1
|
Wu Z, Zhang C. Role of the cytoskeleton in steroidogenesis. Endocr Metab Immune Disord Drug Targets 2021; 22:549-557. [PMID: 34802411 DOI: 10.2174/1871530321666211119143653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Steroidogenesis in the adrenal cortex or gonads is a complicated process, modulated by various elements either at the tissue or molecular level. The substrate-cholesterol is first delivered to the outer membrane of mitochondria, undergoing a series of enzymatic reactions along with the material exchange between the mitochondria and the ER (endoplasmic reticulum) and ultimately yield various steroids: aldosterone, cortisol, testosterone and estrone. Several valves are set to adjust the amount of production to the needs. e.g. StAR(steroidogenic acute regulator) is in charge of the rate-limiting step-traffic of cholesterol from outer membrane to inner membrane of mitochondria. And the "needs" is partly reflected by trophic signals like ACTH、LH and downstream pathways-- intracellular cAMP pathway, which represents the endocrinal regulation of steroid synthesis, too. The coordinated activities of these related factors are all associated with another crucial cellular constituent-the cytoskeleton, which plays a crucial role in the cellular architecture and substrate trafficking. Though considerable studies have been performed regarding steroid synthesis, details about the upstream signaling pathways and mechanisms of the regulation by cytoskeleton network still remain unclear. The metabolism and interplays of the pivotal cellular organelles with cytoskeleton are worth exploring as well. In this review, we summarize research of different time span, describing the roles of specific cytoskeleton elements in steroidogenesis and related signaling pathways involved in the steroid synthesis. In addition, we discussed the inner cytoskeletal network involved in steroidogenic processes such as mitochondrial movement, organelle interactions and cholesterol trafficking.
Collapse
Affiliation(s)
- Zaichao Wu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi. China
| |
Collapse
|
2
|
Sewer MB, Li D. Regulation of adrenocortical steroid hormone production by RhoA-diaphanous 1 signaling and the cytoskeleton. Mol Cell Endocrinol 2013; 371. [PMID: 23186810 PMCID: PMC3926866 DOI: 10.1016/j.mce.2012.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.
Collapse
Affiliation(s)
- Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0704, USA.
| | | |
Collapse
|
3
|
Hough D, Swart P, Cloete S. Exploration of the Hypothalamic-Pituitary-Adrenal Axis to Improve Animal Welfare by Means of Genetic Selection: Lessons from the South African Merino. Animals (Basel) 2013; 3:442-74. [PMID: 26487412 PMCID: PMC4494397 DOI: 10.3390/ani3020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal's genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA), since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found.
Collapse
Affiliation(s)
- Denise Hough
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Schalk Cloete
- Department of Animal Sciences, Stellenbosch University, Stellenbosch 7602, South Africa.
- Institute for Animal Production, Elsenburg, Private Bag X1, Elsenburg 7607, South Africa.
| |
Collapse
|
4
|
Li D, Sewer MB. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 2010; 151:4313-23. [PMID: 20591975 PMCID: PMC2940507 DOI: 10.1210/en.2010-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid hormones are formed by the successive action of enzymes that are localized in mitochondria and the endoplasmic reticulum (ER). Compartmentalization of these enzymes in different subcellular organelles dictates the need for efficient transfer of intermediary metabolites between the mitochondrion and ER; however, the molecular determinants that regulate interorganelle substrate exchange are unknown. The objective of this study was to define the molecular mechanism by which adrenocorticotropin (ACTH) signaling regulates communication between mitochondria and the ER during steroidogenesis. Using live cell video confocal microscopy, we found that ACTH and dibutyryl cAMP rapidly increased the rate of mitochondrial movement. Inhibiting tubulin polymerization prevented both basal and ACTH/cAMP-stimulated mitochondrial trafficking and decreased cortisol secretion. This decrease in cortisol secretion evoked by microtubule inhibition was paralleled by an increase in dehydroepiandrosterone production. In contrast, treatment with paclitaxel to stabilize microtubules or latrunculin B to inhibit actin polymerization and disrupt microfilament organization increased both mitochondrial trafficking and cortisol biosynthesis. ACTH-stimulated mitochondrial movement was dependent on RhoA and the RhoA effector, diaphanous-related homolog 1 (DIAPH1). ACTH signaling temporally increased the cellular concentrations of GTP-bound and Ser-188 phosphorylated RhoA, which promoted interaction with DIAPH1. Expression of a dominant-negative RhoA mutant or silencing DIAPH1 impaired mitochondrial trafficking and cortisol biosynthesis and concomitantly increased the secretion of adrenal androgens. We conclude that ACTH regulates cortisol production by facilitating interorganelle substrate transfer via a process that is mediated by RhoA and DIAPH1, which act to coordinate the dynamic trafficking of mitochondria.
