1
|
Obiozo UM, Brondijk THC, White AJ, van Boxel G, Dafforn TR, White SA, Jackson JB. Substitution of Tyrosine 146 in the dI Component of Proton-translocating Transhydrogenase Leads to Reversible Dissociation of the Active Dimer into Inactive Monomers. J Biol Chem 2007; 282:36434-43. [PMID: 17911104 DOI: 10.1074/jbc.m705433200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The protein has three components: dI binds NADH, dIII binds NADP+, and dII spans the membrane. Transhydrogenase is a "dimer" of two dI-dII-dIII "monomers"; x-ray structures suggested that the two catalytic sites alternate during turnover. Invariant Tyr146 in recombinant dI of Rhodospirillum rubrum transhydrogenase was substituted with Phe and Ala (proteins designated dI.Y146F and dI.Y146A, respectively). Analytical ultracentrifuge experiments and differential scanning calorimetry show that dI.Y146A more readily dissociates into monomers than wild-type dI. Analytical ultracentrifuge and Trp fluorescence experiments indicate that the dI.Y146A monomers bind NADH much more weakly than dimers. Wild-type dI and dI.Y146F reconstituted activity to dI-depleted membranes with similar characteristics. However, dI.Y146A reconstituted activity in its dimeric form but not in its monomeric form, this despite monomers retaining their native fold and binding to the dI-depleted membranes. It is suggested that transhydrogenase reconstructed with monomers of dI.Y146A is catalytically compromised, at least partly as a consequence of the lowered affinity for NADH, and this results from lost interactions between the nucleotide binding site and the protein beta-hairpin upon dissociation of the dI dimer. The importance of these interactions and their coupling to dI domain rotation in the mechanism of action of transhydrogenase is emphasized. Two peaks in the 1H NMR spectrum of wild-type dI are broadened in dI.Y146A and are tentatively assigned to S-methyl groups of Met resonances in the beta-hairpin, consistent with the segmental mobility of this feature in the structure.
Collapse
Affiliation(s)
- U Mirian Obiozo
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
2
|
Wilson R, Obiozo UM, Quirk PG, Besra GS, Jackson JB. A hybrid of the transhydrogenases from Rhodospirillum rubrum and Mycobacterium tuberculosis catalyses rapid hydride transfer but not the complete, proton-translocating reaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:215-23. [PMID: 16624251 DOI: 10.1016/j.bbabio.2006.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/05/2006] [Indexed: 11/28/2022]
Abstract
All transhydrogenases appear to have three components: dI, which binds NAD(H), and dIII, which binds NADP(H), protrude from the membrane, and dII spans the membrane. However, the polypeptide composition of the enzymes varies amongst species. The transhydrogenases of Mycobacterium tuberculosis and of Rhodospirillum rubrum have three polypeptides. Sequence analysis indicates that an ancestral three-polypeptide enzyme evolved into transhydrogenases with either two polypeptides (such as the Escherichia coli enzyme) or one polypeptide (such as the mitochondrial enzyme). The fusion steps in each case probably led to the development of an additional transmembrane helix. A hybrid transhydrogenase was constructed from the dI component of the M. tuberculosis enzyme and the dII and dIII components of the R. rubrum enzyme. The hybrid catalyses cyclic transhydrogenation but not the proton-translocating, reverse reaction. This shows that nucleotide-binding/release at the NAD(H) site, and hydride transfer, are fully functional but that events associated with NADP(H) binding/release are compromised. It is concluded that sequence mismatch in the hybrid prevents a conformational change between dI and dIII which is essential for the step accompanying proton translocation.
Collapse
Affiliation(s)
- Rosalind Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
3
|
Brondijk THC, van Boxel GI, Mather OC, Quirk PG, White SA, Jackson JB. The role of invariant amino acid residues at the hydride transfer site of proton-translocating transhydrogenase. J Biol Chem 2006; 281:13345-13354. [PMID: 16533815 DOI: 10.1074/jbc.m513230200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples proton translocation across a membrane to hydride transfer between NADH and NADP+. Previous x-ray structures of complexes of the nucleotide-binding components of transhydrogenase ("dI2dIII1" complexes) indicate that the dihydronicotinamide ring of NADH can move from a distal position relative to the nicotinamide ring of NADP+ to a proximal position. The movement might be responsible for gating hydride transfer during proton translocation. We have mutated three invariant amino acids, Arg-127, Asp-135, and Ser-138, in the NAD(H)-binding site of Rhodospirillum rubrum transhydrogenase. In each mutant, turnover by the intact enzyme is strongly inhibited. Stopped-flow experiments using dI2dIII1 complexes show that inhibition results from a block in the steps associated with hydride transfer. Mutation of Asp-135 and Ser-138 had no effect on the binding affinity of either NAD+ or NADH, but mutation of Arg-127 led to much weaker binding of NADH and slightly weaker binding of NAD+. X-ray structures of dI2dIII1 complexes carrying the mutations showed that their effects were restricted to the locality of the bound NAD(H). The results are consistent with the suggestion that in wild-type protein movement of the Arg-127 side chain, and its hydrogen bonding to Asp-135 and Ser-138, stabilizes the dihydronicotinamide of NADH in the proximal position for hydride transfer.
Collapse
Affiliation(s)
- T Harma C Brondijk
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gijs I van Boxel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Owen C Mather
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Philip G Quirk
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Scott A White
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - J Baz Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
4
|
Whitehead SJ, Rossington KE, Hafiz A, Cotton NPJ, Jackson JB. Zinc ions selectively inhibit steps associated with binding and release of NADP(H) during turnover of proton-translocating transhydrogenase. FEBS Lett 2005; 579:2863-7. [PMID: 15878164 DOI: 10.1016/j.febslet.2005.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation. They must, therefore, interfere specifically with steps involving binding/release of NADP(+)/NADPH: the steps thought to be associated with proton translocation. It is suggested that Zn(2+) and Cd(2+) bind in the proton-transfer pathway and block inter-conversion of states responsible for changing NADP(+)/NADPH binding energy.
