1
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
2
|
Involvement of lipid rafts in multiple signal transductions mediated by two isoforms of thromboxane A₂ receptor: dependency on receptor isoforms and downstream signaling types. Eur J Pharmacol 2012; 693:15-24. [PMID: 22963705 DOI: 10.1016/j.ejphar.2012.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/13/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022]
Abstract
Lipid rafts, microdomains in the plasma membrane, are known to be involved in G protein-coupled receptor signal transduction; however, their involvement in thromboxane A(2) receptor (TP) signaling remains to be clarified. We examined whether two isoforms of TP, TPα and TPβ, utilize lipid rafts for multiple G protein signal transduction. Sucrose density gradient centrifugation followed by western blotting of HEK cells expressing TPα or TPβ revealed the localization of both TPα and TPβ in lipid rafts. Furthermore, methyl-β-cyclodextrin, which destroys lipid raft structure by depleting cholesterol, influenced G protein signaling elicited by TPα and TPβ to varying degrees. Phosphatidylinositol hydrolysis and cAMP accumulation induced by TPα or TPβ stimulation was markedly inhibited by methyl-β-cyclodextrin. In contrast, treatment with methyl-β-cyclodextrin partially inhibited RhoA activation induced by TPα stimulation, but failed to affect TPβ stimulation. Furthermore, the inhibitory action of methyl-β-cyclodextrin on cAMP accumulation was specific to TPα and TPβ, because methyl-β-cyclodextrin enhanced forskolin and β-adrenergic stimulation-induced cAMP accumulation. These results indicate that TP isoforms depend on lipid rafts during G(q) and G(s) signaling, while G(13) signaling mediated by TP isoforms does not. Moreover, TPα seems to be more lipid raft-dependent with respect to RhoA activation than TPβ. These results indicate that the two isoforms of the TP mediate multiple signal transductions with varying degrees of lipid raft dependency. Moreover, our results provide a deeper understanding of the function of lipid rafts in G protein signaling and the physiological meaning of TP isoforms.
Collapse
|
3
|
Nakahata N, Sugama J. [Pharmacological activity of mastoparan: its contribution to signal transduction]. Nihon Yakurigaku Zasshi 2010; 136:145-149. [PMID: 20838016 DOI: 10.1254/fpj.136.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
4
|
Toriniwa Y, Lv X, Kodama Y, Ohizumi Y, Yoshida M, Nakahata N. Participation of epoxygenase activation in saikogenin D-induced inhibition of prostaglandin E(2) synthesis. J Pharm Pharmacol 2006; 58:859-66. [PMID: 16734988 DOI: 10.1211/jpp.58.6.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We examined the effect of saikogenin D on arachidonic acid metabolism in C6 rat glioma cells to clarify its anti-inflammatory mechanism. Incubation of C6 cells with saikogenin D for 20 min resulted in the inhibition of prostaglandin E(2) production and the accumulation of an arachidonic acid metabolite that was found to be 11,12-dihydroxyeicosatrienoic acid, a metabolite of 11,12-epoxyeicosatrienoic acid. C6 cells expressed rat epoxygenase mRNAs, CYP1A1, CYP2B1 and CYP2J3, which converted arachidonic acid to epoxyeicosatrienoic acids. 11,12-Epoxyeicosatrienoic acid inhibited A23187-induced prostaglandin E(2) production and SKF-525A, an inhibitor of epoxygenase, attenuated the saikogenin D-induced inhibition of prostaglandin E(2) production in C6 cells. Furthermore, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid, but not saikogenin D, inhibited the activity of cyclooxygenase in a cell-free condition. These data suggest that saikogenin D activates epoxygenases that rapidly convert arachidonic acid to epoxyeicosanoids and dihydroxyeicosatrienoic acids, and then the metabolites secondarily inhibit prostaglandin E(2) production.
