1
|
Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Nucleic Acids Res 2015; 43:5855-67. [PMID: 25999340 PMCID: PMC4499140 DOI: 10.1093/nar/gkv516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | | - Rajdeep Banerjee
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | - Shreya Sengupta
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | |
Collapse
|
2
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
3
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
4
|
Werlang ICR, Schneider CZ, Mendonça JD, Palma MS, Basso LA, Santos DS. Identification of Rv3852 as a nucleoid-associated protein in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2009; 155:2652-2663. [PMID: 19477901 DOI: 10.1099/mic.0.030148-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis remains the major cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The molecular mechanisms of infection and persistence have not been completely elucidated for this pathogen. Studies involving nucleoid-associated proteins (NAPs), which have been related to the control and influence of virulence genes in pathogenic bacteria, can help unveil the virulence process of M. tuberculosis. Here, we describe the initial characterization of an ORF for an M. tuberculosis putative NAP. The Rv3852 gene was cloned and expressed, and its product purified to homogeneity. A qualitative protein-DNA binding assay was carried out by gel-retardation and the protein affinity for specific DNA sequences was assessed quantitatively by surface plasmon resonance (SPR). A stoichiometry of 10 molecules of monomeric protein per molecule of DNA was determined. The monophasic apparent dissociation rate constant values increased to a saturable level as a function of protein concentration, yielding two limiting values for the molecular recognition of proU2 DNA. A protein-DNA binding mechanism is proposed. In addition, functional complementation studies with an Escherichia coli hns mutant reinforce the likelihood that the Rv3852 protein represents a novel NAP in M. tuberculosis.
Collapse
Affiliation(s)
- Isabel C R Werlang
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91501-970, Brazil.,Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Cristopher Z Schneider
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Jordana D Mendonça
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Mario S Palma
- Laboratório de Biologia Estrutural e Zooquímica, Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| | - Luiz A Basso
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| | - Diógenes S Santos
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil
| |
Collapse
|
5
|
Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 2007; 190:1499-506. [PMID: 18156277 DOI: 10.1128/jb.01160-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cip-cel cluster of genes plays an important role in the catabolism of the substrate cellulose by Clostridium cellulolyticum. It encodes several key components of the cellulosomes, including the scaffolding protein CipC and the major cellulase Cel48F. All the genes of this cluster display linked transcription, focusing attention on the promoter upstream from the first gene, cipC. We analyzed the regulation of the cipC promoter using a transcriptional fusion approach. A single promoter is located between nucleotides -671 and -643 with respect to the ATG start codon, and the large mRNA leader sequence is processed at position -194. A catabolite-responsive element (CRE) 414 nucleotides downstream from the transcriptional start site has been shown to be involved in regulating this operon by a carbon catabolite repression mechanism. This CRE is thought to bind a CcpA-like regulator complexed with a P-Ser-Crh-like protein. Sequences surrounding the promoter sequence may also be involved in direct (sequence-dependent DNA curvature) or indirect (unknown regulator binding) regulation.
Collapse
|
6
|
Chodavarapu S, Felczak MM, Yaniv JR, Kaguni JM. Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 2007; 67:781-92. [PMID: 18179598 DOI: 10.1111/j.1365-2958.2007.06094.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than other forms of HU in initiation of an oriC-containing plasmid because it more effectively promotes strand opening of oriC. Other results demonstrate that HU stabilizes the DnaA oligomer bound to oriC, and that the alpha subunit of HU interacts with the N-terminal region of DnaA. These observations support a model whereby DnaA interacts with the alpha dimer or the alphabeta heterodimer, depending on their cellular abundance, to recruit the respective form of HU to oriC. The greater activity of the alpha dimer of HU at oriC may stimulate initiation during early log phase compared with the lesser activity of the alphabeta heterodimer or the beta dimer.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
7
|
Guo F, Adhya S. Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling. Proc Natl Acad Sci U S A 2007; 104:4309-14. [PMID: 17360520 PMCID: PMC1838598 DOI: 10.1073/pnas.0611686104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Indexed: 11/18/2022] Open
Abstract
We determined the crystal structure of the Escherichia coli nucleoid-associated HUalphabeta protein by x-ray diffraction and observed that the heterodimers form multimers with octameric units in three potential arrangements, which may serve specialized roles in different DNA transaction reactions. It is of special importance that one of the structures forms spiral filaments with left-handed rotations. A negatively superhelical DNA can be modeled to wrap around this left-handed HUalphabeta multimer. Whereas the wild-type HU generated negative DNA supercoiling in vitro, an engineered heterodimer with an altered amino acid residue critical for the formation of the left-handed spiral protein in the crystal was defective in the process, thus providing the structural explanation for the classical property of HU to restrain negative supercoils in DNA.
