1
|
Zhang J, Huang Y, Chen J, Zhu H, Whiteheart SW. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis. J Biol Chem 2018; 293:3593-3606. [PMID: 29352103 PMCID: PMC5846156 DOI: 10.1074/jbc.ra117.000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.
Collapse
Affiliation(s)
- Jinchao Zhang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Yunjie Huang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Sidney W Whiteheart
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
2
|
Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R. Proteomic analysis of palmitoylated platelet proteins. Blood 2011; 118:e62-73. [PMID: 21813449 PMCID: PMC3186346 DOI: 10.1182/blood-2011-05-353078] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/11/2011] [Indexed: 12/23/2022] Open
Abstract
Protein palmitoylation is a dynamic process that regulates membrane targeting of proteins and protein-protein interactions. We have previously demonstrated a critical role for protein palmitoylation in platelet activation and have identified palmitoylation machinery in platelets. Using a novel proteomic approach, Palmitoyl Protein Identification and Site Characterization, we have begun to characterize the human platelet palmitoylome. Palmitoylated proteins were enriched from membranes isolated from resting platelets using acyl-biotinyl exchange chemistry, followed by identification using liquid chromatography-tandem mass spectrometry. This global analysis identified > 1300 proteins, of which 215 met criteria for significance and represent the platelet palmitoylome. This collection includes 51 known palmitoylated proteins, 61 putative palmitoylated proteins identified in other palmitoylation-specific proteomic studies, and 103 new putative palmitoylated proteins. Of these candidates, we chose to validate the palmitoylation of triggering receptors expressed on myeloid cell (TREM)-like transcript-1 (TLT-1) as its expression is restricted to platelets and megakaryocytes. We determined that TLT-1 is a palmitoylated protein using metabolic labeling with [³H]palmitate and identified the site of TLT-1 palmitoylation as cysteine 196. The discovery of new platelet palmitoyl protein candidates will provide a resource for subsequent investigations to validate the palmitoylation of these proteins and to determine the role palmitoylation plays in their function.
Collapse
Affiliation(s)
- Louisa Dowal
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
3
|
Israels SJ, McMillan-Ward EM. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res 2009; 125:152-8. [PMID: 19640571 DOI: 10.1016/j.thromres.2009.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/12/2009] [Accepted: 07/07/2009] [Indexed: 12/17/2022]
Abstract
CD63 and CD9 are members of the tetraspanin superfamily of integral membrane proteins that function as organizers of multi-molecular signaling complexes involved in cell morphology, motility and proliferation. Tetraspanin complexes cluster dynamically in unique cholesterol-rich tetraspanin-enriched microdomains (TEMs). In resting platelets, CD63 is located in the membranes of lysosomes and dense granules. Following platelet activation and granule exocytosis, CD63 is expressed on the plasma membrane, co-localizes with the alphaIIbbeta3-CD9 complex and is incorporated into the Triton-insoluble actin cytoskeleton, dependent on fibrinogen binding to alphaIIbbeta3. In nucleated cell lines, the assembly and maintenance of TEMs depends on the palmitoylation of both tetraspanins and some partner proteins. This study investigated the role of palmitoylation in platelet TEM assembly and maintenance. [(3)H]-palmitate-labeled, washed human platelets were studied at rest, or following activation with thrombin (0.1 U/ml). CD63 and CD9 were separated by density gradient centrifugation, isolated by immunoprecipitation, and [(3)H]-palmitate was measured in each fraction. Palmitate levels increased in all fractions following thrombin activation. However, the relative inter-fraction distribution of the tetraspanins did not change. 2-bromopalmitate (2-BP), an inhibitor of protein palmitoylation as demonstrated by decreased [(3)H]-palmitate labeling of platelet proteins, blocked both thrombin-induced platelet aggregation and platelet spreading on immobilized fibrinogen in a dose-dependent manner. 2-BP also inhibited the activation-dependent association of CD63 with CD9, and the incorporation of CD63 into the Triton-insoluble actin cytoskeleton. In contrast, 2-BP had no effect on the incorporation of alphaIIbbeta3 into the activated platelet cytoskeleton. These results demonstrate that palmitoylation is required for platelet tetraspanin-tetraspanin and tetraspanin-integrin interaction and for complete platelet spreading on a fibrinogen substrate.