Collapse
Affiliation(s)
- Yasufumi Toriniwa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Alfonzo MJ, de Aguilar EP, de Murillo AG, de Villarroel SS, de Alfonzo RG, Borges A, de Becemberg IL. Characterization of a G protein-coupled guanylyl cyclase-B receptor from bovine tracheal smooth muscle. J Recept Signal Transduct Res 2006; 26:269-97. [PMID: 16818377 DOI: 10.1080/10799890600766446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A G protein-coupled natriuretic peptide-guanylyl cyclase receptor-B (NPR-B) located in plasma membranes from bovine tracheal smooth muscle shows complex kinetics and regulation. NPR-B was activated by natriuretic peptides (CNP-53 > ANP-28) at the ligand extracellular domain, stimulated by Gq-protein activators, such as mastoparan, and inhibited by Gi-sensitive chloride, interacting at the juxtamembrane domain. The kinase homology domain was evaluated by the ATP inhibition of Mn2+-activated NPR-B, which was partially reversed by mastoparan. The catalytic domain was studied by kinetics of Mn2+/Mg2+ and GTP, and the catalytic effect with GTP analogues with modifications of the /gamma phosphates and ribose moieties. Most NPR-B biochemical properties remained after detergent solubilization but the mastoparan activation and chloride inhibition of NPR-B disappeared. Our results indicate that NPR-B is a highly regulated nano-machinery with domains acting at cross-talk points with other signal transducing cascades initiated by G protein-coupled receptors and affected by intracellular ligands such as chloride, Mn2+, Mg2+, ATP, and GTP.
Collapse
Affiliation(s)
- Marcelo J Alfonzo
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina. Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
6
|
Sugama J, Ohkubo S, Atsumi M, Nakahata N. Mastoparan changes the cellular localization of Galphaq/11 and Gbeta through its binding to ganglioside in lipid rafts. Mol Pharmacol 2005; 68:1466-74. [PMID: 16118364 DOI: 10.1124/mol.105.013524] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that mastoparan, a wasp venom toxin, directly activates Gi/o, mastoparan-induced biological responses are not always explained by this mechanism. For instance, we have demonstrated previously that mastoparan suppressed phosphoinositide hydrolysis induced by carbachol in human astrocytoma cells (FEBS Lett 206:91-94, 1990). In the present study, we examined whether mastoparan affected phosphoinositide hydrolysis by interacting with lipid rafts in PC-12 cells. Mastoparan inhibited UTP-induced increase in [Ca2+]i and phosphoinositide hydrolysis in a concentration-dependent manner. UTP-induced phosphoinositide hydrolysis occurred in lipid rafts, because methyl-beta-cyclodextrin, a disrupting regent of lipid rafts, inhibited the hydrolysis. Mastoparan changed the localization of Galphaq/11 and Gbeta together with cholesterol from lipid rafts to nonraft fractions or cytosol. These changes were inhibited by ganglioside mixtures, suggesting that mastoparan interacts with gangliosides in lipid rafts. In fact, ganglioside mixtures and neuraminidase, but not sialic acid, attenuated the inhibitory effect of mastoparan on phosphoinositide hydrolysis. Furthermore, fluorescence intensity of tyrosine residue of [Tyr3]mastoparan was potentiated by ganglioside mixtures, suggesting the direct binding of mastoparan to gangliosides. Mastoparan caused cytotoxicity of PC-12 cells in a concentration-dependent manner, determined by LDH release. The mastoparan-induced cytotoxicity was significantly inhibited by neuraminidase or gangliosides. The order of inhibitory potency of gangliosides was GT1b approximately GD1b > GD1a > GM1 >> GQ1b, but asialo-GM1 and sialic acid were inactive. These results suggest that mastoparan initially binds to gangliosides in lipid rafts and then it inhibits phosphoinositide hydrolysis by changing the localization of Galphaq/11 and Gbeta in lipid rafts.
Collapse
Affiliation(s)
- Jun Sugama
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Japan 980-8578
| | | | | | | |
Collapse
|
7
|
Saito SY, Kamiyama S, Oda M, Nakahata N, Ohizumi Y. Inhibitory Effect of Mao-Bushi-Saishin-to on Prostaglandin E2 Synthesis in C6 Rat Glioma Cells. Biol Pharm Bull 2004; 27:1133-5. [PMID: 15256755 DOI: 10.1248/bpb.27.1133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of Mao-Bushi-Saishin-to (Ma-Huang-Fu-Zi-Xi-Xin-Tang: MBS) on prostaglandin E(2) (PGE(2)) production was investigated using C6 rat glioma cells. Mao or Saishin inhibited histamine-induced PGE(2) production while MBS slightly decreased and Bushi increased it. MBS and Mao inhibited and Bushi enhanced A23187-induced PGE(2) production while Saishin had no effect. Concomitantly, Mao inhibted, but Bushi fascilitated, histamine- and A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Treatment of MBS, Mao and also Saishin increased cAMP content. From these results, MBS inhibit PGE(2) production in C6 cells, mainly due to Mao but also due to Saishin at least in part, and the counteraction of Bushi. The former effect is mediated by formation of cAMP and resulting inhibition of ERK1/2-phosphorylation.
