1
|
Ren K, Wang Q, Chen J, Zhang H, Guo Z, Xu M, Rao Z, Zhang X. Design-build-test of recombinant Bacillus subtilis chassis cell by lifespan engineering for robust bioprocesses. Synth Syst Biotechnol 2024; 9:470-480. [PMID: 38634000 PMCID: PMC11021899 DOI: 10.1016/j.synbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. Bacillus subtilis is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust B. subtilis chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency. The modified chassis cells could produce high levels of l-glutaminase, and tolerate hydroquinone to produce α-arbutin efficiently. In a 5 L bioreactor, the l-glutaminase enzyme activity of the final strain CRE15TG was increased to 2817.4 ± 21.7 U mL-1, about 1.98-fold compared with that of the wild type. The α-arbutin yield of strain CRE15A was increased to 134.7 g L-1, about 1.34-fold compared with that of the WT. To our knowledge, both of the products in this study performed the highest yields reported so far. The chassis modification strategy described in this study can Improve the utilization efficiency of chassis cells, mitigate the possible adverse effects caused by excessive metabolic modification of engineered strains, and provide a new idea for the future design of microbial cell factories.
Collapse
Affiliation(s)
- Kexin Ren
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jianghua Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhoule Guo
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| |
Collapse
|
2
|
Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803. NPJ Syst Biol Appl 2023; 9:47. [PMID: 37739963 PMCID: PMC10516873 DOI: 10.1038/s41540-023-00307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/01/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding energy and redox homeostasis and carbon partitioning is crucial for systems metabolic engineering of cell factories. Carbon metabolism alone cannot achieve maximal accumulation of metabolites in production hosts, since an efficient production of target molecules requires energy and redox balance, in addition to carbon flow. The interplay between cofactor regeneration and heterologous production in photosynthetic microorganisms is not fully explored. To investigate the optimality of energy and redox metabolism, while overproducing alkenes-isobutene, isoprene, ethylene and 1-undecene, in the cyanobacterium Synechocystis sp. PCC 6803, we applied stoichiometric metabolic modelling. Our network-wide analysis indicates that the rate of NAD(P)H regeneration, rather than of ATP, controls ATP/NADPH ratio, and thereby bioproduction. The simulation also implies that energy and redox balance is interconnected with carbon and nitrogen metabolism. Furthermore, we show that an auxiliary pathway, composed of serine, one-carbon and glycine metabolism, supports cellular redox homeostasis and ATP cycling. The study revealed non-intuitive metabolic pathways required to enhance alkene production, which are mainly driven by a few key reactions carrying a high flux. We envision that the presented comparative in-silico metabolic analysis will guide the rational design of Synechocystis as a photobiological production platform of target chemicals.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
3
|
Liu Y, Zhang Q, Qi X, Gao H, Wang M, Guan H, Yu B. Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review. Microorganisms 2023; 11:microorganisms11010164. [PMID: 36677456 PMCID: PMC9863419 DOI: 10.3390/microorganisms11010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Riboflavin (vitamin B2) is one of the essential vitamins that the human body needs to maintain normal metabolism. Its biosynthesis has become one of the successful models for gradual replacement of traditional chemical production routes. B. subtilis is characterized by its short fermentation time and high yield, which shows a huge competitive advantage in microbial fermentation for production of riboflavin. This review summarized the advancements of regulation on riboflavin production as well as the synthesis of two precursors of ribulose-5-phosphate riboflavin (Ru5P) and guanosine 5'-triphosphate (GTP) in B. subtilis. The different strategies to improve production of riboflavin by metabolic engineering were also reviewed.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Zhang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- Correspondence: (Q.Z.); (B.Y.)
| | - Xiaoxiao Qi
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Gao
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Meng Wang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Hao Guan
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.Z.); (B.Y.)