Collapse
|
5
|
Singh A, Venning JD, Quirk PG, van Boxel GI, Rodrigues DJ, White SA, Jackson JB. Interactions between transhydrogenase and thio-nicotinamide Analogues of NAD(H) and NADP(H) underline the importance of nucleotide conformational changes in coupling to proton translocation. J Biol Chem 2003; 278:33208-16. [PMID: 12791694 DOI: 10.1074/jbc.m303061200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples the reduction of NADP+ by NADH to inward proton translocation across mitochondrial and bacterial membranes. The coupling reactions occur within the protein by long distance conformational changes. In intact transhydrogenase and in complexes formed from the isolated, nucleotide-binding components, thio-NADP(H) is a good analogue for NADP(H), but thio-NAD(H) is a poor analogue for NAD(H). Crystal structures of the nucleotide-binding components show that the twists of the 3-carbothiamide groups of thio-NADP+ and of thio-NAD+ (relative to the planes of the pyridine rings), which are defined by the dihedral, Xam, are altered relative to the twists of the 3-carboxamide groups of the physiological nucleotides. The finding that thio-NADP+ is a good substrate despite an increased Xam value shows that approach of the NADH prior to hydride transfer is not obstructed by the S atom in the analogue. That thio-NAD(H) is a poor substrate appears to be the result of failure in the conformational change that establishes the ground state for hydride transfer. This might be a consequence of restricted rotation of the 3-carbothiamide group during the conformational change.
Collapse
Affiliation(s)
- Avtar Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Studley WK, Yamaguchi M, Hatefi Y, Saier MH. Phylogenetic analyses of proton-translocating transhydrogenases. MICROBIAL & COMPARATIVE GENOMICS 2001; 4:173-86. [PMID: 10587945 DOI: 10.1089/omi.1.1999.4.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proton-translocating nicotinamide nucleotide transhydrogenases (TH) provide a simple model for understanding chemically coupled transmembrane proton translocation. To further our understanding of TH structure-function relationships, we have identified all sequenced homologous of these vectorial enzymes and have conducted sequence comparison studies. The NAD-binding domains of TH are homologous to bacterial alanine dehydrogenases (ADH) and eukaryotic saccharopine dehydrogenases (SDH) as well as N5(carboxyethyl)-L-ornithine synthase of Lactococcus lactis and dipicolinate synthase of Bacillus subtilis. A multiple alignment, a phylogenetic tree, and two signature sequences for this family, designated the TH-ADH-SDH or TAS superfamily, have been derived. Additionally, the TH family has been characterized. Phylogenetic analyses suggested that these proteins have evolved without inter-system shuffling. However, interdomain splicing-fusion events have occurred during the evolution of several of these systems. Analyses of the multiple alignment for the TH family revealed that domain conservation occurs in the order: NADP-binding domain (domain III) > NAD-binding domain (domain I) > proton-translocating transmembrane domain (domain II). A topologic model for the proton-translocating transmembrane domain consistent with published data is presented, and a possible involvement of specific transmembrane alpha-helical segments in channel formation is suggested.
Collapse
Affiliation(s)
- W K Studley
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
7
|
Buckley PA, Baz Jackson J, Schneider T, White SA, Rice DW, Baker PJ. Protein-protein recognition, hydride transfer and proton pumping in the transhydrogenase complex. Structure 2000; 8:809-15. [PMID: 10997900 DOI: 10.1016/s0969-2126(00)00171-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Membrane-bound ion pumps are involved in metabolic regulation, osmoregulation, cell signalling, nerve transmission and energy transduction. How the ion electrochemical gradient interacts with the scalar chemistry and how the catalytic machinery is gated to ensure high coupling efficiency are fundamental to the mechanism of action of such pumps. Transhydrogenase is a conformationally coupled proton pump linking a proton gradient to the redox reaction between NAD(H) and NADP(H). The enzyme has three components; dI binds NAD(H), dII spans the membrane and dIII binds NADP(H). RESULTS The first crystal structure of a transhydrogenase dI component (from Rhodospirillum rubrum) has been determined at 2.0 A resolution. The monomer comprises two domains. Both are involved in dimer formation, and one has a Rossmann fold that binds NAD+ in a novel mode. The two domains can adopt different conformations. In the most closed conformation, the nicotinamide ring is expelled from the cleft between the two domains and is exposed on the outside of the protein. In this conformation it is possible to dock the structure of dI/NAD+ with that of a dIII/NADP+ complex to provide the first insights into the molecular basis of the hydride-transfer step. CONCLUSIONS Analysis of the model of the dI/dIII complex identifies residues potentially involved in dI/dIII interaction and shows how domain motion in dI results in a shift in position of the nicotinamide ring of NAD+. We propose that this movement is responsible for switching between the forbidden and allowed states for hydride transfer during proton pumping.
Collapse
Affiliation(s)
- P A Buckley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, UK
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Recent developments have led to advances in our understanding of the structure and mechanism of action of proton-translocating (or AB) transhydrogenase. There is (a) a high-resolution crystal structure, and an NMR structure, of the NADP(H)-binding component (dIII), (b) a homology-based model of the NAD(H)-binding component (dI) and (c) an emerging consensus on the position of the transmembrane helices (in dII). The crystal structure of dIII, in particular, provides new insights into the mechanism by which the energy released in proton translocation across the membrane is coupled to changes in the binding affinities of NADP(+) and NADPH that drive the chemical reaction.
Collapse
Affiliation(s)
- J B Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|
9
|
Peake SJ, Venning JD, Cotton NP, Jackson JB. Evidence for the stabilization of NADPH relative to NADP(+) on the dIII components of proton-translocating transhydrogenases from Homo sapiens and from Rhodospirillum rubrum by measurement of tryptophan fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:81-91. [PMID: 10514549 DOI: 10.1016/s0005-2728(99)00084-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A unique Trp residue in the recombinant dIII component of transhydrogenase from human heart mitochondria (hsdIII), and an equivalent Trp engineered into the dIII component of Rhodospirillum rubrum transhydrogenase (rrdIII.D155W), are more fluorescent when NADP(+) is bound to the proteins, than when NADPH is bound. We have used this to determine the occupancy of the binding site during transhydrogenation reactions catalysed by mixtures of recombinant dI from the R. rubrum enzyme and either hsdIII or rrdIII.D155W. The standard redox potential of NADP(+)/NADPH bound to the dIII proteins is some 60-70 mV higher than that in free solution. This results in favoured reduction of NADP(+) by NADH at the catalytic site, and supports the view that changes in affinity at the nucleotide-binding site of dIII are central to the mechanism by which transhydrogenase is coupled to proton translocation across the membrane.
