a.a., respectively, are produced by an alternative splicing of exon 8. It specifies 37 amino acids constituting a part of the regions homologous to high mobility group proteins (HMG box 2). A human UBF (hUBF) cDNA obtained by polymerase chain reaction also indicates the presence of two kinds of mRNAs, the shorter form lacking the same region as mUBF2. Comparison of the cDNAs from hUBF and mUBF revealed an unusual conservation of nucleotide sequence in the 3'-terminal non-coding region. We examined the relative amounts of expression of mUBF1 and mUBF2. The eight tissues studied contained both molecular species, although mUBF2 was the predominant form of UBF. The mRNA of mUBF1 was expressed one half of the mUBF2 in quiescent mouse fibroblasts but reached the same amount in growing state.
Collapse
Affiliation(s)
- K Hisatake
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Xie WQ, O'Mahony DJ, Smith SD, Rothblum L. Complementary in vivo and in vitro analyses of the interactions between the cis-acting elements of the rat rDNA promoter. Mol Cell Biochem 1991; 104:127-35. [PMID: 1921991 DOI: 10.1007/bf00229812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two transcription factors, rat UBF (rUBF) and rat SL-1 are required for the efficient transcription of the rat promoter in vitro. In vitro studies have established that two broadly defined cis-acting domains, the core promoter element and the upstream promoter element, cooperate to direct correct transcription by RNA polymerase I. The ability of UBF to bind to two linker-scanning mutants of the upstream promoter element, which did not respond to the addition of UBF in in vitro transcription assays, was assessed by DNase footprinting. UBF protected the same region of the promoter in the linker-scanning mutant in BSM 129/124 as it did in the wild-type, but did not yield a typical footprint over the promoter in the linker-scanning mutant BSM 106/101. Previously we reported that promoters with mutant core promoters elements, either the guanine at -16 or -7 substituted by an adenine, were inactive in vitro unless the assays were supplemented with UBF. Those results suggested that the binding of UBF upstream of the core was required for the promotion of transcription. The interactions between the core and upstream promoter elements were assessed by constructing double mutants of the promoter. In two constructs the conserved guanines at either -16 or -7 were altered in a deletion mutant (-86) that did not respond to UBF. In a third construct the guanine at -16 in BSM 129/124 was changed to an adenine. These bidomain mutant constructs did not respond to the addition of UBF in an in vitro transcription assay, confirming that the rescue of the core promoter mutants requires an intact and functional upstream promoter element.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Q Xie
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822
| | | | | | | |
Collapse
|
16
|
O'Mahony DJ, Rothblum LI. Identification of two forms of the RNA polymerase I transcription factor UBF. Proc Natl Acad Sci U S A 1991; 88:3180-4. [PMID: 2014238 PMCID: PMC51409 DOI: 10.1073/pnas.88.8.3180] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure of the rat homologue of the RNA polymerase I transcription factor UBF was investigated. The sequence of the protein was deduced from the sequence of overlapping cDNAs isolated from a cDNA library and from clones of the products generated by the polymerase chain reaction from random-primed, first-strand cDNA. The sequences of these clones indicated that there were two mRNAs for UBF and that the encoded proteins were similar but not identical. One form of rat UBF was essentially identical to human UBF. The second class of UBF mRNA contained an in-frame "deletion" in the coding region that results in the deletion of 37 amino acids from the predicted protein sequence. This deletion reduces the predicted molecular size of the encoded form of UBF by approximately 4400 from 89.4 kDa to 85 kDa and significantly alters the structure of one of the four HMG-1 homology regions (HMG box-2) in that form of UBF. Evidence for the existence of two mRNAs in rat cells was confirmed by a probe protection assay, and we provide evidence that other vertebrate cells contain these same two forms of UBF mRNA. These results are consistent with the observation that UBF purified from four different vertebrates migrates as two bands upon SDS/PAGE. It has been hypothesized that the HMG motifs are the DNA-binding domains of UBF. Altering one of these "boxes," as in the second form of UBF, may alter the functional characteristics of the transcription factor. Thus, the existence of different forms of UBF may have important ramifications for transcription by RNA polymerase I.
Collapse
Affiliation(s)
- D J O'Mahony
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822
| | | |
Collapse
|
17
|
Abstract
The protein components that direct and activate accurate transcription by rat RNA polymerase I were studied in extracts of Novikoff hepatoma ascites cells. A minimum of at least two components, besides RNA polymerase I, that are necessary for efficient utilization of templates were identified. The first factor, rat SL-1, is required for species-specific recognition of the rat RNA polymerase I promoter and may be sufficient to direct transcription by pure RNA polymerase I. Rat SL-1 directed the transcription of templates deleted to -31, the 5' boundary of the core promoter element (+1 being the transcription initiation site). The second factor, rUBF, increased the efficiency of template utilization. Transcription of deletion mutants indicated that the 5' boundary of the domain required for rUBF lay between -137 and -127. Experiments using block substitution mutants confirmed and extended these observations. Transcription experiments using those mutants demonstrated that two regions within the upstream promoter element were required for optimal levels of transcription in vitro. The first region was centered on nucleotides -129 and -124. The 5' boundary of the second domain mapped to between nucleotides -106 and -101. DNase footprint experiments using highly purified rUBF indicated that rUBF bound between -130 and -50. However, mutation of nucleotides -129 and -124 did not affect the rUBF footprint. These results indicate that basal levels of transcription by RNA polymerase I may require only SL-1 and the core promoter element. However, higher transcription levels are mediated by additional interactions of rUBF, and possibly SL-1, bound to distal promoter elements.