Collapse
Affiliation(s)
- Shin-ya Saito
- Department of Pharmaceutical Molecular Biology, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
8
|
Hirata Y, Atsumi M, Ohizumi Y, Nakahata N. Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochem J 2003; 371:81-8. [PMID: 12519071 PMCID: PMC1223267 DOI: 10.1042/bj20021844] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 01/03/2003] [Accepted: 01/08/2003] [Indexed: 11/17/2022]
Abstract
The ryanodine receptor, a Ca(2+)-releasing channel in sarcoplasmic reticulum (SR), plays an important role in the excitation-contraction coupling of skeletal muscle. In a previous study [Hirata, Nakahata and Ohizumi (2000) Mol. Pharmacol. 57, 1235-1242], we reported that mastoparan caused Ca(2+) release through ryanodine receptor from the heavy fraction of SR (HSR) isolated from rabbit skeletal muscle, and that it specifically bound to a 97 kDa protein which was distinct from Ca(2+)-pump or triadin. The present study was undertaken to identify and characterize the 97 kDa mastoparan-binding protein. The 97 kDa protein was purified from solubilized HSR by DEAE-Sepharose column chromatography and preparative SDS/PAGE. The partial amino acid sequence of the purified 97 kDa protein was matched with that of glycogen phosphorylase (GP). The proteolytic cleavage pattern of the 97 kDa protein was identical with that of GP. Furthermore, [(125)I-Tyr(3)]mastoparan specifically bound to GP. Interestingly, mastoparan-induced Ca(2+) release was inhibited by exogenous addition of GP-a, and mastoparan dissociated GP from HSR. These results indicate that the 97 kDa mastoparan-binding protein is GP, which negatively regulates Ca(2+) release from HSR. There may be a functional cross-talk between Ca(2+) release from HSR and glycogenolysis for energy supply mediated through GP in skeletal muscles.
Collapse
Affiliation(s)
- Yutaka Hirata
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
9
|
Nakahata N, Tsuchiya C, Nakatani K, Ohizumi Y, Ohkubo S. Baicalein inhibits Raf-1-mediated phosphorylation of MEK-1 in C6 rat glioma cells. Eur J Pharmacol 2003; 461:1-7. [PMID: 12568909 DOI: 10.1016/s0014-2999(02)02950-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Baicalein is a flavonoid derived from the Scutellaria root. In investigations of the inhibitors of prostaglandin synthesis in C6 rat glioma cells, we found that baicalein had a potent inhibitory activity on prostaglandin synthesis induced by either histamine or A23187, a Ca(2+) ionophore. Baicalein inhibited histamine- or A23187-induced phosphorylation of p42/p44 extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK), which causes the phosphorylation of cytosolic phospholipase A(2) (PLA(2)). Baicalein also inhibited the phosphorylation of MAPK kinase-1 (MEK-1) induced by histamine or A23187 in the cells. To examine the site of action of baicalein, MEK-1 and Raf-1 were prepared by immunoprecipitation with anti-MEK-1 and anti-Raf-1 antibodies, respectively. Baicalein inhibited the phosphorylation of exogenous MEK-1 by Raf-1 under cell-free conditions, while it did not change the phosphorylation of exogenous p42 MAPK by MEK-1. These results imply that baicalein inhibits the ERK/MAPK cascade, acting on the phosphorylation of MEK-1 by Raf-1.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | |
Collapse
|
10
|
Nakatani K, Atsumi M, Arakawa T, Oosawa K, Shimura S, Nakahata N, Ohizumi Y. Inhibitions of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicinal plant. Biol Pharm Bull 2002; 25:1137-41. [PMID: 12230104 DOI: 10.1248/bpb.25.1137] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fruit hull of mangosteen, Garcinia mangostana L. has been used as a Thai indigenous medicine for many years. However, its mechanism of action as a medicine has not been elucidated. The present study was undertaken to examine the effects of mangosteen extracts (100% ethanol, 70% ethanol, 40% ethanol and water) on histamine release and prostaglandin E2 synthesis. We found that the 40% ethanol extract of mangosteen inhibited IgE-mediated histamine release from RBL-2H3 cells with greater potency than the water extract of Rubus suavissimus that has been used as an anti-allergy crude drug in Japan. All extracts of mangosteen potently inhibited A23187-induced prostaglandin E2 synthesis in C6 rat glioma cells, while the water extract of Rubus suavissimus had no effect. The 40% ethanol extract of mangosteen inhibited the prostaglandin E2 synthesis in a concentration-dependent manner with relatively lower concentrations than the histamine release. In addition, passive cutaneous anaphylaxis (PCA) reactions in rats were significantly inhibited by this ethanol extract as well as by the water extract of Rubus suavissimus. These results suggest that the 40% ethanol extract of mangosteen has potent inhibitory activities of both histamine release and prostaglandin E2 synthesis.