Collapse
Affiliation(s)
- S J Peake
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
10
|
Quirk PG, Smith KJ, Thomas CM, Jackson JB. The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:139-48. [PMID: 10393257 DOI: 10.1016/s0005-2728(99)00057-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The dI component of transhydrogenase binds NAD+ and NADH. A mobile loop region of dI plays an important role in the nucleotide binding process, and mutations in this region result in impaired hydride transfer in the complete enzyme. We have previously employed one-dimensional 1H-NMR spectroscopy to study wild-type and mutant dI proteins of Rhodospirillum rubrum and the effects of nucleotide binding. Here, we utilise two- and three-dimensional NMR experiments to assign the signals from virtually all of the backbone and side-chain protons of the loop residues. The mobile loop region encompasses 17 residues: Asp223-Met239. The assignments also provide a much strengthened basis for interpreting the structural changes occurring upon nucleotide binding, when the loop closes down onto the surface of the protein and loses mobility. The role of the mobile loop region in catalysis is discussed with particular reference to a newly-developed model of the dI protein, based on its homology with alanine dehydrogenase.
Collapse
Affiliation(s)
- P G Quirk
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
11
|
Gupta S, Quirk PG, Venning JD, Slade J, Bizouarn T, Grimley RL, Cotton NP, Jackson JB. Mutation of amino acid residues in the mobile loop region of the NAD(H)-binding domain of proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:25-38. [PMID: 9804876 DOI: 10.1016/s0005-2728(98)00146-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of single amino acid substitutions in the mobile loop region of the recombinant NAD(H)-binding domain (dI) of transhydrogenase have been examined. The mutations lead to clear assignments of well-defined resonances in one-dimensional 1H-NMR spectra. As with the wild-type protein, addition of NADH, or higher concentrations of NAD+, led to broadening and some shifting of the well-defined resonances. With many of the mutant dI proteins more nucleotide was required for these effects than with wild-type protein. Binding constants of the mutant proteins for NADH were determined by equilibrium dialysis and, where possible, by NMR. Generally, amino acid changes in the mobile loop region gave rise to a 2-4-fold increase in the dI-nucleotide dissociation constants, but substitution of Ala236 for Gly had a 10-fold effect. The mutant dI proteins were reconstituted with dI-depleted bacterial membranes with apparent docking affinities that were indistinguishable from that of wild-type protein. In the reconstituted system, most of the mutants were more inhibited in their capacity to perform cyclic transhydrogenation (reduction of acetyl pyridine adenine dinucleotide, AcPdAD+, by NADH in the presence of NADP+) than in either the simple reduction of AcPdAD+ by NADPH, or the light-driven reduction of thio-NADP+ by NADH, which suggests that they are impaired at the hydride transfer step. A cross-peak in the 1H-1H nuclear Overhauser enhancement spectrum of a mixture of wild-type dI and NADH was assigned to an interaction between the A8 proton of the nucleotide and the betaCH3 protons of Ala236. It is proposed that, following nucleotide binding, the mobile loop folds down on to the surface of the dI protein, and that contacts, especially from Tyr235 in a Gly-Tyr-Ala motif with the adenosine moiety of the nucleotide, set the position of the nicotinamide ring of NADH close to that of NADP+ in dIII to effect direct hydride transfer.
Collapse
Affiliation(s)
- S Gupta
- School of Biochemistry, University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jackson JB, Quirk PG, Cotton NP, Venning JD, Gupta S, Bizouarn T, Peake SJ, Thomas CM. Interdomain hydride transfer in proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:79-86. [PMID: 9693725 DOI: 10.1016/s0005-2728(98)00046-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe the use of the recombinant, nucleotide-binding domains (domains I and III) of transhydrogenase to study structural, functional and dynamic features of the protein that are important in hydride transfer and proton translocation. Experiments on the transient state kinetics of the reaction show that hydride transfer takes place extremely rapidly in the recombinant domain I:III complex, even in the absence of the membrane-spanning domain II. We develop the view that proton translocation through domain II is coupled to changes in the binding characteristics of NADP+ and NADPH in domain III. A mobile loop region which emanates from the surface of domain I, and which interacts with NAD+ and NADH during nucleotide binding has been studied by NMR spectroscopy and site-directed mutagenesis. An important role for the loop region in the process of hydride transfer is revealed.
Collapse
Affiliation(s)
- J B Jackson
- School of Biochemistry, University of Birmingham, Edgbaston, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bizouarn T, Stilwell S, Venning J, Cotton NP, Jackson JB. The pH dependences of reactions catalyzed by the complete proton-translocating transhydrogenase from Rhodospirillum rubrum, and by the complex formed from its recombinant nucleotide-binding domains. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1322:19-32. [PMID: 9398076 DOI: 10.1016/s0005-2728(97)00065-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transhydrogenase couples the translocation of protons across a membrane to the transfer of reducing equivalents between NAD(H) and NADP(H). Using transhydrogenase from Rhodospirillum rubrum we have examined the pH dependences of the 'forward' and 'reverse' reactions, and of the 'cyclic' reaction (NADP(H)-dependent reduction of the analogue, acetyl pyridine adenine dinucleotide, by NADH). In the case of the membrane-bound protein in chromatophores, the imposition of a protonmotive force through the action of the light-driven electron-transport system, stimulated forward transhydrogenation, inhibited reverse transhydrogenation, but had no effect on the cyclic reaction. The differential response at a range of pH values provides evidence that hydride transfer per se is not coupled to proton translocation and supports the view that energy transduction occurs at the level of NADP(H) binding. Chromatophore transhydrogenase and the detergent-dispersed enzyme both have bell-shaped pH dependences for forward and reverse transhydrogenation. The cyclic reaction, however, is rapid at low and neutral pH, and is attenuated only at high pH. A mixture of recombinant purified NAD(H)-binding domain I, and NADP(H)-binding domain III, of R. rubrum transhydrogenase carry out the cyclic reaction with a similar pH profile to that of the complete enzyme, but the forward and reverse reactions were much less pH dependent. The rates of release of NADP+ and of NADPH from isolated domain III were pH independent. The results are consistent with a model for transhydrogenation, in which proton binding from one side of the membrane is consequent upon the binding of NADP+ to the enzyme, and then proton release on the other side of the membrane precedes NADPH release.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
14
|
Venning JD, Grimley RL, Bizouarn T, Cotton NP, Jackson JB. Evidence that the transfer of hydride ion equivalents between nucleotides by proton-translocating transhydrogenase is direct. J Biol Chem 1997; 272:27535-8. [PMID: 9346886 DOI: 10.1074/jbc.272.44.27535] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular masses of the purified, recombinant nucleotide-binding domains (domains I and III) of transhydrogenase from Rhodospirillum rubrum were determined by electrospray mass spectrometry. The values obtained, 40,273 and 21,469 Da, for domains I and III, respectively, are similar to those estimated from the amino acid sequences of the proteins. Evidently, there are no prosthetic groups or metal centers that can serve as reducible intermediates in hydride transfer between nucleotides bound to these proteins. The transient-state kinetics of hydride transfer catalyzed by mixtures of recombinant domains I and III were studied by stopped-flow spectrophotometry. The data indicate that oxidation of NADPH, bound to domain III, and reduction of acetylpyridine adenine dinucleotide (an NAD+ analogue), bound to domain I, are simultaneous and very fast. The transient-state reaction proceeds as a biphasic burst of hydride transfer before establishment of a steady state, which is limited by slow release of NADP+. Hydride transfer between the nucleotides is evidently direct. This conclusion indicates that the nicotinamide rings of the nucleotides are in close apposition during the hydride transfer reaction, and it imposes firm constraints on the mechanism by which transhydrogenation is linked to proton translocation.