| |
Collapse
|
4
|
Imam S, Fitzgerald CM, Cook EM, Donohue TJ, Noguera DR. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2015; 123:167-182. [PMID: 25428581 DOI: 10.1007/s11120-014-0061-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Obtaining a better understanding of the physiology and bioenergetics of photosynthetic microbes is an important step toward optimizing these systems for light energy capture or production of valuable commodities. In this work, we analyzed the effect of light intensity on bioproduction, biomass formation, and maintenance energy during photoheterotrophic growth of Rhodobacter sphaeroides. Using data obtained from steady-state bioreactors operated at varying dilution rates and light intensities, we found that irradiance had a significant impact on biomass yield and composition, with significant changes in photopigment, phospholipid, and biopolymer storage contents. We also observed a linear relationship between incident light intensity and H2 production rate between 3 and 10 W m(-2), with saturation observed at 100 W m(-2). The light conversion efficiency to H2 was also higher at lower light intensities. Photosynthetic maintenance energy requirements were also significantly affected by light intensity, with links to differences in biomass composition and the need to maintain redox homeostasis. Inclusion of the measured condition-dependent biomass and maintenance energy parameters and the measured photon uptake rate into a genome-scale metabolic model for R. sphaeroides (iRsp1140) significantly improved its predictive performance. We discuss how our analyses provide new insights into the light-dependent changes in bioenergetic requirements and physiology during photosynthetic growth of R. sphaeroides and potentially other photosynthetic organisms.
Collapse
Affiliation(s)
- Saheed Imam
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
5
|
van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 2012; 96:197-209. [PMID: 22526794 DOI: 10.1007/s00253-012-4037-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/29/2022]
Abstract
Two recombinant strains of Saccharomyces cerevisiae Y294 producing cellulase using different expression strategies were compared to a reference strain in aerobic culture to evaluate the potential metabolic burden that cellulase expression imposed on the yeast metabolism. In a chemically defined mineral medium with glucose as carbon source, S. cerevisiae strain Y294[CEL5] with plasmid-borne cellulase genes produced endoglucanase and β-glucosidase activities of 0.038 and 0.30 U mg dry cell weight(-1), respectively. Chromosomal expression of these two cellulases in strain Y294[Y118p] resulted in no detectable activity, although low levels of episomally co-expressed cellobiohydrolase (CBH) activity were detected. Whereas the biomass concentration of strain Y294[CEL5] was slightly greater than that of a reference strain, CBH expression by Y294[Y118p] resulted in a 1.4-fold lower maximum specific growth rate than that of the reference. Supplementation of the growth medium with amino acids significantly improved culture growth and enzyme production, but only partially mitigated the physiological effects and metabolic burden of cellulase expression. Glycerol production was decreased significantly, up to threefold, in amino acid-supplemented cultures, apparently due to redox balancing. Disproportionately higher levels of glycerol production by Y294[CEL5] indicated a potential correlation between the redox balance of anabolism and the physiological stress of cellulase production. With the reliance on cellulase expression in yeast for the development of consolidated bioprocesses for bioethanol production, this work demonstrates the need for development of yeasts that are physiologically robust in response to burdens imposed by heterologous enzyme production.
Collapse
Affiliation(s)
- Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | | | | | | | | |
Collapse
|
6
|
Rivas B, Torre P, Domínguez JM, Converti A. Maintenance and growth requirements in the metabolism of Debaryomyces hansenii performing xylose-to-xylitol bioconversion in corncob hemicellulose hydrolyzate. Biotechnol Bioeng 2009; 102:1062-73. [PMID: 18988265 DOI: 10.1002/bit.22155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to improve the biotechnological production of xylitol, the metabolism of Debaryomyces hansenii NRRL Y-7426 in corncob hemicellulose hydrolyzate has been investigated under different conditions, where either maintenance or growth requirements predominated. For this purpose, the experimental results of two sets of batch bioconversions carried out alternatively varying the starting xylose concentration in the hydrolyzate (65.6 < or = S(0) < or = 154.7 g L(-1)) or the initial biomass level (3.0 < or = X(0) < or = 54.6 g(DM) L(-1)) were used to fit a metabolic model consisting of carbon material and ATP balances based on five main activities, namely fermentative assimilation of pentoses, semi-aerobic pentose-to-pentitol bioconversion, biomass growth on pentoses, catabolic oxidation of pentoses, and acetic acid and NADH regeneration by the electron transport system. Such an approach allowed separately evaluating the main bioenergetic constants of this microbial system, that is, the specific rates of ATP and xylose consumption due to maintenance (m(ATP) = 21.0 mmol(ATP) C-mol(DM) (-1)h(-1); m(Xyl) = 6.5 C-mmol(Xyl) C-mol(DM) (-1)h(-1)) and the true yields of biomass on ATP (Y(ATP) (max) = 0.83 C-mol(DM) mol(ATP) (-1)) and on xylose (Y(Xyl) (max) = 0.93 C-mol(DM) C-mol(Xyl) (-1)). The results of this study highlighted that the system, at very high S(0) and X(0) values, dramatically increased its energy requirements for cell maintenance, owing to the occurrence of stressing conditions. In particular, for S(0) > 130 g L(-1), these activities required an ATP consumption of about 2.1 mol(ATP) L(-1), that is, a value about seven- to eightfold that observed at low substrate concentration. Such a condition led to an increase in the fraction of ATP addressed to cell maintenance from 47% to 81%. On the other hand, the very high percentage of ATP addressed to maintenance (> 96%) at very high cell concentration (X(0) > or = 25 g(DM) L(-1)) was likely due to the insufficient substrate to sustain the growth.