Collapse
Affiliation(s)
- Fusheng Guo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264
| | - Sankar Adhya
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264
| |
Collapse
|
8
|
Sarkar T, Vitoc I, Mukerji I, Hud NV. Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines. Nucleic Acids Res 2007; 35:951-61. [PMID: 17259223 PMCID: PMC1807954 DOI: 10.1093/nar/gkl1093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Controlling the size and shape of DNA condensates is important in vivo and for the improvement of nonviral gene delivery. Here, we demonstrate that the morphology of DNA condensates, formed under a variety of conditions, is shifted completely from toroids to rods if the bacterial protein HU is present during condensation. HU is a non-sequence-specific DNA binding protein that sharply bends DNA, but alone does not condense DNA into densely packed particles. Less than one HU dimer per 225 bp of DNA is sufficient to completely control condensate morphology when DNA is condensed by spermidine. We propose that rods are favored in the presence of HU because rods contain sharply bent DNA, whereas toroids contain only smoothly bent DNA. The results presented illustrate the utility of naturally derived proteins for controlling the shape of DNA condensates formed in vitro. HU is a highly conserved protein in bacteria that is implicated in the compaction and shaping of nucleoid structure. However, the exact role of HU in chromosome compaction is not well understood. Our demonstration that HU governs DNA condensation in vitro also suggests a mechanism by which HU could act as an architectural protein for bacterial chromosome compaction and organization in vivo.
Collapse
Affiliation(s)
- Tumpa Sarkar
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Iulia Vitoc
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Ishita Mukerji
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
- *To whom correspondence should be addressed. Tel: +1 404 385 1162; Fax: +1 404 894 2295;
| |
Collapse
|
9
|
Leoni L, Rampioni G, Di Stefano V, Zennaro E. Dual role of response regulator StyR in styrene catabolism regulation. Appl Environ Microbiol 2005; 71:5411-9. [PMID: 16151132 PMCID: PMC1214618 DOI: 10.1128/aem.71.9.5411-5419.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and repressed by the addition of preferred carbon sources. PstyA is regulated by the StyS/StyR two-component system. The integration host factor (IHF) also plays a positive role in PstyA regulation. Three distinct StyR binding sites, which have different affinities for this response regulator, have been characterized on PstyA. The high-affinity StyR binding site (STY2) is necessary for promoter activity. The DNA region upstream of STY2 contains a lower-affinity StyR binding site, STY1, that partially overlaps the IHF binding site. Deletion of this region, designated URE (upstream regulatory element), has a dual effect on the PstyA promoter, decreasing the styrene-dependent activity and partially relieving the glucose repression. The lowest-affinity StyR binding site (STY3) is located downstream of the transcription start point. Deletion of the URE region and inactivation of the STY3 site completely abolished glucose-mediated repression of PstyA. In the proposed model StyR can act either as an activator or as a repressor, depending on which sites it occupies in the different growth conditions. We suggest that the cellular levels of phosphorylated StyR, as determined by StyS sensor kinase activity, and the interplay of this molecule with IHF modulate the activity of the promoter in different growth conditions.