Collapse
Affiliation(s)
- J D Venning
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Bizouarn T, Grimley R, Diggle C, Thomas CM, Jackson JB. Mutations at tyrosine-235 in the mobile loop region of domain I protein of transhydrogenase from Rhodospirillum rubrum strongly inhibit hydride transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:265-74. [PMID: 9230921 DOI: 10.1016/s0005-2728(97)00030-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transhydrogenase from mitochondrial and bacterial membranes couples proton translocation to hydride transfer between NAD(H) and NADP(H). The enzyme has three domains, of which domains I and III protrude from the membrane. These possess the NAD(H)- and NADP(H)-binding sites, respectively, whereas domain II spans the membrane. In domain I there is a mobile loop which emanates from the surface of the protein, but which closes down upon NAD(H) binding. In this report we show that the NADP(H)-dependent reduction of acetylpyridine adenine dinucleotide by NADH catalysed by Rhodospirillum rubrum transhydrogenase has 'ping-pong' kinetics, confirming that the reaction is cyclic. We then describe the kinetic and thermodynamic properties of mutants of recombinant domain I protein from the R. rubrum enzyme, in which Tyr-235 in the mobile loop has been substituted with Phe or Asn residues (dI.Y235F and dI.Y235N, respectively). (1) Equilibrium dialysis measurements show that dI.Y235F and dI.Y235N bind NADH more weakly than wild-type domain I protein (the Kd increases twofold and fourfold, respectively). (2) Reverse transhydrogenation rates (in steady state) of domain I-depleted membrane vesicles reconstituted with either dI.Y235F or dI.Y235N are inhibited by about 50% and 78%, respectively, relative to those obtained in reconstitutions with wild-type domain I protein. (3) Reverse transhydrogenation rates (in steady state) of mixtures of recombinant domain III protein and either dI.Y235F or dI.Y235N are inhibited only by about 10% and 20%, respectively, relative to those obtained in mixtures with wild-type protein. (4) Forward transhydrogenation rates (in both the complete enzyme and in domain I:III complexes) are inhibited even less by the mutations than the reverse reactions. (5) In contrast with (1), (2) and (3), cyclic transhydrogenation was strongly inhibited in both the reconstituted membrane system and in the recombinant domain I:III complexes (only 7-8% activity remains with dI.Y235F, and only 2-3% with dI.Y235N). It was recently established that, in contrast to forward and reverse transhydrogenation, the cyclic reaction is substantially limited by the rate of hydride transfer. It is therefore concluded that mutations at Tyr-235 in the mobile loop severely disrupt the hydride transfer step in the catalytic reaction of transhydrogenase.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
16
|
Stilwell SN, Bizouarn T, Jackson JB. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact? BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:83-94. [PMID: 9186780 DOI: 10.1016/s0005-2728(97)00016-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transhydrogenase is a proton pump. It has separate binding sites for NAD+/NADH (on domain I of the protein) and for NADP+/NADPH (on domain III). Purified, detergent-dispersed transhydrogenase from Escherichia coli catalyses the reduction of the NAD+ analogue, acetylpyridine adenine dinucleotide (AcPdAD+), by NADH at a slow rate in the absence of added NADP+ or NADPH. Although it is slow, this reaction is surprising, since transhydrogenase is generally thought to catalyse hydride transfer between NAD(H)--or its analogues and NADP(H)--or its analogues, by a ternary complex mechanism. It is shown that hydride transfer occurs between the 4A position on the nicotinamide ring of NADH and the 4A position of AcPdAD+. On the basis of the known stereospecificity of the enzyme, this eliminates the possibilities of transhydrogenation(a) from NADH in domain I to AcPdAD+ wrongly located in domain III; and (b) from NADH wrongly located in domain III to AcPdAD+ in domain I. In the presence of low concentrations of added NADP+ or NADPH, detergent-dispersed E. coli transhydrogenase catalyses the very rapid reduction of AcPdAD+ by NADH. This reaction is cyclic; it takes place via the alternate oxidation of NADPH by AcPdAD+ and the reduction of NADP+ by NADH, while the NADPH and NADP+ remain tightly bound to the enzyme. In the present work, it is shown that the rate of the cyclic reaction and the rate of reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH, have similar dependences on pH and on MgSO4 concentration and that they have a similar kinetic character. It is therefore suggested that the reduction of AcPdAD+ by NADH is actually a cyclic reaction operating, either with tightly bound NADP+/NADPH on a small fraction (< 5%) of the enzyme, or with NAD+/NADH (or AcPdAD+/AcPdADH) unnaturally occluded within the domain III site. Transhydrogenase associated with membrane vesicles (chromatophores) of Rhodospirillum rubrum also catalyses the reduction of AcPdAD+ by NADH in the absence of added NADP+/NADPH. When the chromatophores were stripped of transhydrogenase domain I, that reaction was lost in parallel with 'normal reverse' transhydrogenation (e.g., the reduction of AcPdAD+ by NADPH). The two reactions were fully recovered upon reconstitution with recombinant domain I protein. However, after repeated washing of the domain I-depleted chromatophores, reverse transhydrogenation activity (when assayed in the presence of domain I) was retained, whereas the reduction of AcPdAD+ by NADH declined in activity. Addition of low concentrations of NADP+ or NADPH always supported the same high rate of the NADH-->AcPdAD+ reaction independently of how often the membranes were washed. It is concluded that, as with the purified E. coli enzyme, the reduction of AcPdAD+ by NADH in chromatophores is a cyclic reaction involving nucleotides that are tightly bound in the domain III site of transhydrogenase. However, in the case of R. rubrum membranes it can be shown with some certainty that the bound nucleotides are NADP+ or NADPH. The data are thus adequately explained without recourse to suggestions of multiple nucleotide-binding sites on transhydrogenase.