Collapse
Affiliation(s)
- Keigo Nakatani
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Nakatani K, Nakahata N, Arakawa T, Yasuda H, Ohizumi Y. Inhibition of cyclooxygenase and prostaglandin E2 synthesis by gamma-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol 2002; 63:73-9. [PMID: 11754876 DOI: 10.1016/s0006-2952(01)00810-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fruit hull of mangosteen, Garcinia mangostana L., has been used for many years as a medicine for treatment of skin infection, wounds, and diarrhea in Southeast Asia. In the present study, we examined the effect of gamma-mangostin, a tetraoxygenated diprenylated xanthone contained in mangosteen, on arachidonic acid (AA) cascade in C6 rat glioma cells. gamma-Mangostin had a potent inhibitory activity of prostaglandin E2 (PGE2) release induced by A23187, a Ca2+ ionophore. The inhibition was concentration-dependent, with the IC50 value of about 5 microM. gamma-Mangostin had no inhibitory effect on A23187-induced phosphorylation of p42/p44 extracellular signal regulated kinase/mitogen-activated protein kinase or on the liberation of [14C]-AA from the cells labeled with [14C]-AA. However, gamma-mangostin concentration-dependently inhibited the conversion of AA to PGE2 in microsomal preparations, showing its possible inhibition of cyclooxygenase (COX). In enzyme assay in vitro, gamma-mangostin inhibited the activities of both constitutive COX (COX-1) and inducible COX (COX-2) in a concentration-dependent manner, with the IC50 values of about 0.8 and 2 microM, respectively. Lineweaver-Burk plot analysis indicated that gamma-mangostin competitively inhibited the activities of both COX-1 and -2. This study is a first demonstration that gamma-mangostin, a xanthone derivative, directly inhibits COX activity.
Collapse
Affiliation(s)
- Keigo Nakatani
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan
| | | | | | | | | |
Collapse
|
12
|
Nakatani K, Nakahata N, Tsurufuji S, Ohizumi Y. Preconditioning of 3T3 cells by fresh medium together with genistein enhances prostaglandin E(2) release. Eur J Pharmacol 2001; 432:135-42. [PMID: 11740948 DOI: 10.1016/s0014-2999(01)01479-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bradykinin induced prostaglandin E(2) release from the Swiss 3T3 fibroblasts, preconditioned with fresh culture medium. Although treatment with genistein for the entire period of preconditioning and incubation with bradykinin attenuated prostaglandin E(2) release, treatment with fresh culture medium and genistein for only the preconditioning period further augmented the prostaglandin E(2) release. In the cells preconditioned with fresh culture medium and genistein, bradykinin caused the phosphorylation of protein tyrosine and mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK), followed by arachidonic acid release. Interestingly, preconditioning with genistein alone also caused phosphorylation and arachidonic acid release, probably reflecting rebound activation after the washout of genistein. However, preconditioning with genistein alone induced neither the augmentation of prostaglandin E(2) release nor the expression of cyclooxygenase-2. The further potentiation of bradykinin-induced prostaglandin E(2) release by combined preconditioning with fresh culture medium and genistein may be due to the activation of the MAPK/ERK-c phospholipase A(2) pathway by preconditioning with genistein.