Collapse
Affiliation(s)
- Livia Leoni
- Department of Biology, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | | | | | | |
Collapse
|
10
|
Dame RT. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 2005; 56:858-70. [PMID: 15853876 DOI: 10.1111/j.1365-2958.2005.04598.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosomal DNA is folded into a compact structure called nucleoid. The shape and size of this 'body' is determined by a number of factors. Major players are DNA supercoiling, macromolecular crowding and architectural proteins, associated with the nucleoid, which are the topic of this MicroReview. Although many of these proteins were identified more than 25 years ago, the molecular mechanisms involved in the organization and compaction of DNA have only started to become clear in recent years. Many of these new insights can be attributed to the use of recently developed biophysical techniques.
Collapse
Affiliation(s)
- Remus T Dame
- Physics of Complex Systems, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Arthanari H, Wojtuszewski K, Mukerji I, Bolton PH. Effects of HU binding on the equilibrium cyclization of mismatched, curved, and normal DNA. Biophys J 2004; 86:1625-31. [PMID: 14990489 PMCID: PMC1303997 DOI: 10.1016/s0006-3495(04)74230-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effects of HU, the histone-like protein from Escherichia coli, on the equilibrium cyclization of duplex DNAs have been observed as a function of protein concentration and DNA sequence. The results indicate that the presence of HU significantly enhances the extent of cyclization and increases the melting temperature, T(m), of the cyclized form of the DNA by >10 K. The stabilization of equilibrium cyclization by HU binding is at least -1.2 kcal/mol. The results are consistent with two HU homotypic dimers binding to each of the three 29-mer duplexes studied. One of the 29-mer duplexes contains a central dA tract, one contains mismatched sites, and one a conventional sequence. Stepwise or microscopic association constants, determined from the fluorescence data, range from 1.5 to 0.6 micro M(-1). The binding affinity of the HU dimer is strongest for the mismatched duplex and lowest for the dA tract, consistent with HU dimers having a preference for flexible DNA substrates. These results demonstrate the utility of the equilibrium cyclization approach to monitor DNA-protein interactions. These results have been considered along with those previously obtained to refine a model for the interaction of HU with duplex DNA.
Collapse
Affiliation(s)
- Haribabu Arthanari
- Chemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The role of HU in Escherichia coli as both a protein involved in DNA compaction and as a protein with regulatory function seems to be firmly established. However, a critical look at the available data reveals that this is not true for each of the proposed roles of this protein. The role of HU as a regulatory or accessory protein in a number of systems has been thoroughly investigated and in many cases has been largely elucidated. However, almost 30 years after its discovery, convincing evidence for the proposed role of HU in DNA compaction is still lacking. Here we present an extensive literature survey of the available data which, in combination with novel microscopic insights, suggests that the role of HU could be the opposite as well. The protein is likely to play an architectural role, but instead of being responsible for DNA compaction it could be involved in antagonising compaction by other proteins such as H-NS.
Collapse
Affiliation(s)
- Remus Thei Dame
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Santos PM, Leoni L, Di Bartolo I, Zennaro E. Integration host factor is essential for the optimal expression of the styABCD operon in Pseudomonas fluorescens ST. Res Microbiol 2002; 153:527-36. [PMID: 12437214 DOI: 10.1016/s0923-2508(02)01358-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The StyS/StyR two-component regulatory system of Pseudomonas fluorescens ST controls the expression of the styABCD operon coding for the styrene degradation upper pathway. In a previous work we showed that the promoter of the catabolic operon (PstyA) is induced by styrene and repressed to differing extents by organic acids or carbohydrates. In order to study the mechanisms controlling the expression of this operon, we performed a functional analysis on 5' deletions of PstyA by the use of a promoter-probe system. These studies demonstrated that a palindromic region (sty box), located from nucleotides -52 to -37 with respect to the transcriptional start point is essential for PstyA activity. Moreover, additional regulatory regions involved in the modulation of PstyA activity were found along the promoter sequence. In particular, deletion of a putative StyR binding site, homologous to the 3' half of the sty box and located upstream of this box, resulted in 65% reduction of the induction level of the reporter gene. Additionally, we performed bandshift assays with a DNA probe corresponding to PstyA and protein crude extracts from P. fluorescens ST, using specific DNA fragments as competitors. In these experiments we demonstrated that IHF binds an AT-rich region located upstream of the sty box. On the basis of this finding, coupled with the results obtained with PstyA functional analysis, we suggest that the role of the IHF-mediated DNA bend is to bring closer, in an overlapping position, the upstream StyR putative binding site and the downstream sty box, and that the formed complex enhances transcription.