Collapse
Affiliation(s)
- S N Stilwell
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
17
|
Delforge D, Devreese B, Dieu M, Delaive E, Van Beeumen J, Remacle J. Identification of lysine 74 in the pyruvate binding site of alanine dehydrogenase from Bacillus subtilis. Chemical modification with 2,4,6-trinitrobenzenesulfonic acid, n-succinimidyl 3-(2-pyridyldithio)propionate, and 5'-(p-(fluorosulfonyl)benzoyl)adenosine. J Biol Chem 1997; 272:2276-84. [PMID: 8999934 DOI: 10.1074/jbc.272.4.2276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
L-Alanine dehydrogenase from Bacillus subtilis was inactivated with two different lysine-directed chemical reagents, i.e. 2,4, 6-trinitrobenzenesulfonic acid and N-succinimidyl 3-(2-pyridyldithio)propionate. In both cases, the inactivation followed pseudo first-order kinetics, with a 1:1 stoichiometric ratio between the reagent and the enzyme subunits. Partial protection of the active site from inactivation could be obtained by each of the substrates, NADH or pyruvate, but complete protection could only be achieved in the presence of the ternary complex E.NADH. pyruvate. The nucleotide analogue of NADH, 5'-(p-(fluorosulfonyl)benzoyl)adenosine was also used for affinity labeling of the enzyme active site. Differential peptide mapping, performed both in the presence and in the absence of the substrates, followed by reversed phase high performance liquid chromatography separation, diode-array analysis, mass spectrometry, and N-terminal sequencing of the resulting peptides, allowed the identification of lysine 74 in the active site of the enzyme. This residue, which is conserved among all L-alanine dehydrogenases, is most likely the residue previously postulated to be necessary for the binding of pyruvate in the active site. Surprisingly, this residue and the surrounding conserved residues are not found in amino acid dehydrogenases like glutamate, leucine, phenylalanine, or valine dehydrogenases, suggesting that A-stereospecific amino acid dehydrogenases such as L-alanine dehydrogenase could have evolved apart from the B-stereospecific amino acid dehydrogenases.
Collapse
Affiliation(s)
- D Delforge
- Laboratory of Cellular Biochemistry, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Diggle C, Bizouarn T, Cotton NP, Jackson JB. Properties of the purified, recombinant, NADP(H)-binding domain III of the proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:162-70. [PMID: 8898902 DOI: 10.1111/j.1432-1033.1996.0162t.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transhydrogenase comprises three domains. Domains I and III are peripheral to the membrane and possess the NAD(H)- and NADP(H)-binding sites, respectively, and domain II spans the membrane. Domain III of transhydrogenase from Rhodospirillum rubrum was expressed at high levels in Escherichia coli, and purified. The purified protein was associated with substoichiometric quantities of tightly bound NADP+ and NADPH. Fluorescence spectra of the domain III protein revealed emissions due to Tyr residues. Energy transfer was detected between Tyr residue(s) and the bound NADPH, indicating that the amino acid residue(s) and the nucleotide are spatially close. The rate constants for NADP+ release and NADPH release from domain III were 0.03 s-1 and 5.6 x 10(4) s-1, respectively. In the absence of domain II a mixture of the recombinant domain III protein, plus the previously described recombinant domain I protein, catalysed reduction of acetylpyridine-adenine dinucleotide (AcPdAD+) by NADPH (reverse transhydrogenation) at a rate that was limited by the release of NADP+ from domain III. Similarly, the mixture catalysed reduction of thio-NADP+ by NADH (forward transhydrogenation) at a rate limited by release of thio-NADPH from domain III. The mixture also catalysed very rapid reduction of AcPdAD+ by NADH, probably by way of a cyclic reaction mediated by the tightly bound NADP(H). Measurement of the rates of the transhydrogenation reactions during titrations of domain I with domain III and vice versa indicated (a) that during reduction of AcPdAD+ by NADPH, a single domain I protein can visit and transfer H equivalents to about 60 domain III proteins during the time taken for a single domain III to release its NADP+, whereas (b) the cyclic reaction is rapid on the timescale of formation and break-down of the domain I. III complex. The rate of the hydride transfer reaction was similar in the domain I.III complex to that in the complete membrane-bound transhydrogenase, but the rates of forward and reverse transhydrogenation were much slower in the I.III complex due to the greatly decreased rates of release of NADP+ and NADPH. It is concluded that, in the complete enzyme, conformational changes in the membrane-spanning domain II, which result from proton translocation, lead to changes in the binding affinity of domain III for NADP+ and for NADPH.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, UK
| | | | | | | |
Collapse
|
19
|