Collapse
Affiliation(s)
- Beatriz Rivas
- Department of Chemical and Process Engineering "G.B. Bonino," Genoa University, Via Opera Pia 15, 16145 Genoa, Italy
| | | | | | | |
Collapse
|
7
|
Tännler S, Decasper S, Sauer U. Maintenance metabolism and carbon fluxes in Bacillus species. Microb Cell Fact 2008; 7:19. [PMID: 18564406 PMCID: PMC2442585 DOI: 10.1186/1475-2859-7-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 06/18/2008] [Indexed: 11/10/2022] Open
Abstract
Background Selection of an appropriate host organism is crucial for the economic success of biotechnological processes. A generally important selection criterion is a low maintenance energy metabolism to reduce non-productive consumption of substrate. We here investigated, whether various bacilli that are closely related to Bacillus subtilis are potential riboflavin production hosts with low maintenance metabolism. Results While B. subtilis exhibited indeed the highest maintenance energy coefficient, B. licheniformis and B. amyloliquefaciens exhibited only statistically insignificantly reduced maintenance metabolism. Both B. pumilus and B. subtilis (natto) exhibited irregular growth patterns under glucose limitation such that the maintenance metabolism could not be determined. The sole exception with significantly reduced maintenance energy requirements was the B. licheniformis strain T380B. The frequently used spo0A mutation significantly increased the maintenance metabolism of B. subtilis. At the level of 13C-detected intracellular fluxes, all investigated bacilli exhibited a significant flux through the pentose phosphate pathway, a prerequisite for efficient riboflavin production. Different from all other species, B. subtilis featured high respiratory tricarboxylic acid cycle fluxes in batch and chemostat cultures. In particular under glucose-limited conditions, this led to significant excess formation of NADPH of B. subtilis, while anabolic consumption was rather balanced with catabolic NADPH formation in the other bacilli. Conclusion Despite its successful commercial production of riboflavin, B. subtilis does not seem to be the optimal cell factory from a bioenergetic point of view. The best choice of the investigated strains is the sporulation-deficient B. licheniformis T380B strain. Beside a low maintenance energy coefficient, this strain grows robustly under different conditions and exhibits only moderate acetate overflow, hence making it a promising production host for biochemicals and riboflavin in particular.
Collapse
Affiliation(s)
- Simon Tännler
- Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
8
|
Li XJ, Chen T, Chen X, Zhao XM. Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis. Appl Microbiol Biotechnol 2006; 73:374-83. [PMID: 16736087 DOI: 10.1007/s00253-006-0482-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 04/19/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The metabolic impact of redirection electron flow to high coupling efficiency of terminal oxidases on riboflavin biosynthetic ability was quantitatively assessed during batch culture in this paper. While disruption of the low coupling bd oxidase of the riboflavin overproducing B. subtilis PK, the apparent phenotype with more rapid specific growth rate and higher biomass yield was achieved. Compared to by-products formation, a discernible shift to less acetate and more acetoin in cyd mutant was observed. As the overflow metabolism was decreased in B. subtilis PK cyd, more carbon source was directed to biomass and riboflavin biosynthetic pathway, which resulted in higher biomass and about 30% improvement of riboflavin biosynthetic ability. The higher product-corrected biomass yield in mutant showed that the efficient energy generation is an important factor for exponential growth of riboflavin overproducing B. subtilis strain in batch culture.