Collapse
Affiliation(s)
- Sara J Israels
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
4
|
|
5
|
Yang H, Wan L, Song F, Wang M, Huang Y. Palmitoylation modification of Galpha(o) depresses its susceptibility to GAP-43 activation. Int J Biochem Cell Biol 2008; 41:1495-501. [PMID: 19146979 DOI: 10.1016/j.biocel.2008.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 12/09/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
Abstract
Interaction between GAP-43 (growth associated protein-43) and Galpha(o) (alpha subunit of Go protein) influences the signal transduction pathways leading to differentiation of neural cells. GAP-43 is known to increase guanine nucleotide exchange by Galpha(o), which is a major component of neuronal growth cone membranes. However, it is not clear whether GAP-43 stimulation is related to the Galpha(o) palmitoylation or the conversion of Galpha(o) from oligmers to monomers, which was shown to be a necessary regulatory factor in GDP/GTP exchange of Galpha(o). Here we expressed and purified GAP-43, GST-GAP-43 and Galpha(o) proteins, detected their stimulatory effect on [(35)S]-GTPgammaS binding of Galpha(o). It was found that the EC(50) of both GAP-43 and GST-GAP-43 activation were tenfold lower in case of depalmitoylated Galpha(o) than palmitoylated Galpha(o). Non-denaturing gel electrophoresis and p-PDM cross-linking analysis revealed that addition of GST-GAP-43 induced disassociation of depalmitoylated Galpha(o) from oligomers to monomers, but did not influence the oligomeric state of palmitoylated Galpha(o), which suggests that palmitoylation is a key regulatory factor in GAP-43 stimulation on Galpha(o). These results indicated the interaction of GAP-43 and Galpha(o) could accelerate conversion of depalmitoylated Galpha(o) but not palmitoylated Galpha(o) from oligomers to monomers, so as to increase the GTPgammaS binding activity of Galpha(o). Results here provide new evidence about how signaling protein palmitoylation is involved in the G-protein-coupled signal transduction cascade, and give a useful clue on the participation of GAP-43 in G-protein cycle by its preferential activation of depalmitoylated Galpha(o).
Collapse
Affiliation(s)
- Hui Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
6
|
Sim DS, Dilks JR, Flaumenhaft R. Platelets possess and require an active protein palmitoylation pathway for agonist-mediated activation and in vivo thrombus formation. Arterioscler Thromb Vasc Biol 2007; 27:1478-85. [PMID: 17303775 DOI: 10.1161/atvbaha.106.139287] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Several platelet proteins are palmitoylated, but whether protein palmitoylation functions in platelet activation is unknown. We sought to determine the role of platelet protein palmitoylation in platelet activation and thrombus formation. METHODS AND RESULTS Platelet proteins were depalmitoylated by infusing acyl-protein thioesterase 1 into permeabilized platelets. In intact platelets, platelet protein palmitoylation was blocked using the protein palmitoylation inhibitor cerulein. The effects of inhibiting platelet protein palmitoylation on platelet function and on thrombus formation in vivo were evaluated. When infused into permeabilized platelets, acyl-protein thioesterase 1 reduced total platelet protein palmitoylation and inhibited protease-activated receptor-1-mediated alpha-granule secretion with an IC50 of 175 nmol/L and maximal inhibition of > or = 90%. G(alpha q) and SNAP-23, membrane-associated proteins that are constitutively palmitoylated, translocated to the cytosol when permeabilized platelets were exposed to recombinant acyl-protein thioesterase 1. The protein palmitoylation inhibitor cerulein also inhibited platelet granule secretion and aggregation. Studies using intravital microscopy showed that incubation with cerulein decreased the rate of platelet accumulation into thrombi formed after laser-induced injury of mouse arterioles and inhibited maximal platelet accumulation by >60%. CONCLUSION These studies show that platelets possess a protein palmitoylation machinery that is required for both platelet activation and platelet accumulation into thrombi. These studies show that inhibition of platelet protein palmitoylation blocks platelet aggregation and granule secretion. In a murine model of thrombus formation, inhibition of protein palmitoylation markedly inhibits platelet accumulation into thrombi at sites of vascular injury.