Bizouarn T, Diggle C, Jackson JB. The binding of nucleotides to domain I proteins of the proton-translocating transhydrogenases from Rhodospirillum rubrum and Escherichia coli as measured by equilibrium dialysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:737-41. [PMID: 8774721 DOI: 10.1111/j.1432-1033.1996.0737u.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transhydrogenase catalyses the transfer of reducing equivalents between NAD(H) and NADP(H) coupled to the translocation of protons across a membrane. The NAD(H)-binding domain of transhydrogenase (domain I protein) from Rhodospirillum rubrum and from Escherichia coli were overexpressed and purified. Nucleotide binding to the domain I proteins was determined by equilibrium dialysis. NADH and its analogue, acetylpyridine adenine dinucleotide (reduced form), bound with relatively high affinity (Kd = 32 microM and 120 microM, respectively, for the R. rubrum protein). The binding affinity was similar at pH 8.0 and pH 9.0 in zwitterionic buffers, and at pH 7.5 in sodium phosphate buffer. NAD+ bound with lower affinity (Kd = 300 microM). NADPH bound only very weakly (Kd > 1 mM). Using a centrifugation procedure, Yamaguchi and Hatefi [Yamaguchi, M. & Hatefi, Y. (1993) J. Biol. Chem. 268. 17871-17877] found that mitochondrial transhydrogenase, and a proteolytically derived domain I fragment from that enzyme, bound one NADH per dimer. They suggested that this result implied half-of-the-site reactivity for the interaction between the nucleotide ligand and the protein. However, our studies on both the E. coli and the R. rubrum recombinant transhydrogenase domain I proteins using equilibrium dialysis show that the binding stoichiometry for both NADH and the reduced form of acetylpyridine adenine dinucleotide (AcPdADH) is two nucleotides per dimer: no interaction between the monomeric units is evident. Reasons for the discrepancies between the work on bacterial and mitochondrial transhydrogenases are discussed.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, England
| | | | | |
Collapse
|
20
|
Bizouarn T, Diggle C, Quirk PG, Grimley RL, Cotton NP, Thomas CM, Jackson JB. Interaction of nucleotides with the NAD(H)-binding domain of the proton-translocating transhydrogenase of Rhodospirillum rubrum. J Biol Chem 1996; 271:10103-8. [PMID: 8626568 DOI: 10.1074/jbc.271.17.10103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transhydrogenase catalyzes the reduction of NADP+ by NADH coupled to the translocation of protons across a membrane. The polypeptide composition of the enzyme in Rhodospirillum rubrum is unique in that the NAD(H)-binding domain (called Ths) exists as a separate polypeptide. Ths was expressed in Escherichia coli and purified. The binding of nucleotide substrates and analogues to Ths was examined by one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy and by measuring the quenching of fluorescence of its lone Trp residue. NADH and reduced acetylpyridine adenine dinucleotide bound tightly to Ths, whereas NAD+, oxidized acetylpyridine adenine dinucleotide, deamino-NADH, 5'-AMP and adenosine bound less tightly. Reduced nicotinamide mononucleotide, NADPH and 2'-AMP bound only very weakly to Ths. The difference in the binding affinity between NADH and NAD+ indicates that there may be an energy requirement for the transfer of reducing equivalents into this site in the complete enzyme under physiological conditions. Earlier results had revealed a mobile loop at the surface of Ths (Diggle, C., Cotton, N. P. J., Grimley, R. L., Quirk, P. G., Thomas, C. M., and Jackson, J. B. (1995) Eur. J. Biochem. 232, 315-326); the loop loses mobility when Ths binds nucleotide; the reaction involves two steps. This was more clearly evident, even for tight-binding nucleotides, when experiments were carried out at higher temperatures (37 degrees C), where the resonances of the mobile loop were substantially narrower. The binding of adenosine was sufficient to initiate loop closure; the presence of a reduced nicotinamide moiety in the dinucleotide apparently serves to tighten the binding. Two-dimensional 1H NMR spectroscopy of the Ths-5'-AMP complex revealed nuclear Overhauser effect interactions between protons of amino acid residues in the mobile loop (including those in a Tyr residue) and the nucleotide. This suggests that, in the complex, the loop has closed down to within 0.5 nm of the nucleotide.
Collapse
Affiliation(s)
- T Bizouarn
- Schools of Biochemistry and Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Diggle C, Quirk PG, Bizouarn T, Grimley RL, Cotton NP, Thomas CM, Jackson JB. Mutation of Tyr235 in the NAD(H)-binding Subunit of the Proton-translocating Nicotinamide Nucleotide Transhydrogenase of Rhodospirillum rubrum Affects the Conformational Dynamics of a Mobile Loop and Lowers the Catalytic Activity of the Enzyme. J Biol Chem 1996. [DOI: 10.1074/jbc.271.17.10109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Bizouarn T, Sazanov LA, Aubourg S, Jackson JB. Estimation of the H+/H- ratio of the reaction catalysed by the nicotinamide nucleotide transhydrogenase in chromatophores from over-expressing strains of Rhodospirillum rubrum and in liposomes inlaid with the purified bovine enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:4-12. [PMID: 8573594 DOI: 10.1016/0005-2728(95)00125-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two strains of Rhodospirillum rubrum were constructed in which, by a gene dosage effect, the transhydrogenase activity of isolated chromatophores was increased 7-10-fold and 15-20-fold, respectively. The H+/H- ratio (the ratio of protons translocated per hydride ion equivalent transferred from NADPH to an NAD+ analogue, acetyl pyridine adenine dinucleotide), determined by a spectroscopic technique, was approximately 1.0 for chromatophores from the over-expressing strains, but was only approximately 0.6 for wild-type chromatophores. Highly-coupled proteoliposomes were prepared containing purified transhydrogenase from beef-heart mitochondria. Using the same technique, the H+/H- ratio was close to 1.0 for these proteoliposomes. It is suggested that the mechanistic H+/H- ratio is indeed unity, but that a low ratio is obtained in wild-type chromatophores because of inhomogeneity in the vesicle population.