Collapse
Affiliation(s)
- Donghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0704, USA
| | | |
Collapse
|
5
|
Sewer MB, Li D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids 2008; 43:1109-15. [PMID: 18726632 DOI: 10.1007/s11745-008-3221-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 07/31/2008] [Indexed: 01/11/2023]
Abstract
Steroid hormones are synthesized in response to signaling cascades initiated by the trophic peptide hormones derived from the anterior pituitary. The mechanisms by which these peptide hormones regulate steroid hormone production are multifaceted and include controlling the transcription of steroidogenic genes, regulating cholesterol (substrate) uptake and transport, modulating steroidogenic enzyme activity, and controlling electron availability. Cytoskeletal polymers such as microfilaments and microtubules have also been implicated in regulating steroidogenesis. Of note, steroidogenesis is a multi-step process that occurs in two organelles, the endoplasmic reticulum (ER) and the mitochondrion. However, the precise mechanism by which substrates are delivered back and forth between these two organelles is unknown. In this review we will discuss the role of components of the cytoskeleton in conferring optimal steroidogenic potential. Finally, we present data that identifying a novel mechanism by which sphingosine-1-phosphate induces mitochondrial trafficking to promote steroidogenesis.
Collapse
Affiliation(s)
- Marion B Sewer
- School of Biology and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
6
|
Abstract
Conflicting data for the effects of colchicine on cholesterol transport and steroidogenesis raise the question of the role of microtubules in cholesterol transport from the lipid droplet to mitochondria in steroidogenic cells. In this study, using corticosterone radioimmunoassay and immunofluorescence microscopy, we re-evaluated the effects of colchicine on hormone production and morphological changes of lipid droplets' and studied the signaling pathway involved in colchicine-induced steroidogenesis. Colchicine stimulated steroid production in a dose- and time-dependent manner. The structural integrity of both the microtubules and the lipid droplet capsule was destroyed by colchicine treatment. Disruption of the lipid droplet capsule occurred later than microtubule depolymerization. After cessation of colchicine treatment and a 3 h recovery in fresh medium, capsular protein relocated to the droplet surface before the cytoplasmic microtubule network was re-established. beta-lumicolchicine, an inactive analogue of colchicine, disrupted the capsule and increased hormone production without affecting microtubular structure. Thus, microtubule depolymerization is not required for the increase in steroid production and capsular disruption. To explore the signaling pathway involved in colchicine-induced steroidogenesis, we measured intracellular cAMP levels. Unlike ACTH, colchicine did not increase cAMP levels, suggesting that the cAMP-PKA system is not involved. Colchicine and ACTH had additive effects on corticosterone production, whereas colchicine and PMA did not, implying that part of the PKC signaling mechanism may be involved in colchicine-induced steroidogenesis. Cycloheximide, a protein synthesis inhibitor, completely inhibited colchicine-induced steroidogenesis and capsular disruption. These results demonstrate that the steroid production and lipid droplet capsule detachment induced by colchicine are both protein neosynthesis-dependent and microtubule-independent.
Collapse
Affiliation(s)
- L J Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, Taiwan 100
| | | | | | | |
Collapse
|
7
|
Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C. Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem 1995; 270:16970-3. [PMID: 7622516 DOI: 10.1074/jbc.270.28.16970] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Steroidogenic cells store cholesteryl esters, precursors for steroid hormone synthesis, in intracellular lipid droplets. Cholesteryl ester hydrolysis is activated by protein kinase A and catalyzed by cholesteryl esterase. The esterase is similar, if not identical, to hormone-sensitive lipase in adipocytes where an analogous lipolytic mechanism occurs. Perilipins, proteins located exclusively at lipid droplet surfaces in adipocytes, are polyphosphorylated by protein kinase A in response to lipolytic stimuli, suggesting a role for these proteins in mediating lipid metabolism. The present study reveals that perilipins are associated with cholesteryl ester droplets in two steroidogenic cell lines: Y-1 adrenal cortical cells and MA-10 Leydig cells. The relative abundance of perilipin mRNAs and protein is much less in steroidogenic cells than in adipocytes. Like adipocytes, steroidogenic cells express perilipin A; additionally, the latter cells contain relatively abundant amounts of perilipin C, a protein that is not detectable in adipocytes by Western analysis. The data suggest a strong link between perilipins and lipid hydrolysis that is mediated by the hormone-sensitive lipase/cholesteryl esterase class of enzymes.