Collapse
|
14
|
Bailey KA, Marc F, Sandman K, Reeve JN. Both DNA and histone fold sequences contribute to archaeal nucleosome stability. J Biol Chem 2002; 277:9293-301. [PMID: 11751933 DOI: 10.1074/jbc.m110029200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles and interdependence of DNA sequence and archaeal histone fold structure in determining archaeal nucleosome stability and positioning have been determined and quantitated. The presence of four tandem copies of TTTAAAGCCG in the polylinker region of pLITMUS28 resulted in a DNA molecule with increased affinity (DeltaDeltaG of approximately 700 cal mol(-1)) for the archaeal histone HMfB relative to the polylinker sequence, and the dominant, quantitative contribution of the helical repeats of the dinucleotide TA to this increased affinity has been established. The rotational and translational positioning of archaeal nucleosomes assembled on the (TTTAAAGCCG)(4) sequence and on DNA molecules selectively incorporated into archaeal nucleosomes by HMfB have been determined. Alternating A/T- and G/C-rich regions were located where the minor and major grooves, respectively, sequentially faced the archaeal nucleosome core, and identical positioning results were obtained using HMfA, a closely related archaeal histone also from Methanothermus fervidus. However, HMfA did not have similarly high affinities for the HMfB-selected DNA molecules, and domain-swap experiments have shown that this difference in affinity is determined by residue differences in the C-terminal region of alpha-helix 3 of the histone fold, a region that is not expected to directly interact with DNA. Rather this region is thought to participate in forming the histone dimer:dimer interface at the center of an archaeal nucleosome histone tetramer core. If differences in this interface do result in archaeal histone cores with different sequence preferences, then the assembly of alternative archaeal nucleosome tetramer cores could provide an unanticipated and novel structural mechanism to regulate gene expression.
Collapse
Affiliation(s)
- Kathryn A Bailey
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
15
|
Dhavan GM, Crothers DM, Chance MR, Brenowitz M. Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 2002; 315:1027-37. [PMID: 11827473 DOI: 10.1006/jmbi.2001.5303] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integration host factor (IHF) is a heterodimeric Escherichia coli protein that plays essential roles in a variety of cellular processes including site-specific recombination, transcription, and DNA replication. The IHF-DNA interface extends over three helical turns and includes sequential minor groove contacts that present strong, sequence specific protection patterns against hydroxyl radical cleavage. Synchrotron X-ray footprinting has been used to follow the kinetics of formation of DNA-protein contacts in the IHF-DNA complex with single base-pair spatial, and millisecond time, resolution. The three sites of IHF protection on the DNA develop with similar time-dependence, indicating that sequence specific binding and bending occur concertedly. Two distinct phases are observed in the association process. The first "burst" phase is characterized by a rate that is greater than diffusion limited (>10(10) s(-1) M(-1)) and the second phase is on the order of diffusion controlled (approximately 10(8) M(-1) s(-1)). The overall kinetics of association become faster with increasing IHF concentration showing that complex formation is second-order with protein. The rate of association is maximal between 100 and 200 mM KCl decreasing at higher and lower concentrations. The rate of IHF dissociation from site-specifically bound DNA increases monotonically as KCl concentration is increased. The dissociation progress curves are biphasic with the amplitude of the first phase dependent upon competitor DNA concentration. These results are the first analysis by synchrotron footprinting of the fast kinetics of a protein-DNA interaction and suggest that IHF binds its specific site through a multiple-step mechanism in which the first step is facilitated diffusion along the length of the duplex followed by subsequent binding and bending of the DNA in a concerted manner.
