Tang T, Dong C, Duffield R, Ho AK. Protection of cardiomyocytes by pinacidil during metabolic inhibition and hyperkalemia.
Eur J Pharmacol 1999;
376:179-87. [PMID:
10440103 DOI:
10.1016/s0014-2999(99)00366-0]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this study is to understand the mechanism underlying the cardioprotective effects of pinacidil, an ATP-sensitive K+ channel (K(ATP)) opener. We examined the effects of 10 microM pinacidil in cultured chicken cardiomyocytes. Pinacidil caused a concentration-dependent delay in metabolic inhibition-induced increase in intracellular calcium concentration ([Ca2+]i) and creatine phosphokinase release, and this action was antagonized by glyburide, a K(ATP) blocker. Neither verapamil, an L-type Ca2+ channel blocker, nor bepridil, a Na+-Ca2+ exchange inhibitor, affected the time course of increase in [Ca2+]i induced by metabolic inhibition. Pinacidil did not have an effect on the amplitude of K+-induced increase in [Ca2+]i, but accelerated the rate of decline following peak stimulation. In contrast, glyburide reduced the amplitude of K+-induced increase in [Ca2+]i and prolonged the rate of decline. These results provide direct evidence that pinacidil protects cardiomyocytes from metabolic inhibition-induced injury by cyanide (CN) through a delay in the onset of increase in [Ca2+]i, rather than by inhibition of the L-type Ca2+-channels or by alteration of Na+-Ca2+ exchange.
Collapse