Collapse
Affiliation(s)
- Derek S Sim
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
7
|
Petäjä-Repo UE, Hogue M, Leskelä TT, Markkanen PMH, Tuusa JT, Bouvier M. Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 2006; 281:15780-9. [PMID: 16595649 DOI: 10.1074/jbc.m602267200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
8
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
9
|
Ramulu P, Nathans J. Cellular and subcellular localization, N-terminal acylation, and calcium binding of Caenorhabditis elegans protein phosphatase with EF-hands. J Biol Chem 2001; 276:25127-35. [PMID: 11312268 DOI: 10.1074/jbc.m011712200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RdgC/PPEF family of serine/threonine protein phosphatases is distinguished by the presence of C-terminal EF-hands and neuron-specific expression, including frequent expression in primary sensory neurons. Here we report that the sole Caenorhabditis elegans PPEF (CePPEF) homolog is also highly expressed in primary sensory neurons and is not found outside the nervous system. Neurons expressing CePPEF include the ciliary chemosensory neurons AWB and AWC; and within these neurons, CePPEF is highly enriched in the sensory cilia. In transgenic C. elegans and in transfected 293 cells, CePPEF is membrane-associated, and the N terminus of CePPEF is necessary and sufficient for this membrane association. [(3)H]Myristate and [(3)H]palmitate labeling studies in 293 cells demonstrated that this association was mediated by myristoylation at Gly(2) and palmitoylation at Cys(3). Introducing the G2A or C3S mutation into CePPEF greatly reduced membrane association in 293 cells and in transgenic nematodes. A recombinant C-terminal fragment of CePPEF containing two putative EF-hands bound between one and two Ca(2+) ions/protein, and mutation of residues presumed to ligand calcium in the two putative EF-hands led to diminished calcium binding. These results establish the first direct evidence for fatty acylation and calcium binding of a PPEF family member and demonstrate a remarkable conservation of sensory neuron expression among the members of this distinctive family of protein phosphatases.
Collapse
Affiliation(s)
- P Ramulu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
10
|
Tetzloff SU, Bizzozero OA. Palmitoylation of proteolipid protein from rat brain myelin using endogenously generated 18O-fatty acids. J Biol Chem 1998; 273:279-85. [PMID: 9417076 DOI: 10.1074/jbc.273.1.279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteolipid protein (PLP), the major protein of central nervous system myelin, contains covalently bound fatty acids, predominantly palmitic acid. This study adapts a stable isotope technique (Kuwae, T., Schmid, P. C., Johnson, S. B., and Schmid, H. O. (1990) J. Biol. Chem. 265, 5002-5007) to quantitatively determine the minimal proportion of PLP molecules which undergo palmitoylation. In these experiments, brain white matter slices from 20-day-old rats were incubated for up to 6 h in a physiological buffer containing 50% H218O. The uptake of 18O into the carbonyl groups of fatty acids derived from PLP, phospholipids, and the free fatty acid pool was measured by gas-liquid chromatography/mass spectrometry of the respective methyl esters. Palmitic acid derived from PLP acquired increasing amounts of 18O, ending with 2.9% 18O enrichment after 6 h of incubation. 18O incorporation into myelin free palmitic acid also increased over the course of the incubation (67.2% 18O enrichment). After correcting for the specific activity of the 18O-enriched free palmitic acid pool, 7.6% of the PLP molecules were found to acquire palmitic acid in 6 h. This value is not only too large to be the result of the palmitoylation of newly synthesized PLP molecules, it was also unchanged upon the inhibition of protein synthesis with cycloheximide. 18O enrichment in less actively myelinating 60-day-old rats was significantly reduced. In conclusion, our experiments suggest that a substantial proportion of PLP molecules acquire palmitic acid via an acylation/deacylation cycle and that this profile changes during development.