Collapse
Affiliation(s)
- Gauri M Dhavan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
16
|
Pedersen AG, Jensen LJ, Brunak S, Staerfeldt HH, Ussery DW. A DNA structural atlas for Escherichia coli. J Mol Biol 2000; 299:907-30. [PMID: 10843847 DOI: 10.1006/jmbi.2000.3787] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have performed a computational analysis of DNA structural features in 18 fully sequenced prokaryotic genomes using models for DNA curvature, DNA flexibility, and DNA stability. The structural values that are computed for the Escherichia coli chromosome are significantly different from (and generally more extreme than) that expected from the nucleotide composition. To aid this analysis, we have constructed tools that plot structural measures for all positions in a long DNA sequence (e.g. an entire chromosome) in the form of color-coded wheels (http://www.cbs.dtu. dk/services/GenomeAtlas/). We find that these "structural atlases" are useful for the discovery of interesting features that may then be investigated in more depth using statistical methods. From investigation of the E. coli structural atlas, we discovered a genome-wide trend, where an extended region encompassing the terminus displays a high of level curvature, a low level of flexibility, and a low degree of helix stability. The same situation is found in the distantly related Gram-positive bacterium Bacillus subtilis, suggesting that the phenomenon is biologically relevant. Based on a search for long DNA segments where all the independent structural measures agree, we have found a set of 20 regions with identical and very extreme structural properties. Due to their strong inherent curvature, we suggest that these may function as topological domain boundaries by efficiently organizing plectonemically supercoiled DNA. Interestingly, we find that in practically all the investigated eubacterial and archaeal genomes, there is a trend for promoter DNA being more curved, less flexible, and less stable than DNA in coding regions and in intergenic DNA without promoters. This trend is present regardless of the absolute levels of the structural parameters, and we suggest that this may be related to the requirement for helix unwinding during initiation of transcription, or perhaps to the previously observed location of promoters at the apex of plectonemically supercoiled DNA. We have also analyzed the structural similarities between groups of genes by clustering all RNA and protein-encoding genes in E. coli, based on the average structural parameters. We find that most ribosomal genes (protein-encoding as well as rRNA genes) cluster together, and we suggest that DNA structure may play a role in the transcription of these highly expressed genes.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Pairing/genetics
- Color
- Computational Biology
- Computer Simulation
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- Deoxyribonuclease I/metabolism
- Escherichia coli/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Models, Molecular
- Nucleic Acid Conformation
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Pattern Recognition, Automated
- Phylogeny
- Pliability
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/genetics
- Software
- Statistics as Topic
- Thermodynamics
Collapse
Affiliation(s)
- A G Pedersen
- Center for Biological Sequence Analysis, Department of Biotechnology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
17
|
Merino E, Garciarrubio A. The global intrinsic curvature of archaeal and eubacterial genomes is mostly contained in their dinucleotide composition and is probably not an adaptation. Nucleic Acids Res 2000; 28:2431-8. [PMID: 10871377 PMCID: PMC102725 DOI: 10.1093/nar/28.12.2431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Until now, the genomic DNA of all eubacteria analyzed has been hyper-curved, its global intrinsic curvature being higher than that of a random sequence. In contrast, that rule failed for archaea or eukaryotes, which could be either hypo- or hyper-curved. The existence of the rule suggested that, at least for eubacteria, global intrinsic curvature is adaptive. However, the present results from analyzing 21 eubacterial and six archaeal genomes argue against adaptation. First, there are two eubacterial exceptions to the former rule. More significantly, we found that the dinucleotide composition of the genome alone (which lacks all sequence information) is enough to determine the genome curvature. Additional evidence against adaptation came from showing that the global curvature of bacterial genomes could not have evolved under either of two complementary models of curvature selection: (i) that curvature is selected locally from unbiased variability; (ii) that curvature is established globally through the selection of a curvature-altering mutational bias. We found that the observed relationship between curvature and dinucleotide composition is incompatible with model (i). We also found that, contrary to the predictions of model (ii), the dinucleo-tide compositions of bacterial genomes were not statistically special in their curvature-related properties (when compared to stochastically generated dinucleotide compositions).