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
23
|
Sazanov LA, Jackson JB. Cyclic reactions catalysed by detergent-dispersed and reconstituted transhydrogenase from beef-heart mitochondria; implications for the mechanism of proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:304-12. [PMID: 7578218 DOI: 10.1016/0005-2728(95)00096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase from beef-heart mitochondria was solubilised with Triton X-100 and purified by column chromatography. The detergent-dispersed enzyme catalysed the reduction of acetylpyridine adenine dinucleotide (AcPdAD+) by NADH, but only in the presence of NADP+. Experiments showed that this reaction was cyclic; NADP(H), whilst remaining bound to the enzyme, was alternately reduced by NADH and oxidised by AcPdAD+. A period of incubation of the enzyme with NADPH at pH 6.0 led to inhibition of the simple transhydrogenation reaction between AcPdAD+ and NADPH. However, after such treatment, transhydrogenase acquired the ability to catalyse the (NADPH-dependent) reduction of AcPdAD+ by NADH. It is suggested that this is a similar cycle to the one described above. Evidently, the binding affinity for NADP+ increases as a consequence of the inhibition process resulting from prolonged incubation with NADPH. The pH dependences of simple and cyclic transhydrogenation reactions are described. Though more complex than those in Escherichia coli transhydrogenase, they are consistent with the view [Hutton, M., Day, J.M., Bizouarn, T. and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051] that, also in the mitochondrial enzyme, binding and release of NADP+ and NADPH are accompanied by binding and release of a proton. The enzyme was successfully reconstituted into liposomes by a cholate dilution procedure. The proteoliposomes catalysed cyclic NADPH-dependent reduction of AcPdAD+ by NADH only when they were tightly coupled. However, they catalysed cyclic NADP(+)-dependent reduction of AcPdAD+ by NADH only when they were uncoupled eg. by addition of carbonylcyanide-p-trifluoromethoxyphenyl hydrazone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L A Sazanov
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
24
|
Diggle C, Cotton NP, Grimley RL, Quirk PG, Thomas CM, Jackson JB. Conformational dynamics of a mobile loop in the NAD(H)-binding subunit of proton-translocating transhydrogenases from Rhodospirillum rubrum and Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:315-26. [PMID: 7556167 DOI: 10.1111/j.1432-1033.1995.tb20814.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transhydrogenase catalyses the reversible transfer of reducing equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. Uniquely in Rhodospirillum rubrum, the NAD(H)-binding subunit (called Ths) exists as a separate subunit which can be reversibly dissociated from the membrane-located subunits. We have expressed the gene for R. rubrum Ths in Escherichia coli to yield large quantities of protein. Low concentrations of either trypsin or endoproteinase Lys-C lead to cleavage of purified Ths specifically at Lys227-Thr228 and Lys237-Glu238. Observations on the one-dimensional 1H-NMR spectra of Ths before and after proteolysis indicate that the segment which straddles the cleavage sites forms a mobile loop protruding from the surface of the protein. Alanine dehydrogenase, which is very similar in sequence to the NAD(H)-binding subunit of transhydrogenase, lacks this segment. Limited proteolytic cleavage has little effect on some of the structural characteristics of Ths (its dimeric nature, its ability to bind to the membrane-located subunits of transhydrogenase, and the short-wavelength fluorescence emission of a unique Trp residue) but does decrease the NADH-binding affinity, and does lower the catalytic activity of the reconstituted complex. The presence of NADH protects against trypsin or Lys-C cleavage, and leads to broadening, and in some cases, shifting, of NMR spectral signals associated with amino acid residues in the surface loop. This indicates that the loop becomes less mobile after nucleotide binding. Observation by NMR during a titration of Ths with NAD+ provides evidence of a two-step nucleotide binding reaction. By introducing an appropriate stop codon into the gene coding for the polypeptide of E. coli transhydrogenase cloned into an expression vector, we have prepared the NAD(H)-binding domain equivalent to Ths. The E. coli protein is sensitive to proteolysis by either trypsin or Lys-C in the mobile loop. Judging by the effect of NADH on its NMR spectrum and on the fluorescence of its Trp residues, the protein is capable of binding the nucleotide though it is unable to dock with the membrane-located subunits of transhydrogenase from R. rubrum.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, UK
| | | | | | | | | | | |
Collapse
|
25
|
Olausson T, Fjellström O, Meuller J, Rydström J. Molecular biology of nicotinamide nucleotide transhydrogenase--a unique proton pump. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:1-19. [PMID: 7640288 DOI: 10.1016/0005-2728(95)00058-q] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Olausson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
26
|
Diggle C, Hutton M, Jones GR, Thomas CM, Jackson JB. Properties of the soluble polypeptide of the proton-translocating transhydrogenase from Rhodospirillum rubrum obtained by expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:719-26. [PMID: 7737169 DOI: 10.1111/j.1432-1033.1995.tb20315.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase, which catalyses the reduction of NADP+ by NADH coupled to proton translocation across a membrane, may be unique in the photosynthetic bacterium Rhodospirillum rubrum. Unlike the homologous enzyme from animal mitochondria and other bacterial sources, it has a water-soluble polypeptide, which exists as a dimer (Ths), that can be reversibly dissociated from the membrane component [Williams, R., Cotton, N. P. J., Thomas, C. M. & Jackson, J. B. (1994) Microbiology, 140, 1595-1604]. We have expressed the gene for Ths in cells of Escherichia coli under control of the tac promoter and a strong ribosome binding site. The protein, purified by column chromatography, fully reconstituted transhydrogenation activity to everted membrane vesicles of Rhs. rubrum that had been washed to remove Ths. The purified expressed protein was prepared in quantities over 100-fold greater than were obtained from wild-type Rhs. rubrum. The fluorescence spectrum of purified expressed Ths had an intense and unusually short wavelength emission maximum at 310 nm with shoulders at 298 and 322 nm. Time-resolved measurements indicated that the fluorescence decay was almost monoexponential with a lifetime of 5.2 ns. On denaturation with 4 M guanidine hydrochloride, the emission band shifted to 352 nm and decreased in intensity. In the native protein, the fluorophore was relatively inaccessible to quenching solutes, such as iodide ions and acrylamide. It is concluded that the fluorescence emission arises mainly from the single tryptophan residue of Ths (Trp72), which is locked into a rigid conformation and is located in highly non-polar environment. The 310-nm fluorescence of Ths was quenched by NADH, maximally to 46%. The apparent binding constant was 18 microM. The fluorescence of Ths-bound NADH was enhanced relative to the nucleotide in free solution and its emission maximum was shifted to a shorter wavelength (440 nm). These data support previous indications that the NADH binding site is located in domain I of proton-translocating transhydrogenase. Excitation of Ths at 280 nm did not lead to sensitized emission at 440 nm from bound NADH. This indicates that the quenching of fluorescence of Ths by NADH does not result from resonance energy transfer from Trp72 to the bound nucleotide. NAD+, NADP+ and NADPH had little effect on the protein fluorescence. The kinetics of quenching of Ths fluorescence by NADH were examined after mixing in a stopped-flow device. The 'on' rate constant for nucleotide binding was approximately 8 x 10(6) M-1 s-1 and the 'off' constant approximately 150 s-1.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