Collapse
Affiliation(s)
- S U Tetzloff
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-5218, USA
| | | |
Collapse
|
11
|
Jones LN, Rivett DE. The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron 1997; 28:469-85. [PMID: 9519472 DOI: 10.1016/s0968-4328(97)00039-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although branched chain fatty acids perform many functions in biological systems, the importance of the anteiso 18 methyleicosanoic acid (MEA) has only recently been recognized. In this first review on MEA its role and distribution is explored. MEA has been found in minor amounts in the fatty acid components of a wide range of biological materials, but the current interest results from it being the major covalently bound fatty acid in mammalian hair fibres, a finding which is unusual because protein-bound fatty acids are typically straight-chain, even-numbered acids (C14-C18). MEA is released by surface restricted reagents indicating that it is located exclusively in or on the surface of the cuticle cells, a conclusion that has been verified by analysis of isolated cuticle cells, X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectroscopy (SIMS) studies support these results in that they show the surface of the cuticle to be predominantly hydrocarbon. When either neutral hydroxylamine or acidic chlorine solutions are applied to hair and wool fibres fatty acids are liberated, indicating the presence of thioester bonds. Calculations, based on fatty acid and amino acid analysis, indicate that approximately one residue in 10 of the cuticular membrane protein is a fatty acid thioester of cysteine. Removal of this covalently linked fatty acid renders the fibre hydrophilic, thus offering a chemical explanation for many technological and cosmetic treatments of mammalian fibres. Examination of the fibre surface and that of isolated cuticle cells by transmission electron microscopy (TEM) confirms the presence of a thin non-staining continuous layer surrounding the cuticle cells. Alkaline treatments which remove the bound fatty acids were found to disrupt this layer. TEM examination of developing hair fibres has indicated that the fatty acid layer on the upper surface and scale edges of the cuticle cell differs from that of the underside of the cell. Similar structural studies of hair from patients with maple syrup urine disease (MSUD) support the findings that thioester-bound MEA is limited to the upper surface of fibre cuticle cells. The current model proposed for the boundary layer consists of crosslinked protein with surface thioester-linked fatty acids, forming a continuous hydrophobic layer on the upper surface and scale edges of the cells.
Collapse
Affiliation(s)
- L N Jones
- CSIRO Division of Wool Technology, Belmont, Australia
| | | |
Collapse
|
12
|
Muszbek L, Rácz E, Laposata M. Posttranslational modification of proteins with fatty acids in platelets. Prostaglandins Leukot Essent Fatty Acids 1997; 57:359-66. [PMID: 9430379 DOI: 10.1016/s0952-3278(97)90411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct modification of proteins by fatty acid can occur as cotranslational N-myristoylation of an N-terminal glycine residue or as posttranslational thioesterification of cysteine residue(s). Platelets provide an excellent model system for studying the posttranslational type of modification in the absence of active protein synthesis and in the absence of protein synthesis-related protein modifications with lipids. Using this model system it was shown that thioesterification of proteins with fatty acid is less specific for palmitate than it was thought earlier and that other saturated, mono- and even polyunsaturated long chain fatty acids can also participate. The chain length and the extent of unsaturation of the protein-linked fatty acid moiety can, very likely, modulate hydrophobic protein-membrane lipid and protein-protein interactions. CD9, HLA class I glycoprotein, glycoproteins Ib, IX and IV, P-selectin and alpha subunits of G proteins have been demonstrated unequivocally as S-fatty acid acylated platelet proteins.
Collapse
Affiliation(s)
- L Muszbek
- University School of Medicine, Department of Clinical Chemistry, Debrecen, Hungary
| | | | | |
Collapse
|
13
|
Caron JM. Posttranslational modification of tubulin by palmitoylation: I. In vivo and cell-free studies. Mol Biol Cell 1997; 8:621-36. [PMID: 9247643 PMCID: PMC276114 DOI: 10.1091/mbc.8.4.621] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.
Collapse
Affiliation(s)
- J M Caron
- Department of Physiology, University of Connecticut Health Center, Farmington 06030, USA
| |
Collapse
|
14
|
Morello JP, Bouvier M. Palmitoylation: a post-translational modification that regulates signalling from G-protein coupled receptors. Biochem Cell Biol 1996; 74:449-57. [PMID: 8960351 DOI: 10.1139/o96-049] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein acylation is a post-translational modification that has seized much attention in the last few years. Depending on the nature of the fatty acid added, protein acylation can take the form of palmitoylation, myristoylation, or prenylation. Palmitoylation has been implicated in the modification of several different proteins and is particularly prevalent in G-protein coupled receptors and their cognate G-proteins, where it is thought to have an important regulatory function. Given that palmitoylation of these proteins is a dynamic phenomenon in which turnover rate is modulated by agonist activation, it is thought to be implicated in processes such as receptor phosphorylation and desensitization as well as in G-protein membrane translocation. A better understanding of the regulation of signal transduction mediated by G-protein coupled receptors will require the identification and characterization of those enzymes implicated in the palmitoylation and depalmitoylation process of this large class of receptors and their signalling allies.