Collapse
Affiliation(s)
- D A Servetnick
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sackett DL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 1993; 59:163-228. [PMID: 8278462 DOI: 10.1016/0163-7258(93)90044-e] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large number of antimicrotubule agents are known that bind to tubulin in vitro and disrupt microtubule assembly in vitro and in vivo. Many of these agents bind to the same site on the tubulin molecule, as does colchicine. Of these, the natural products podophyllotoxin, steganacin and combretastatin are the subjects of this review. For each of these, the chemistry and biochemistry are described. Particular attention is given to stereochemical considerations. Biosynthetic pathways for podophyllotoxin and congeners are surveyed. The binding to tubulin and the effects on microtubule assembly and disassembly are described and compared. In addition, structural features important to binding are examined using available analogs. Several features significant for tubulin interaction are common to these compounds and to colchicine. These are described and the implications for tubulin structure are discussed. The manifold results of applying these agents to biological systems are reviewed. These actions include effects that are clearly microtubule mediated and others in which the microtubule role is less obvious. Activity of some of these compounds due to inhibition of DNA topoisomerase is discussed. The range of species in which these compounds occur is examined and in the case of podophyllotoxin is found to be quite broad. In addition, the range of species that are sensitive to the effects of these compounds is discussed.
Collapse
Affiliation(s)
- D L Sackett
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
9
|
Adashi EY, Resnick CE, Jastorff B. Blockade of granulosa cell differentiation by an antagonistic analog of adenosine 3',5'-cyclic monophosphate (cAMP): central but non-exclusive intermediary role of cAMP in follicle-stimulating hormone action. Mol Cell Endocrinol 1990; 72:1-11. [PMID: 2177013 DOI: 10.1016/0303-7207(90)90234-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intermediary role and relative importance of cAMP in follicle-stimulating hormone (FSH) hormonal action were reinvestigated at the level of the rat granulosa cell employing Rp-cAMPS, a novel antagonistic analog of cAMP. This approach may not only provide for direct documentation of cAMP dependence, but may also, by inference, highlight the potential relative importance of other putative intracellular second messenger systems. Initial cell-free validation studies indicated that Rp-cAMPS is capable of effectively competing with cAMP for binding to and activation of the regulatory subunit of the granulosa cell A-kinase holoenzyme. Subsequent whole-cell studies employed cultured rat granulosa cells, the cAMP-phosphodiesterase activity of which was suppressed with ZK62711. Basal progesterone accumulation was relatively low, remaining unaffected by treatment with a maximally effective dose of Rp-cAMPS by itself (10(-3) M). Whereas treatment with FSH (30 ng/ml) resulted in a substantial increase in progesterone accumulation, concurrent treatment with increasing concentrations (10(-6)-10(-3) M) or Rp-cAMPS brought about dose-dependent decrements in the FSH effect with a median effective dose of 1.8 +/- (SE) 0.4 x 10(-5) M and a maximal, but incomplete inhibitory effect of 70 +/- (SE) 6%. Higher concentrations of FSH (greater than or equal to 100 ng/ml) progressively diminished, but did not abolish the Rp-cAMPS blockade. Removal of Rp-cAMPS resulted in progressive resumption of FSH responsiveness suggesting reversibility of action. Significantly, Rp-cAMPS proved highly effective in blocking the action of its agonistic diastereomer Sp-cAMPS. However, Rp-cAMPS was unable to block the action of the lactogenic receptor agonist prolactin, the second messenger of which remains uncertain. Taken together, these findings provide additional direct support to the notion that cAMP may be an intracellular second messenger of FSH. However, to the extent that Rp-cAMPS is incapable of complete neutralization of FSH action, our findings further suggest that cAMP may play a central, albeit non-exclusive role in FSH-supported granulosa cell differentiation and that other putative second messenger systems may also be at play.
Collapse
Affiliation(s)
- E Y Adashi
- Department of Obstetrics/Gynecology, University of Maryland School of Medicine, Baltimore 21201
| | | | | |
Collapse
|