Collapse
Affiliation(s)
- K Nakatani
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan
| | | | | | | |
Collapse
|
13
|
Tetsuka K, Hosoya KI, Ohtsuki S, Takanaga H, Yanai N, Ueda M, Obinata M, Terasaki T. Acidic amino acid transport characteristics of a newly developed conditionally immortalized rat type 2 astrocyte cell line (TR-AST). Cell Struct Funct 2001; 26:197-203. [PMID: 11699636 DOI: 10.1247/csf.26.197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To characterize acidic amino acid transport in type 2 astrocytes, we established conditionally immortalized rat astrocyte cell lines (TR-AST) from newly developed transgenic rats harboring temperature-sensitive SV40 large T-antigen gene. TR-AST exhibited positive immunostaining for anti-GFAP antibody and A2B5 antibody, characteristics associated with type 2 astrocytes, and expressed glutamine synthetase. Acidic amino acid transporters, GLT-1 and system xc-, which consists of xCT and 4F2hc, were expressed in all TR-ASTs by RT-PCR. On the other hand, GLAST expression was found in TR-AST3 and 5. The characteristics of [3H]L-glutamic acid (L-Glu) uptake by TR-AST5 include an Na+-dependent and Na+-independent manner, concentration-dependence, and inhibition by L-aspartic acid (L-Asp) and D-aspartic acid (D-Asp). The corresponding Michaelis-Menten constants for the Na+-dependent and Na+-independent process were 36.3 microM and 155 microM, respectively. [3H]L-Asp and [3H]D-Asp uptake by TR-AST5 had an Na+-dependent and Na+-independent manner. This study demonstrated that GLT-1, system xc-, and GLAST were expressed in TR-AST, which has the characteristics of type 2 astrocytes and is able to transport acidic amino acids.
Collapse
Affiliation(s)
- K Tetsuka
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Park HS, Lee SY, Kim YH, Kim JY, Lee SJ, Choi M. Membrane perturbation by mastoparan 7 elicits a broad alteration in lipid composition of L1210 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:151-62. [PMID: 10760465 DOI: 10.1016/s1388-1981(00)00002-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mastoparan 7 (Mas-7), an amphiphilic peptide possessing membrane perturbing activity, has been known to selectively stimulate some lipases. To examine changes in the lipid composition induced by Mas-7, we carried out systemic lipid analysis of L1210 cells after Mas-7 treatment. The total lipid was determined by HPLC, gas-liquid chromatography, and electrospray ionization mass spectrometry in conjunction with differential radiolabelling with [(32)P]orthophosphate, [(3)H]myristic acid, and [(3)H]arachidonic acid. The lipid analysis revealed multiple changes in more than 10 lipid classes. Free fatty acids (FFAs) and phosphatidylethanol (PEt), the phospholipase D product in the presence of ethanol, were increased significantly and phosphatidylcholine (PC) was decreased. Digitonin, a membrane permeabilizing reagent, similarly affected the lipid composition of L1210. The FFA released showed a very broad distribution of saturated, monounsaturated, and polyunsaturated fatty acids, implying that phospholipase A(2) alone could not account for all of the FFAs released. By comparing the molecular species of PEt with those of endogenous PC, we showed that phospholipase D in L1210 cells appeared to act selectively on diacyl-PC. The perturbation-induced alterations in the lipid composition brought about by Mas-7 might play a crucial role in the physiology of the affected cells.
Collapse
Affiliation(s)
- H S Park
- Department of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Hamlett J, Hawley SR, Pennington SR. Mastoparan transiently permeabilizes Swiss 3T3 cells and induces c-fos proto-oncogene expression. Role of calcium and G protein activation. Cell Signal 2000; 12:239-44. [PMID: 10781931 DOI: 10.1016/s0898-6568(00)00063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mastoparan, a widely used tetradecapeptide activator of Gi/Go G proteins, has been reported to be a potent co-mitogen for Swiss 3T3 fibroblasts. However, we have previously shown that the peptide promotes the release of lactate dehydrogenase from Swiss 3T3 cells and evokes only a modest and delayed increase in DNA. We suggested that the ability of the peptide to permeabilise these cells may account for its mitogenic action. Here we show that mastoparan caused a rapid release of fluorescein from cells which had been pre-incubated with fluorescein diacetate, indicating that the peptide increases membrane permeability to small molecules. Furthermore, the release of lactate dehydrogenase evoked by mastoparan was lost after prolonged (24 h) incubation of cells with the peptide. Together, these data indicate that mastoparan-induced cell permeabilisation is both rapid and transient. We have also shown that mastoparan increased c-fos mRNA accumulation and that this response was not influenced by pertussis toxin or indomethacin. Although mastoparan increased the intracellular calcium concentration, the removal of extracellular calcium had no effect on mastoparan stimulated c-fos mRNA accumulation. These data show that mastoparan-induced c-fos mRNA accumulation is not mediated by activation of a G protein and subsequent activation of phospholipase D nor by a non-selective increase in calcium influx. The data have significance for the interpretation of studies in which mastoparan is, or has been, used as an activator of Gi/Go.