Collapse
Affiliation(s)
- J P Morello
- Département de biochimie, Faculté de Médecine, Université de Montréal, QC, Canada
| | | |
Collapse
|
15
|
Abstract
Palmitoylation is a reversible posttranslational modification which is involved in the regulation of several membrane proteins such as beta 2-adrenergic receptor, p21ras and trimeric G-protein alpha-subunits. This covalent modification could be involved in the regulation of the numerous membrane proteins present in the blood-brain barrier capillaries. The palmitoylation activity present in brain capillaries was characterized using [3H]palmitate labeling followed by chloroform methanol precipitation. Palmitate solubilizing agents such as detergents and bovine serum albumin (BSA), were used for optimizing activity. Some palmitoylated substrates were identified using [3H]palmitate labeling followed by immunoprecipitation with specific antibodies. Two optimal palmitate solubilization conditions were found, one involves cell permeabilization (Triton X-100) and the other represents a more physiological condition where membrane integrity is conserved (BSA). Sensitivity to the cysteine modifier N-ethylmaleimide and to hydrolysis, using hydroxylamine or alkaline methanolysis, indicated that palmitic acid was bound to the proteins by a thioester bond. Maximal palmitate incorporation was reached after 30 or 60 min of incubation in the presence of Triton or BSA, respectively. Depalmitoylation was observed in the presence of BSA, but not with detergents. The palmitoylation reaction was optimal at pH 8 or 9 in the presence of Triton or BSA, respectively, but palmitoylated substrates were detectable over a wide range of pH values. In the presence of Triton X-100, the addition of ATP, CoA and Mg2+ to the incubation medium increased palmitoylation by up to 80-fold. Two palmitoylated substrates were identified, a 42 kDa G-protein alpha subunit and p21ras. The study shows that the utilization of palmitate solubilizing agents is essential to measure in vitro palmitoylation in brain capillaries. Several palmitoylated proteins are present in the blood-brain barrier including five major substrates of 12, 21, 35, 42 and 55 kDa. It is suggested that palmitoylation could play a crucial role in the regulation of brain capillary function, since the two substrates identified in this study are known to be involved in signal transduction, vesicular transport and cell differentiation.
Collapse
Affiliation(s)
- J F Poulio
- Département de Chimie-Biochimie, Université du Québec à Montréal, Canada
| | | |
Collapse
|
16
|
GAP-43 controls the availability of secretory chromaffin granules for regulated exocytosis by stimulating a granule-associated G0. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43811-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Bizzozero OA, Tetzloff SU, Bharadwaj M. Overview: protein palmitoylation in the nervous system: current views and unsolved problems. Neurochem Res 1994; 19:923-33. [PMID: 7800121 DOI: 10.1007/bf00968702] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Palmitoylation refers to a dynamic post-translational modification of proteins involving the covalent attachment of long-chain fatty acids to the side chains of cysteine, threonine or serine residues. In recent years, palmitoylation has been identified as a widespread modification of both viral and cellular proteins. Because of its dynamic nature, protein palmitoylation, like phosphorylation, appears to have a crucial role in the functioning of the nervous system. Several important questions regarding the post-translational acylation of cysteine residues in proteins are briefly discussed: (a) What are the molecular mechanisms involved in dynamic acylation? (b) What are the determinants of the fatty acid specificity and the structural requirements of the acceptor proteins? (c) What are the physiological signals regulating this type of protein modification, and (d) What is the biological role(s) of this reaction with respect to the functioning of specific nervous system proteins? We also present the current experimental obstacles that have to be overcome to fully understand the biology of this dynamic modification.
Collapse
Affiliation(s)
- O A Bizzozero
- Department of Biochemistry, University of New Mexico School of Medicine, Albuquerque 87131-5221
| | | | | |
Collapse
|
18
|
|
19
|
Patterson SI, Skene JH. Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension. J Cell Biol 1994; 124:521-36. [PMID: 8106550 PMCID: PMC2119910 DOI: 10.1083/jcb.124.4.521] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side-chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone-mediated extension of neuronal processes.