Collapse
Affiliation(s)
- E Merino
- Institute for Biotechnology, National University of Mexico, Cuernavaca, Apelo 510-3, Morelos 62250, Mexico
| | | |
Collapse
|
18
|
Zouine M, Beloin C, Ghelis C, Le Hégarat F. The L17 ribosomal protein of Bacillus subtilis binds preferentially to curved DNA. Biochimie 2000; 82:85-91. [PMID: 10717392 DOI: 10.1016/s0300-9084(00)00184-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We searched in Bacillus subtilis for proteins that bind preferentially to curved DNA. Two proteins of 9 and 15 kDa displaying this property were purified from exponentially growing cells of B. subtilis strain 168. Sequencing of N-terminal amino acids identified them as the proteins HBsu and L17 respectively. The overproduction of L17 from B. subtilis in Escherichia coli was shown to have a strong effect on nucleoid morphology and segregation.
Collapse
Affiliation(s)
- M Zouine
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
19
|
Teter B, Goodman SD, Galas DJ. DNA bending and twisting properties of integration host factor determined by DNA cyclization. Plasmid 2000; 43:73-84. [PMID: 10610821 DOI: 10.1006/plas.1999.1443] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding of many proteins to DNA is profoundly affected by DNA bending, twisting, and supercoiling. When protein binding alters DNA conformation, interaction between inherent and induced DNA conformation can affect protein binding affinity and specificity. Integration host factor (IHF), a sequence-specific, DNA-binding protein of Escherichia coli, strongly bends the DNA upon binding. To assess the influence of inherent DNA bending on IHF binding, we took advantage of the high degree of natural static curvature associated with an IHF site on a 163-bp minicircle and measured the binding affinity of IHF for its recognition site contained on this DNA in both circular and linear form. IHF showed a higher affinity for the circular form of the DNA when compared to the linear form. In addition, the presence of IHF during DNA cyclization changed the topology of cyclization products and their ability to bind IHF, consistent with IHF untwisting DNA. These results show that inherent DNA conformation anisotropy is an important determinant of IHF binding affinity and suggests a mechanism for modulation of IHF activity by local DNA conformation.
Collapse
Affiliation(s)
- B Teter
- University of Southern California, 925 West 34th Street, Los Angeles, California, 90089-0641, USA
| | | | | |
Collapse
|
20
|
Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 1999; 274:33105-13. [PMID: 10551881 DOI: 10.1074/jbc.274.46.33105] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.
Collapse
Affiliation(s)
- T A Azam
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
21
|
Abstract
Archaeal histones, homologs of the eucaryal nucleosome core histones, have been identified in the Euryarchaeota. They assemble as tetramers with dsDNA to form archaeal nucleosomes that resemble the central structure of the eucaryal nucleosome formed by the histone (H3-H4)2 tetramer. Eucaryal and archaeal nucleosomes assemble preferentially on DNA molecules that best accommodate the severe bends found within these structures, and here we discuss the relationships between archaeal and eucaryal nucleosomes, repeating DNA sequences, and nucleosome positioning.