Collapse
Affiliation(s)
- J Hamlett
- Department of Human Anatomy & Cell Biology, New Medical School, University of Liverpool, United Kingdom
| | | | | |
Collapse
|
16
|
Adayev T, El-Sherif Y, Barua M, Penington NJ, Banerjee P. Agonist stimulation of the serotonin1A receptor causes suppression of anoxia-induced apoptosis via mitogen-activated protein kinase in neuronal HN2-5 cells. J Neurochem 1999; 72:1489-96. [PMID: 10098853 DOI: 10.1046/j.1471-4159.1999.721489.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have indicated that stimulation of neuronal inhibitory receptors, such as the serotonin1A receptor (5-HT1A-R), could cause attenuation of the activity of both N-type Ca2+ channels and N-methyl-D-aspartic acid receptors, thus resulting in protection of neurons against excitotoxicity. The purpose of this study was to investigate if the 5-HT1A-R is also coupled to an alternative pathway that culminates in suppression of apoptosis even in cells that are deficient in Ca2+ channels. Using a hippocampal neuron-derived cell line (HN2-5) that is Ca2+ channel-deficient, we demonstrate here that an alternative pathway is responsible for 5-HT1A-R-mediated protection of these cells from anoxia-triggered apoptosis, assessed by deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL). The 5-HT1A-R agonist-evoked protection was eliminated in the presence of pertussis toxin and also required phosphorylation-mediated activation of mitogen-activated protein kinase (MAPK), as evidenced by the elimination of the agonist-elicited rescue of neuronal cells by the MAPK kinase inhibitor PD98059 but not by the phosphatidylinositol 3-kinase (PI-3K) inhibitor wortmannin. Furthermore, agonist stimulation of the 5-HT1A-R caused a 60% inhibition of anoxia-stimulated caspase 3-like activity in the HN2-5 cells, and this inhibition was abrogated by PD98059 but not by wortmannin. Although agonist stimulation of the 5-HT1A-R caused an activation of PI-3Kgamma in HN2-5 cells, our results showed that this PI-3Kgamma activity was not linked to the 5-HT1A-R-promoted regulation of caspase activity and suppression of apoptosis. Thus, in the neuronal HN2-5 cells, agonist binding to the 5-HT1A-R results in MAPK-mediated inhibition of a caspase 3-like enzyme and a 60-70% suppression of anoxia-induced apoptosis through a Ca2+ channel-independent pathway.
Collapse
Affiliation(s)
- T Adayev
- Department of Chemistry and CSI/IBR Center for Developmental Neuroscience, City University of New York at the College of Staten Island, 10314, USA
| | | | | | | | | |
Collapse
|
17
|
Nakahata N, Kutsuwa M, Kyo R, Kubo M, Hayashi K, Ohizumi Y. Analysis of inhibitory effects of scutellariae radix and baicalein on prostaglandin E2 production in rat C6 glioma cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 1998; 26:311-23. [PMID: 9862019 DOI: 10.1142/s0192415x9800035x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inhibitory mechanism of the water extract of Scutellariae Radix on prostaglandin E2 (PGE2) release was examined in C6 rat glioma cells. Scutellariae Radix reduced a Ca2+ ionophore A23187-induced PGE2 release by inhibition of arachidonic acid (AA) liberation. Sho-saiko-to and San'o-shashin-to, which contain Scutellariae Radix, also inhibited PGE2 release. A23187 caused phosphorylation of mitrogen-activated protein kinase (MAPK), resulting in activation of cytosolic phospholipase A2 (cPLA2). Scutellariae Radix and baicalein inhibited the phosphorylation of MAPK. Baicalein, but not baicalin, inhibited A23187-induced PGE2 release. These results suggest that baicalein in Scutellariae Radix reduces AA liberation through the inhibition of the MAPK-cPLA2 pathway.