Collapse
Affiliation(s)
- Xiao-Jing Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Sauer U, Schlattner U. Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 2005; 6:220-8. [PMID: 15256212 DOI: 10.1016/j.ymben.2003.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/13/2003] [Indexed: 11/23/2022]
Abstract
Inverse metabolic engineering attempts to identify or construct desired phenotypes of applied interest to endow them on appropriate host organisms. A particular desirable phenotype is the ATP homeostasis exhibited by animal cells with high and variable ATP turnover through temporal and spatial energy buffering. This buffering is achieved by phosphagen kinase systems that consist of a specific kinase and its cognate phosphagen, which functions as a large pool of 'high-energy phosphates' that are used to replenish ATP during periods of high energetic demand. This review discusses recent advances and potentials of inverse metabolic engineering of cell types that do not normally contain such systems--bacteria, yeast, plants, and liver--with creatine or arginine kinase systems. Examples are discussed that illustrate how microbial metabolism can be tailored for large-scale industrial processes with imperfect mixing and how the liver can be protected from metabolic insults or stimulated for better regeneration.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, Swiss Federal Institute of Technology (ETH) Zürich, CH-8093.
| | | |
Collapse
|
10
|
Varela CA, Baez ME, Agosin E. Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum. Appl Environ Microbiol 2004; 70:4222-9. [PMID: 15240305 PMCID: PMC444767 DOI: 10.1128/aem.70.7.4222-4229.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/31/2004] [Indexed: 11/20/2022] Open
Abstract
Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability.
Collapse
Affiliation(s)
- Cristian A Varela
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago 782-0436 M, Chile
| | | | | |
Collapse
|
11
|
Farnworth NE, Robson GD, Trinci AP, Wiebe MG. Trypsin-like protease (TLP) production in Fusarium oxysporum and Fusarium venenatum and use of the TLP promoter for recombinant protein (glucoamylase) production. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00084-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Zamboni N, Mouncey N, Hohmann HP, Sauer U. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab Eng 2003; 5:49-55. [PMID: 12749844 DOI: 10.1016/s1096-7176(03)00007-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We present redirection of electron flow to more efficient proton pumping branches within respiratory chains as a generally applicable metabolic engineering strategy, which tailors microbial metabolism to the specific requirements of high cell density processes by improving product and biomass yields. For the example of riboflavin production by Bacillus subtilis, we reduced the rate of maintenance metabolism by about 40% in a cytochrome bd oxidase knockout mutant. Since the putative Yth and the caa(3) oxidases were of minor importance, the most likely explanation for this improvement is translocation of two protons per transported electron via the remaining cytochrome aa(3) oxidase, instead of only one proton via the bd oxidase. The reduction of maintenance metabolism, in turn, significantly improved the yield of recombinant riboflavin and B. subtilis biomass in fed-batch cultures.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Biotechnology, Swiss Federal Institute of Technology Zürich, ETH Zürich, Honggerberg, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
Liu JS, Marison IW, von Stockar U. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri. Biotechnol Bioeng 2001; 75:170-80. [PMID: 11536139 DOI: 10.1002/bit.1176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To answer the intriguing question whether or not endothermic microbial growth exists, and in particular, to verify Heijnen and van Dijken's prediction (1992), acetotrophic methanogen, Methanosarcina barkeri, has been cultivated in a highly sensitive bench-scale calorimeter (an improved Bio-RC1 reaction calorimeter) in a pH auxostat fashion. A growth yield of 0.043 C-mol C-mol(-1) has been obtained and a cell density as high as 3 g L(-1) was attained. Heat uptake during growth has indeed been quantitatively measured with calorimetry, resulting in a heat yield of +145 kJ C-mol(-1). Thermodynamics of the growth of acetotrophic methanogens was analyzed in detail. The changes in Gibbs energy, enthalpy, and entropy during growth of M. barkeri were compared with some typical aerobic and anaerobic growth processes of different microorganisms on various substrates. In the growth of M. barkeri on acetate, the retarding effect of the positive enthalpy change on the driving force of growth is overcompensated by the large positive entropy change, resulting from converting one organic molecule (acetic acid) to two gaseous products, CH(4) and CO(2). Both the enthalpy and the entropy increases are due partially to the transition of these two products into the gaseous phase. The thermodynamic role of this phase transition for the growth process is analyzed. Microbial growth characterized by enthalpy increase and correspondingly by a large increase in entropy may be called enthalpy-retarded growth.