27
|
Yamaguchi M, Hatefi Y. Energy-transducing nicotinamide nucleotide transhydrogenase: nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme from Rhodospirillum rubrum. J Bioenerg Biomembr 1994; 26:435-45. [PMID: 7844118 DOI: 10.1007/bf00762784] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Based on the amino acid sequence of the N-terminus of the soluble subunit of the Rhodospirillum rubrum nicotinamide nucleotide transhydrogenase, two oligonucleotide primers were synthesized and used to amplify the corresponding DNA segment (110 base pairs) by the polymerase chain reaction. Using this PCR product as a probe, one clone with the insert of 6.4 kbp was isolated from a genomic library of R. rubrum and sequenced. This sequence contained three open reading frames, constituting the genes nntA1, nntA2, and nntB of the R. rubrum transhydrogenase operon. The polypeptides encoded by these genes were designated alpha 1, alpha 2, and beta, respectively, and are considered to be the subunits of the R. rubrum transhydrogenase. The predicted amino acid sequence of the alpha 1 subunit (384 residues; molecular weight 40276) has considerable sequence similarity to the alpha subunit of the Escherichia coli and the N-terminal 43-kDa segment of the bovine transhydrogenases. Like the latter, it has a beta alpha beta fold in the corresponding region, and the purified, soluble alpha 1 subunit cross-reacts with antibody to the bovine N-terminal 43-kDa fragment. The predicted amino acid sequence of the beta subunit of the R. rubrum transhydrogenase (464 residues; molecular weight 47808) has extensive sequence identity with the beta subunit of the E. coli and the corresponding C-terminal sequence of the bovine transhydrogenases. The chromatophores of R. rubrum contain a 48-kDa polypeptide, which cross-reacts with antibody to the C-terminal 20-kDa fragment of the bovine transhydrogenase. The predicted amino acid sequence of the alpha 2 subunit of the R. rubrum enzyme (139 residues; molecular weight 14888) has considerable sequence identity in its C-terminal half to the corresponding segments of the bovine and the alpha subunit of the E. coli transhydrogenases.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
28
|
Bizouarn T, Jackson JB. The ratio of protons translocated/hydride ion equivalent transferred by nicotinamide nucleotide transhydrogenase in chromatophores from Rhodospirillum rubrum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:763-70. [PMID: 8223619 DOI: 10.1111/j.1432-1033.1993.tb18304.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reduction of acetylpyridine adenine dinucleotide (AcPdAD+, an NAD+ analogue) by NADPH, in chromatophores treated with valinomycin, was accompanied by alkalinisation of the external medium, as measured by the absorbance change of added cresol red, a simple, non-binding pH indicator. Experiments with a stopped-flow spectrophotometer showed that initial (linear) rates of alkalinisation persisted for 1-2s. From the results of experiments in which H+ uptake was driven by a series of short flashes of light, the dependence of the outward proton leak on the extent of H+ uptake was established. Thus, the proton leak was subtracted from the initial rate of alkalinisation during transhydrogenation to give the true proton-uptake rate. The correction factor was usually about 10%. The ratio of protons translocated/H- transferred from NADPH to AcPdAD+ (the H+/H- ratio) was 0.60 +/- 0.06. The transhydrogenation reaction between NAD+ and NADPH was measured in the presence of a regeneration system for NAD+ (pyruvate and lactate dehydrogenase). In addition to the accompanying proton-translocation reaction, scalar H+ consumption linked to the regeneration system was observed and permitted internal checks on the calibration of the cresol red absorbance changes. After correction for the proton leak and scalar proton uptake, an H+/H- ratio of 0.60 +/- 0.30 was calculated from the initial rates. The water-soluble polypeptide of transhydrogenase (Ths) was washed from a sample of chromatophores to inhibit transhydrogenation activity and the accompanying H+ uptake. Re-addition of purified Ths to depleted chromatophores led to recovery of transhydrogenation activity and of H+ uptake. In this reconstituted system the H+/H- was similar to that in the native membranes. These results make it unlikely that the H+/H- ratio is artefactually low because chromatophores have a population of transhydrogenase which is not coupled to proton translocation. Further evidence that the mechanistic H+/H- ratio of chromatophore transhydrogenase is less than 1 was provided by an analysis of the kinetics of alkalinisation of the medium during reduction of AcPdAD+ by NADPH. It was shown that the progress of the transhydrogenation-induced alkalinisation was fitted by the sum of H+ uptake (the rate of transhydrogenation multiplied by the H+/H- ratio) plus the H+ leak, when the ratio was 0.6 but not when it was 1.0. The results are discussed in terms of the possible mechanism of energy coupling by transhydrogenase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, England
| | | |
Collapse
|
29
|
Yamaguchi M, Hatefi Y. Energy-transducing nicotinamide nucleotide transhydrogenase. Nucleotide binding properties of the purified enzyme and proteolytic fragments. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46785-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Palmer T, Williams R, Cotton NP, Thomas CM, Jackson JB. Inhibition of proton-translocating transhydrogenase from photosynthetic bacteria by N,N'-dicyclohexylcarbodiimide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:663-9. [PMID: 8436126 DOI: 10.1111/j.1432-1033.1993.tb17594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of N,N'-dicyclohexylcarbodiimide [(cHxN)2C] on the proton-translocating enzyme, NAD(P) H(+)-transhydrogenase (H(+)-Thase), from two species of phototrophic bacteria have been investigated. The polypeptides of H(+)-Thase from Rhodobacter capsulatus are membrane-associated, requiring detergent to maintain solubility. The enzyme from Rhodospirillum rubrum, however, has a water soluble polypeptide (Ths) and a membrane-associated component (Thm) which, separately, have no activity but which can be fully reconstituted to give a functional complex. Two observations suggest that (cHxN)2C inhibited H(+)-Thase from both species by modification either close to or at the NADP(H)-binding site on the enzyme: (a) the presence of NADP+ or NADPH caused increased inhibition by (cHxN)2C and (b) after treatment of the purified enzyme from Rb. capsulatus with (cHxN)2C, the release of NADP+ became rate-limiting, as evidenced by a stimulated rate of NADPH-dependent reduction of acetylpyridine adenine dinucleotide by NADH. Experiments in which Ths and Thm from R. rubrum were separately treated with (cHxN)2C then reconstituted with the complementary, untreated component revealed that the NADP(H)-enhanced modification by (cHxN)2C was confined to Thm. In contrast to some experiments with mitochondrial H(+)-Thase [Wakabayashi, S. & Hatefi, Y. (1987) Biochem. Int. 15, 667-675], there was no protective effect of either NAD+ or NADH on the inhibition by (cHxN)2C of enzyme from photosynthetic bacteria. However, amino acid sequence analysis of proteolytic fragments of Ths revealed that the NAD(H)-protectable, (cHxN)2C-reactive glutamate residue in mitochondrial H(+)-Thase might be replaced by glutamine in R. rubrum.
Collapse
Affiliation(s)
- T Palmer
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|