Collapse
Affiliation(s)
- N Nakahata
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kyo R, Nakahata N, Sakakibara I, Kubo M, Ohizumi Y. Baicalin and baicalein, constituents of an important medicinal plant, inhibit intracellular Ca2+ elevation by reducing phospholipase C activity in C6 rat glioma cells. J Pharm Pharmacol 1998; 50:1179-82. [PMID: 9821667 DOI: 10.1111/j.2042-7158.1998.tb03331.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial cells have a role in maintaining the function of neural cells. This study was undertaken to clarify the effects of baicalin and baicalein, flavonoids isolated from an important medicinal plant Scutellariae Radix (the root of Scutellaria baicalensis Georgi), on glial cell function using C6 rat glioma cells. Baicalin and baicalein caused concentration-dependent inhibition of a histamine-induced increase in intracellular Ca2+ concentrations ([Ca2+]i). The potency of baicalein was significantly greater than that of baicalin. The noradrenaline- and carbachol-induced increase in [Ca2+]i was also inhibited by baicalein and both drugs inhibited histamine-induced accumulation of total [3H]inositol phosphates, consistent with their inhibition of the increase in [Ca2+]i. These results suggest that baicalin and baicalein inhibit [Ca2+]i elevation by reducing phospholipase C activity. The inhibitory effects of baicalin and baicalein on [Ca2+]i elevation might be important in the interpretation of their pharmacological action on glial cells, such as inhibition of Ca2(+)-required enzyme phospholipase A2.
Collapse
Affiliation(s)
- R Kyo
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
19
|
Nakatani K, Nakahata N, Hamada Y, Tsurufuji S, Ohizumi Y. Medium change amplifies mitogen-activated protein kinase-mediated prostaglandin E2 synthesis in Swiss 3T3 fibroblasts. Eur J Pharmacol 1998; 356:91-100. [PMID: 9761428 DOI: 10.1016/s0014-2999(98)00523-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Swiss 3T3 fibroblasts, changing the culture medium prior to stimulation resulted in an augmentation of bradykinin-induced prostaglandin E2 synthesis. The augmentation depended on the duration of the exposure to the fresh medium, with a maximum effect at 1 h. Fetal calf serum in the fresh medium was essential for augmented prostaglandin E2 synthesis. The medium change slightly augmented the bradykinin-induced increase in intracellular free Ca2+ concentration and phosphoinositide hydrolysis with a different time course from that for prostaglandin E2 synthesis. 4',5,7-Trihydroxyisoflavone (genistein) and 3,4-dihydroxybenzylidene-malononitrile (tyrphostin 23), inhibitors of tyrosine kinases, and 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein kinase (MAPK) kinase, attenuated the increase in prostaglandin E2 synthesis. Bradykinin caused phosphorylation of cytosolic phospholipase A2 and p42/p44 MAPK, which was augmented by the medium change. From the results, it is concluded that activation of MAPK and cytosolic phospholipase A2 is involved in the augmentation of prostaglandin E2 synthesis produced by the medium change.
Collapse
Affiliation(s)
- K Nakatani
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
20
|
Ishimoto H, Nakahata N, Matsuoka I, Nakanishi H. Effects of ATP on phosphoinositide hydrolysis and prostaglandin E2 generation in rabbit astrocytes. J Pharm Pharmacol 1997; 49:520-4. [PMID: 9178188 DOI: 10.1111/j.2042-7158.1997.tb06835.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular ATP secreted from stimulated nerves plays a role in neurotransmission. This study examined the effects of extracellular ATP on phospholipase A2 and C signalling pathways in rabbit astrocytes. ATP caused prostaglandin E2 (PGE2) generation and phosphoinositide hydrolysis in a time- and concentration-dependent manner. A P2y purinoceptor-selective agonist, 2-methylthio-ATP also caused phosphoinositide hydrolysis, but not PGE2 generation. A P2x purinoceptor-selective agonist, alpha, beta-methylene-ATP did not cause either phosphoinositide hydrolysis or PGE2 generation. Although pertussis toxin had no effect on 2-methylthio-ATP-induced phosphoinositide hydrolysis, it markedly decreased ATP-induced PGE2 generation, with significant inhibition of phosphoinositide hydrolysis. Dexamethasone and indomethacin which potently inhibited ATP-induced PGE2 generation, caused partial inhibition of phosphoinositide hydrolysis, suggesting that pertussis toxin-sensitive component of ATP-induced phospholipase C activation is mediated by cyclo-oxygenase metabolites of arachidonic acid. These results suggest that a stimulation of P2y receptor results in phospholipase C activation in a pertussis toxin-insensitive manner, and that a P2 receptor other than the P2y or P2x subtypes is involved in ATP-induced phospholipase A2 activation via a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- H Ishimoto
- Department of Pharmacology, Fukushima Medical College, Japan
| | | | | | | |
Collapse
|