Collapse
Affiliation(s)
- J S Liu
- Laboratory of Chemical and Biochemical Engineering, Department of Chemistry, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 2001; 73:238-45. [PMID: 11257606 DOI: 10.1002/bit.1056] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Five recombinant S. cerevisiae strains were cultivated under identical conditions to quantify the molecular basis of the metabolic burden of heterologous gene expression, and to evaluate mechanisms for the metabolic burden. Two recombinant S. cerevisiae strains, producing Trichoderma reesei xylanase II under control of either the PGK1 or ADH2 promoters, were compared quantitatively with three references strains, where either the heterologous xylanase II (XYN2) gene, or the heterologous gene and the promoter and terminator were omitted from the recombinant plasmid. Neither the replication of multiple copies of the 2-microm-based YEp352 plasmid nor the replication the foreign XYN2 gene represented a metabolic burden to the cell, as the growth of the host organism was not affected. The inclusion of a glycolytic promoter on the recombinant plasmid, however, reduced the maximum specific growth rate (12% to 15%), biomass yield on glucose (8% to 11%), and specific glucose consumption rate (6% to 10%) of the recombinant strains. The presence of the heterologous XYN2 gene on the recombinant plasmid caused a further reduction in the maximum specific growth rate (11% to 14%), biomass yield (4%), and specific glucose consumption rate (12%) of the host strain during active gene expression, which was dictated by the regulatory characteristics of the promoter utilized. The metabolic effect of foreign gene expression was disproportionally large, with respect to on the amount of heterologous protein produced. This was most likely due to an increased energetic demand for the expression of a foreign gene and/or a competition for limiting amounts of transcription or translation factors, biosynthetic precursors or metabolic energy.
Collapse
Affiliation(s)
- J F Görgens
- Department of Applied Microbiology, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
15
|
Gordon C, Thomas S, Griffen A, Robson GD, Trinci AP, Wiebe MG. Combined use of growth rate correlated and growth rate independent promoters for recombinant glucoamylase production in Fusarium venenatum. FEMS Microbiol Lett 2001; 194:229-34. [PMID: 11164313 DOI: 10.1111/j.1574-6968.2001.tb09474.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Fusarium venenatum JeRS 325, a strain which produces recombinant glucoamylase under control of a growth rate independent promoter was transformed with a plasmid carrying the Aspergillus niger glucoamylase gene under control of its own growth rate correlated promoter. Some disruption of the original recombinant genes occurred and at pH 5.8 the double transformant did not produce as much glucoamylase as JeRS 325 in batch culture. However, the double transformant still produced as much glucoamylase as JeRS 325 in fed-batch cultures, illustrating the potential for the combined use of growth rate independent and dependent promoters to improve production of recombinant proteins in fed-batch culture systems.
Collapse
Affiliation(s)
- C Gordon
- School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
16
|
Wiebe MG, Robson GD, Shuster J, Trinci AP. Growth-rate-independent production of recombinant glucoamylase by Fusarium venenatum JeRS 325. Biotechnol Bioeng 2000; 68:245-51. [PMID: 10745192 DOI: 10.1002/(sici)1097-0290(20000505)68:3<245::aid-bit2>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most recombinant proteins generated in filamentous fungi are produced in fed-batch cultures, in which specific growth rate normally decreases progressively with time. Because of this, such cultures are more suited to the production of products that are produced efficiently at low-growth rates (e.g., penicillin) than to products which are produced more efficiently at high-growth rates (e. g., glucoamylase). Fusarium venenatum A3/5 has been transformed (JeRS 325) to produce Aspergillus niger glucoamylase (GAM) under the control of the Fusarium oxysporum trypsin-like protease promoter. No glucoamylase was detected in the culture supernatant during exponential growth of F. venenatum JeRS 325 in batch culture. In glucose-limited chemostat cultures, GAM concentration increased with decrease in dilution rate, but the specific production rate of GAM (g GAM [g biomass](-1) h(-1)) remained approximately constant over the dilution-rate range 0.05 h to 0.19 h(-1), i.e., the recombinant protein was produced in a growth-rate-independent manner. The specific production rate decreased at dilution rates of 0.04 h(-1) and below. Specific production rates of 5.8 mg and 4.0 mg GAM [g biomass](-1) h(-1) were observed in glucose-limited chemostat cultures in the presence and absence of 1 g mycological peptone L(-1). Compared to production in batch culture, and for the same final volume of medium, there was no increase in glucoamylase production when cultures were grown in fed-batch culture. The results suggested that a chemostat operated at a slow dilution rate would be the most productive culture system for enzyme production under this trypsin-like promoter.
Collapse
Affiliation(s)
- M G Wiebe
- School of Biological Sciences, 1.800 Stopford Building, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Abstract
Simultaneous growth and riboflavin overproduction were investigated using a previously developed stoichiometric model of Bacillus subtilis metabolism. A fit of model predictions to experimental data was used to obtain estimates of fundamental energetic parameters of B. subtilis. Although multiple solutions describe the experimental data, evidence for a P-to-O ratio of about 1(1/3) mole of ATP produced per atom of oxygen consumed in oxidative phosphorylation was provided by genomic analysis of electron transport components, because no homologue of the proton-translocating NADH dehydrogenase I was found in the B. subtilis genome database. These results allow us to devise a rational metabolic engineering strategy to improve riboflavin production. The potential influence of increased energy coupling in oxidative phosphorylation on riboflavin yield is discussed. Higher coupling is most significant under carbon-limiting conditions in slow-growing cells, that is, in fed-batch processes of industrial interest.
