Arystarkhova E, Donnet C, Asinovski NK, Sweadner KJ. Differential regulation of renal Na,K-ATPase by splice variants of the gamma subunit.
J Biol Chem 2002;
277:10162-72. [PMID:
11756431 DOI:
10.1074/jbc.m111552200]
[Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sodium and potassium-exchanging adenosine triphosphatase (Na,K-ATPase) in the kidney is associated with the gamma subunit (gamma, FXYD2), a single-span membrane protein that modulates ATPase properties. Rat and human gamma occur in two splice variants, gamma(a) and gamma(b), with different N termini. Here we investigated their structural heterogeneity and functional effects on Na,K-ATPase properties. Both forms were post-translationally modified during in vitro translation with microsomes, indicating that there are four possible forms of gamma. Site-directed mutagenesis revealed Thr(2) and Ser(5) as potential sites for post-translational modification. Similar modification can occur in cells, with consequences for Na,K-ATPase properties. We showed previously that stable transfection of gamma(a) into NRK-52E cells resulted in reduction of apparent affinities for Na(+) and K(+). Individual clones differed in gamma post-translational modification, however, and the effect on Na(+) affinity was absent in clones with full modification. Here, transfection of gamma(b) also resulted in clones with or without post-translational modification. Both groups showed a reduction in Na(+) affinity, but modification was required for the effect on K(+) affinity. There were minor increases in ATP affinity. The physiological importance of the reduction in Na(+) affinity was shown by the slower growth of gamma(a), gamma(b), and gamma(b') transfectants in culture. The differential influence of the four structural variants of gamma on affinities of the Na,K-ATPase for Na(+) and K(+), together with our previous finding of different distributions of gamma(a) and gamma(b) along the rat nephron, suggests a highly specific mode of regulation of sodium pump properties in kidney.
Collapse