Collapse
Affiliation(s)
- K A Bailey
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
22
|
Esser D, Rudolph R, Jaenicke R, Böhm G. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J Mol Biol 1999; 291:1135-46. [PMID: 10518949 DOI: 10.1006/jmbi.1999.3022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histone-like protein TmHU from the hyperthermophilic eubacterium Thermotoga maritima was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and cation exchange chromatography. CD spectroscopical studies with secondary structure analysis as well as comparative modeling demonstrate that the dimeric TmHU has a tertiary structure similar to other homologous HU proteins. The Tm of the protein was determined to be 96 degrees C, and thermal unfolding is nearly completely reversible. Surface plasmon resonance measurements for TmHU show that the protein binds to DNA in a highly cooperative manner, with a KD of 73 nM and a Hill coefficient of 7.6 for a 56 bp DNA fragment. It is demonstrated that TmHU is capable to increase the melting point of a synthetic, double-stranded DNA (poly[d(A-T)]) by 47 degrees C, thus suggesting that DNA stabilization may be a major function of this protein in hyperthermophiles. The significant in vitro protection of double-helical DNA may be useful for biotechnological applications.
Collapse
Affiliation(s)
- D Esser
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany.
| | | | | | | |
Collapse
|
23
|
Shindo H, Ohnuki A, Ginba H, Katoh E, Ueguchi C, Mizuno T, Yamazaki T. Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 1999; 455:63-9. [PMID: 10428473 DOI: 10.1016/s0014-5793(99)00862-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR spectroscopies. It was shown from gel retardation assay that DNA binding affinity of the mutant proteins relative to that of native H-NS falls in the range from 1/6 to 1/25 for H-NS(60-137), H-NS(70-137) and H-NS(80-137), whereas it was much weaker for H-NS(91-137). Thus, the DNA binding domain was defined to be the region from residue A80 to the C-terminus. Sequential nuclear Overhauser effect (NOE) connectivities and those of medium ranges revealed that the region of residues Q60-R93 in mutant protein H-NS(60-137) forms a long stretch of disordered, flexible chain, and also showed that the structure of the C-terminal region (residues A95-Q137) in mutant H-NS(60-137) was nearly identical to that of H-NS(91-137). 1H and 15N chemical shift perturbations induced by complex formation of H-NS(60-137) with an oligonucleotide duplex 14-mer demonstrated that two loop regions, i.e. residues A80-K96 and T110-A117, play an essential role in DNA binding.
Collapse
Affiliation(s)
- H Shindo
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Katayama S, Matsushita O, Jung CM, Minami J, Okabe A. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442-50. [PMID: 10369683 PMCID: PMC1171423 DOI: 10.1093/emboj/18.12.3442] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A gel retardation assay and hydroxyl radical footprinting revealed that the phased A-tracts facilitate the formation of the RNAP-plc promoter complex through extension of the contact region. The upstream (UP) element of the Escherichia coli rrnB P1 promoter stimulated the downstream promoter activity temperature independently, differing from the phased A-tracts. When the UP element was placed upstream of the plc promoter, low temperature-dependent stimulation was observed, although this effect was less prominent than that of the phased A-tracts. These results suggest that both the phased A-tracts and UP element cause low temperature-dependent activation of the plc promoter through a similar mechanism, and that the more efficient low temperature-dependent activation by the phased A-tracts may be due to an increase in the bending angle at a lower temperature.
Collapse
Affiliation(s)
- S Katayama
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
This review attempts to substantiate the notion that nonlinear DNA structures allow prokaryotic cells to evolve complex signal integration devices that, to some extent, parallel the transduction cascades employed by higher organisms to control cell growth and differentiation. Regulatory cascades allow the possibility of inserting additional checks, either positive or negative, in every step of the process. In this context, the major consequence of DNA bending in transcription is that promoter geometry becomes a key regulatory element. By using DNA bending, bacteria afford multiple metabolic control levels simply through alteration of promoter architecture, so that positive signals favor an optimal constellation of protein-protein and protein-DNA contacts required for activation. Additional effects of regulated DNA bending in prokaryotic promoters include the amplification and translation of small physiological signals into major transcriptional responses and the control of promoter specificity for cognate regulators.
Collapse
Affiliation(s)
- J Pérez-Martín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | | |
Collapse
|