Collapse
Affiliation(s)
- U Sauer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
18
|
Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia coli overexpressing target gene. Biotechnol Lett 1995. [DOI: 10.1007/bf00128377] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 1995; 67:261-79. [PMID: 7778895 DOI: 10.1007/bf00873690] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Commercial production of heterologous proteins by yeasts has gained considerable interest. Expression systems have been developed for Saccharomyces cerevisiae and a number of other yeasts. Generally, much attention is paid to the molecular aspects of heterologous-gene expression. The success of this approach is indicated by the high expression levels that have been obtained in shake-flask cultures. For large-scale production however, possibilities and restrictions related to host-strain physiology and fermentation technology also have to be considered. In this review, these physiological and technological aspects have been evaluated with the aid of numerical simulations. Factors that affect the choice of a carbon substrate for large-scale production involve price, purity and solubility. Since oxygen demand and heat production (which are closely linked) limit the attainable growth rate in large-scale processes, the biomass yield on oxygen is also a key parameter. Large-scale processes impose restrictions on the expression system. Many promoter systems that work well in small-scale systems cannot be implemented in industrial environments. Furthermore, large-scale fed-batch fermentations involve a substantial number of generations. Therefore, even low expression-cassette instability has a profound effect on the overall productivity of the system. Multicopy-integration systems may provide highly stable expression systems for industrial processes. Large-scale fed-batch processes are typically performed at a low growth rate. Therefore, effects of a low growth rate on the physiology and product formation rates of yeasts are of key importance. Due to the low growth rates in the industrial process, a substantial part of the substrate carbon is expended to meet maintenance-energy requirements. Factors that reduce maintenance-energy requirements will therefore have a positive effect on product yield. The relationship between specific growth rate and specific product formation rate (kg product.[kg biomass]-1.h-1) is the main factor influencing production levels in large-scale production processes. Expression systems characterized by a high specific rate of product formation at low specific growth rates are highly favourable for large-scale heterologous-protein production.
Collapse
Affiliation(s)
- M C Hensing
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Vasavada A. Improving productivity of heterologous proteins in recombinant Saccharomyces cerevisiae fermentations. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:25-54. [PMID: 7572335 DOI: 10.1016/s0065-2164(08)70307-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Vasavada
- Department of Fermentation, Cell Culture, and Recovery, Chiron Corporation, Emeryville, California 94608, USA
| |
Collapse
|
21
|
Shiba S, Nishida Y, Park YS, Lijima S, Kobayashi T. Improvement of cloned ?-amylase gene expression in fed-batch culture of recombinantSaccharomyces cerevisiae by regulating both glucose and ethanol concentrations using a fuzzy controller. Biotechnol Bioeng 1994; 44:1055-63. [DOI: 10.1002/bit.260440906] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Larroche C, Besson I, Gros JB. Behavior of spores ofPenicillium roquefortii during fed-batch bioconversion of octanoic acid into 2-heptanone. Biotechnol Bioeng 1994; 44:699-709. [DOI: 10.1002/bit.260440606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Ryding PO, Nlklasson C, Lidén G. Anaerobic fermentation of xylose by pichia stipitis: The effect of forced cycling of ph. CAN J CHEM ENG 1993. [DOI: 10.1002/cjce.5450710612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Andrews GF. The yield equations in the modeling and control of bioprocesses. Biotechnol Bioeng 1993; 42:549-56. [DOI: 10.1002/bit.260420502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Park YS, Shiba S, lijima S, Kobayashi T, Hishinuma F. Comparison of three different promoter systems for secretory ?-amylase production in fed-batch cultures of recombinantSaccharomyces cerevisiae. Biotechnol Bioeng 1993; 41:854-61. [DOI: 10.1002/bit.260410904] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Bulthuis BA, Koningstein GM, Stouthamer AH, van Verseveld HW. The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions. Antonie Van Leeuwenhoek 1993; 63:1-16. [PMID: 8386914 DOI: 10.1007/bf00871725] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The magnitude of the proton motive force (delta p) and its constituents, the electrical (delta psi) and chemical potential (-Z delta pH), were established for chemostat cultures of a protease-producing, relaxed (rel-) variant and a not protease-producing, stringent (rel+) variant of an industrial strain of Bacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of delta p with the specific growth rate mu was found. The calculated intracellular pH (pHin) was not constant but inversely related to mu. This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with mu for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low mu and an increased value at higher mu. For both limitations, the ATP/ADP ratio was directly related to mu. The phosphorylation potential (delta G'p) was invariant with mu. From the values for delta G'p and delta p, a variable -->H+/ATP-stoichiometry was inferred: -->H+/ATP = 1.83 +/- 0.52 mu, so that at a given -->H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for mu = 0 to mu max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of delta G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing mu are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible mu with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.