Collapse
Affiliation(s)
- S I Patterson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
20
|
Weinmann W, Parker CE, Baumeister K, Maier C, Tomer KB, Przybylski M. Capillary electrophoresis combined with 252Cf plasma desorption and electrospray mass spectrometry for the structural characterization of hydrophobic polypeptides using organic solvents. Electrophoresis 1994; 15:228-33. [PMID: 8026439 DOI: 10.1002/elps.1150150139] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Capillary electrophoresis (CE) conditions have been developed for the separation of hydrophobic polypeptides, such as fatty acid-acylated peptides, and their subsequent structural identification by 252Cf plasma desorption (PDMS) and electrospray mass spectrometry (ESMS). Salt- and detergent-free aqueous acetic acid buffers containing up to 20% 2-propanol or 25% acetonitrile were employed for CE separations of hydrophobic peptides with (i) untreated, and (ii) 3-aminopropyltrimethoxysilane-derived fused silica capillaries. For both capillary types, electroosmotic flow rates suitable for sample isolation and transfer were determined, and CE separations of polypeptide mixtures were compared for aqueous buffers containing 2-propanol or acetonitrile. For the mass spectrometric identification of CE-separated peptides, a sheath flow sample isolation method was developed for subsequent transfer to PDMS. This procedure enabled the efficient isolation of peptide fractions for PDMS analysis, or alternative microanalytical techniques.
Collapse
Affiliation(s)
- W Weinmann
- Fakultät für Chemie, Universität Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hallak H, Muszbek L, Laposata M, Belmonte E, Brass L, Manning D. Covalent binding of arachidonate to G protein alpha subunits of human platelets. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37602-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80448-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Phillips MA, Qin Q, Mehrpouyan M, Rice RH. Keratinocyte transglutaminase membrane anchorage: analysis of site-directed mutants. Biochemistry 1993; 32:11057-63. [PMID: 8105889 DOI: 10.1021/bi00092a015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Keratinocyte transglutaminase is anchored on the cytosolic side of the plasma membrane by fatty acid thioesterification near the amino terminus, a process which is seen to occur within 30 min of synthesis. The importance of a cluster of five cysteines (residues 47, 48, 50, 51, and 53) where acylation was presumed to occur is now demonstrated by site-directed mutagenesis. Transglutaminase mutants in which the cluster is deleted or the cysteines are all converted to alanine or serine are cytosolic. Partial replacement of the cluster, leaving two contiguous cysteines, is sufficient to confer membrane anchorage, while a single cysteine is only partially effective. As demonstrated with a soluble transglutaminase mutant, membrane anchorage confers susceptibility of the amino-terminal region to phorbol ester-stimulated phosphorylation. Attachment of 105 residues from the transglutaminase amino terminus to involucrin, a highly soluble protein, results in membrane anchorage of the hybrid protein. Attachment of the cysteine cluster alone does not result in membrane attachment of involucrin, but a 32-residue segment containing this cluster is sufficient. Stable transfectants of the human transglutaminase in mouse 3T3 cells are membrane-bound, indicating the fatty acid transacylation is not keratinocyte-specific.
Collapse
Affiliation(s)
- M A Phillips
- Department of Environmental Toxicology, University of California, Davis 95616-8588
| | | | | | | |
Collapse
|
24
|
Camp L, Hofmann S. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41567-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Muszbek L, Laposata M. Covalent modification of proteins by arachidonate and eicosapentaenoate in platelets. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46836-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
26
|
Abstract
The effect of agonists on palmitoylated proteins was examined in platelets prelabeled with [3H]palmitic acid. Non-reduced gels revealed major labeled proteins with masses from 30-38 kDa. One of these proteins was modified by A23187, which led to a loss of radioactivity, and PMA, which altered its electrophoretic mobility. A possible link between the A23187-induced loss of label associated with the protein and the activation of calpain was suggested by the following experiments. (1) There was a good correlation between the loss of label and the proteolysis of proteins in A23187-activated platelets. (2) The permeant calpain inhibitor, E64d, blocked the loss of label as well as the proteolysis of proteins. (3) The loss of label also occurred in a Triton lysate, where calpain was known to be activated. The effect of PMA on the palmitoylated protein was observed only in prelabeled platelets. The protein kinase inhibitor, staurosporine, abolished the PMA-induced platelet aggregation as well as the mobility shift of the labeled protein.
Collapse
Affiliation(s)
- E M Huang
- Department of Biochemistry, SUNY Health Science Center, Brooklyn 11203
| |
Collapse
|
27
|
Abstract
Interest in the study of the direct attachment of fatty acids to cellular proteins, termed protein acylation, has been greatly stimulated by recent experimentation that has increased our understanding of the function of the attached lipid. These developments are described, and the possibility that inhibitors of protein acylation might provide new drugs is discussed.
Collapse
Affiliation(s)
- R A McIlhinney
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK
| |
Collapse
|
28
|
Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation. Lipids 1990; 25:371-8. [PMID: 2395415 DOI: 10.1007/bf02537979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|