Collapse
|
18
|
Smith SD, Oriahi E, Lowe D, Yang-Yen HF, O'Mahony D, Rose K, Chen K, Rothblum LI. Characterization of factors that direct transcription of rat ribosomal DNA. Mol Cell Biol 1990; 10:3105-16. [PMID: 2342470 PMCID: PMC360675 DOI: 10.1128/mcb.10.6.3105-3116.1990] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The protein components that direct and activate accurate transcription by rat RNA polymerase I were studied in extracts of Novikoff hepatoma ascites cells. A minimum of at least two components, besides RNA polymerase I, that are necessary for efficient utilization of templates were identified. The first factor, rat SL-1, is required for species-specific recognition of the rat RNA polymerase I promoter and may be sufficient to direct transcription by pure RNA polymerase I. Rat SL-1 directed the transcription of templates deleted to -31, the 5' boundary of the core promoter element (+1 being the transcription initiation site). The second factor, rUBF, increased the efficiency of template utilization. Transcription of deletion mutants indicated that the 5' boundary of the domain required for rUBF lay between -137 and -127. Experiments using block substitution mutants confirmed and extended these observations. Transcription experiments using those mutants demonstrated that two regions within the upstream promoter element were required for optimal levels of transcription in vitro. The first region was centered on nucleotides -129 and -124. The 5' boundary of the second domain mapped to between nucleotides -106 and -101. DNase footprint experiments using highly purified rUBF indicated that rUBF bound between -130 and -50. However, mutation of nucleotides -129 and -124 did not affect the rUBF footprint. These results indicate that basal levels of transcription by RNA polymerase I may require only SL-1 and the core promoter element. However, higher transcription levels are mediated by additional interactions of rUBF, and possibly SL-1, bound to distal promoter elements.
Collapse
Affiliation(s)
- S D Smith
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tyler BM. Two complex regions, including a TATA sequence, are required for transcription by RNA polymerase I in Neurospora crassa. Nucleic Acids Res 1990; 18:1805-11. [PMID: 2139932 PMCID: PMC330599 DOI: 10.1093/nar/18.7.1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to define the RNA polymerase I transcriptional apparatus and how it might interact with regulatory signals, the DNA sequences necessary for 40S rRNA transcription in Neurospora crassa were determined. A systematic set of deletion, substitution and insertion mutations were assayed in a homologous in vitro system. The sequences required for transcription of the gene consist of two large domains (I and II) from -113 to -37, and -29 to +4, respectively. Complete deletion of either domain abolished transcription. Upstream sequences confer a small stimulation of transcription. Domain II includes a TATA sequence at -5 which is sensitive to a small (2 bp) substitution and which is conserved among the large rRNA genes of many organisms. Domain I includes a sequence, termed the 'Ribo box', which is also required for transcription of the Neurospora 5S rRNA genes (1), and which occurs in the 5' region of a Neurospora ribosomal protein gene. The 5S and 40S Ribo boxes are shown to be functionally interchangeable.
Collapse
Affiliation(s)
- B M Tyler
- Department of Plant Pathology, University of California, Davis 95616
| |
Collapse
|
20
|
Smith SD, Oriahi E, Yang-Yen HF, Xie WQ, Chen C, Rothblum LI. Interaction of RNA polymerase I transcription factors with a promoter in the nontranscribed spacer of rat ribosomal DNA. Nucleic Acids Res 1990; 18:1677-85. [PMID: 2336355 PMCID: PMC330583 DOI: 10.1093/nar/18.7.1677] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The spacer promoter of the rat rDNA repeat consists of two functional domains: a core (proximal) element that is sufficient for transcription in vitro, and an upstream (distal) promoter element that increases the efficiency of transcription. Two of the transcription factors that interact with the 45S promoter also interact with the spacer promoter. Rat SL-1, is required for transcription of the spacer promoter by heterologous extracts, e.g. human, and rat SF-1 is required for efficient transcription in vitro. Order-of-addition experiments demonstrated that the preinitiation complex formed by these factors on the spacer promoter is not as stable as the complex formed on the 45S promoter. DNase 1 footprinting experiments demonstrated binding sites for rat SL-1 and SF-1 on the distal element of the spacer promoter. The topology of the domains of the spacer promoter may explain both the reduced stability of the preinitiation complex formed on that promoter and the lower efficiency of transcription of that promoter when compared to the 45S promoter.