Collapse
Affiliation(s)
- B A Bulthuis
- Department of Microbiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Maintenance energy demand affects biomass synthesis but not cellulase production by a mesophilicClostridium. J Ind Microbiol Biotechnol 1992. [DOI: 10.1007/bf01583845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Larroche C, Gros JB. Characterization of the growth and sporulation behavior ofPenicillium roquefortii in solid substrate fermentation by material and bioenergetic balances. Biotechnol Bioeng 1992; 39:815-27. [DOI: 10.1002/bit.260390804] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Heijnen JJ, Terwisscha van Scheltinga AH, Straathof AJ. Fundamental bottlenecks in the application of continuous bioprocesses. J Biotechnol 1992; 22:3-20. [PMID: 1367815 DOI: 10.1016/0168-1656(92)90128-v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continuous culture is applied mainly as a research tool and much less as a production process. Fundamental bottlenecks in continuous culture are discussed to help shed light on this apparent contradiction. Based on a discussion of technical, process related, and economic/market bottlenecks it is concluded that the often mentioned productivity argument in favor of continuous processing is much too simple. The optimal choice of a process mode is determined by a full understanding of the equipment and production plant factors and of the economic/market factors. Very often the resulting choice will be the fed batch and/or the cell retention process mode which is characterized by low growth rates. Therefore more research towards product formation at low growth rates (less than 0.05 h-1) is needed.
Collapse
Affiliation(s)
- J J Heijnen
- Delft University of Technology, Department of Biochemical Engineering, The Netherlands
| | | | | |
Collapse
|
30
|
Abstract
The stoichiometric limit to the biomass yield (maximal assimilation of the carbon source) is determined by the amount of CO2 lost in anabolism and the amount of carbon source required for generation of NADPH. This stoichiometric limit may be reached when yeasts utilize formate as an additional energy source. Factors affecting the biomass yield on single substrates are discussed under the following headings: Energy requirement for biomass formation (YATP). YATP depends strongly on the nature of the carbon source. Cell composition. The macroscopic composition of the biomass, and in particular the protein content, has a considerable effect on the ATP requirement for biomass formation. Hence, determination of for instance the protein content of biomass is relevant in studies on bioenergetics. Transport of the carbon source. Active (i.e. energy-requiring) transport, which occurs for a number of sugars and polyols, may contribute significantly to the calculated theoretical ATP requirement for biomass formation. P/O-ratio. The efficiency of mitochondrial energy generation has a strong effect on the cell yield. The P/O-ratio is determined to a major extent by the number of proton-translocating sites in the mitochondrial respiratory chain. Maintenance and environmental factors. Factors such as osmotic stress, heavy metals, oxygen and carbon dioxide pressures, temperature and pH affect the yield of yeasts. Various mechanisms may be involved, often affecting the maintenance energy requirement. Metabolites such as ethanol and weak acids. Ethanol increases the permeability of the plasma membrane, whereas weak acids can act as proton conductors. Energy content of the growth substrate. It has often been attempted in the literature to predict the biomass yield by correlating the energy content of the carbon source (represented by the degree of reduction) to the biomass yield or the percentage assimilation of the carbon source. An analysis of biomass yields of Candida utilis on a large number of carbon sources indicates that the biomass yield is mainly determined by the biochemical pathways leading to biomass formation, rather than by the energy content of the substrate.