Collapse
Affiliation(s)
- S D Smith
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822
| | | | | | | | | | | |
Collapse
|
21
|
Schnapp A, Clos J, Hädelt W, Schreck R, Cvekl A, Grummt I. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I. Nucleic Acids Res 1990; 18:1385-93. [PMID: 2326184 PMCID: PMC330501 DOI: 10.1093/nar/18.6.1385] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The murine ribosomal gene promoter contains two cis-acting control elements which operate in concert to promote efficient and accurate transcription initiation by RNA polymerase I. The start site proximal core element which is indispensable for promoter recognition by RNA polymerase I (pol I) encompasses sequences from position -39 to -1. An upstream control element (UCE) which is located between nucleotides -142 and -112 stimulates the efficiency of transcription initiation both in vivo and in vitro. Here we report the isolation and functional characterization of a specific rDNA binding protein, the transcription initiation factor TIF-IB, which specifically interacts with the core region of the mouse ribosomal RNA gene promoter. Highly purified TIF-IB complements transcriptional activity in the presence of two other essential initiation factors TIF-IA and TIF-IC. We demonstrate that the binding efficiency of purified TIF-IB to the core promoter is strongly enhanced by the presence in cis of the UCE. This positive effect of upstream sequences on TIF-IB binding is observed throughout the purification procedure suggesting that the synergistic action of the two distant promoter elements is not mediated by a protein different from TIF-IB. Increasing the distance between both control elements still facilitates stable factor binding but eliminates transcriptional activation. The results demonstrate that TIF-IB binding to the rDNA promoter is an essential early step in the assembly of a functional transcription initiation complex. The subsequent interaction of TIF-IB with other auxiliary transcription initiation factors, however, requires the correct spacing between the UCE and the core promoter element.
Collapse
Affiliation(s)
- A Schnapp
- Institute of Biochemistry, Würzburg, FRG
| | | | | | | | | | | |
Collapse
|
22
|
Purification and characterization of a high-mobility-group-like DNA-binding protein that stimulates rRNA synthesis in vitro. Mol Cell Biol 1989. [PMID: 3211145 DOI: 10.1128/mcb.8.8.3406] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A 16,000-dalton, high-mobility-group-like (HMG-like) DNA-binding protein, referred to as p16, has been purified to homogeneity from Novikoff hepatoma ascites cells. p16 binds specifically to a portion of the 5' flanking region of the rat rRNA gene (-620 to -417), which is part of the upstream activator sequence identified previously (B. G. Cassidy, H.-F. Yang-Yen, and L. I. Rothblum, Mol. Cell. Biol. 6:2766-2773, 1986). p16 also binds to a segment of the external transcribed spacer (+352 to +545). In vitro reconstituted transcription experiments demonstrated that the addition of p16 stimulated rRNA synthesis up to ca. fourfold. The stimulation was dose dependent and saturable. The effect of p16 on ribosomal gene transcription was also dependent on the presence of either the upstream or the downstream DNA-binding site, or both. The amino acid composition of p16 is very similar to that of HMG-I, suggesting that p16 may be a member of the HMG-I family of proteins. In this case, our results suggest that HMG proteins may play an important role in the regulation of the rRNA gene expression.
Collapse
|
23
|
Yang-Yen HF, Rothblum LI. Purification and characterization of a high-mobility-group-like DNA-binding protein that stimulates rRNA synthesis in vitro. Mol Cell Biol 1988; 8:3406-14. [PMID: 3211145 PMCID: PMC363577 DOI: 10.1128/mcb.8.8.3406-3414.1988] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A 16,000-dalton, high-mobility-group-like (HMG-like) DNA-binding protein, referred to as p16, has been purified to homogeneity from Novikoff hepatoma ascites cells. p16 binds specifically to a portion of the 5' flanking region of the rat rRNA gene (-620 to -417), which is part of the upstream activator sequence identified previously (B. G. Cassidy, H.-F. Yang-Yen, and L. I. Rothblum, Mol. Cell. Biol. 6:2766-2773, 1986). p16 also binds to a segment of the external transcribed spacer (+352 to +545). In vitro reconstituted transcription experiments demonstrated that the addition of p16 stimulated rRNA synthesis up to ca. fourfold. The stimulation was dose dependent and saturable. The effect of p16 on ribosomal gene transcription was also dependent on the presence of either the upstream or the downstream DNA-binding site, or both. The amino acid composition of p16 is very similar to that of HMG-I, suggesting that p16 may be a member of the HMG-I family of proteins. In this case, our results suggest that HMG proteins may play an important role in the regulation of the rRNA gene expression.
Collapse
Affiliation(s)
- H F Yang-Yen
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|