Collapse
Affiliation(s)
- C Verduyn
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| |
Collapse
|
31
|
Abstract
The capacity to sustain the large fluxes of carbon and energy required for rapid metabolite production appears to be inversely related to the growth efficiency of micro-organisms. From an overall energetic point of view three main classes of metabolite may be distinguished. These are not discrete categories, as the energetics of biosynthesis will depend on the precise biochemical pathways used and the nature of the starting feed stock(s). (1) For metabolites like exopolysaccharides both the oxidation state and the specific rate of production appear to be inversely related to the growth efficiency of the producing organism. Maximum rates of production are favored when carbon and energy flux are integrated, and alteration of this balance may negatively effect production rates. (2) The production of metabolites like organic acids and some secondary metabolites results in the net production of reducing equivalents and/or ATP. It is thought that the capacity of the organism to dissipate this product-associated energy limits its capacity for rapid production. (3) For metabolites like biosurfactants and certain secondary metabolites that are composed of moieties of significantly different oxidation states production from a single carbon source is unfavorable and considerable improvements in specific production rate and final broth concentration may be achieved if mixed carbon sources are used. By careful selection of production organism and starting feedstock(s) it may be possible to tailor the production, such that the adverse physiological consequences of metabolite overproduction on the production organism are minimized.
Collapse
Affiliation(s)
- J D Linton
- Shell Research Limited, Sittingbourne, Kent, UK
| |
Collapse
|
32
|
van Verseveld HW, Metwally M, el Sayed M, Osman M, Schrickx JM, Stouthamer AH. Determination of the maximum product yield from glucoamylase-producing Aspergillus niger grown in the recycling fermentor. Antonie Van Leeuwenhoek 1991; 60:313-23. [PMID: 1807200 DOI: 10.1007/bf00430372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aspergillus niger has been grown in glucose- and maltose-limited recycling cultures to determine the maximum growth yield, the maximum product yield for glucoamylase production, and the maintenance requirements at very slow specific growth rates. Using the linear equation for substrate utilization, and using the experimental data from both recycling experiments, both the maximum growth yield, Yxsm, and the maximum product yield, Ypsm, could be determined. The values estimated were 157 g biomass per mol maltose for Yxsm and 100 g protein per mol maltose for Ypsm. Expressed on a C1-basis these values are 0.52 and 0.36 C-mole per C-mol for respectively Yxsm and Ypsm. The found value for Ypsm is half the value found for alkaline serine protease production in Bacillus licheniformis, and it can be concluded that formation of extracellular protein is more energy consuming in filamentous fungi than in prokaryotic organisms. Maintenance requirements are no significant factor during growth of Aspergillus niger, and reported maintenance requirements are most probably due to differentiation.
Collapse
Affiliation(s)
- H W van Verseveld
- Vrije Universiteit, Biological Laboratories, Department of Microbiology, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Criddle RS, Fontana AJ, Rank DR, Paige D, Hansen LD, Breidenbach RW. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem 1991; 194:413-7. [PMID: 1907437 DOI: 10.1016/0003-2697(91)90250-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study describes methods and equipment for measurement of metabolic heat rates of cells and tissues under conditions that provide simultaneous determinations of the flux rates of both O2 and CO2. Isothermal measurement of metabolic heats are conducted in a sealed ampule. A trapping solution is employed to absorb metabolic CO2. Absorption of CO2 produces heat at a rate proportional to the rate of CO2 production. Under these conditions, O2 consumption by the tissue results in a decrease in the partial pressure of O2 within the sealed ampule. The decrease in pressure can be monitored with a pressure sensor and related to O2 consumption rates. The combined measurements of heat rates, CO2, and O2 fluxes provide important information on bioenergetic efficiency of cell metabolism. These data can also suggest possible shifts in metabolic pathways or substrate sources as cells develop, or are exposed to effectors, inhibitors, and environmental factors.
Collapse
Affiliation(s)
- R S Criddle
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | | | | | | | | | |
Collapse
|
34
|
Da Silva NA, Bailey JE. Influence of plasmid origin and promoter strength in fermentations of recombinant yeast. Biotechnol Bioeng 1991; 37:318-24. [DOI: 10.1002/bit.260370405] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Da Silva NA, Bailey JE. Influence of dilution rate and induction of cloned gene expression in continuous fermentations of recombinant yeast. Biotechnol Bioeng 1991; 37:309-17. [DOI: 10.1002/bit.260370404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Metwally M, el Sayed M, Osman M, Hanegraaf PP, Stouthamer AH, van Verseveld HW. Bioenergetic consequences of glucoamylase production in carbon-limited chemostat cultures of Aspergillus niger. Antonie Van Leeuwenhoek 1991; 59:35-43. [PMID: 2059009 DOI: 10.1007/bf00582117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aspergillus niger has been grown in glucose- and maltose-limited continuous cultures to determine the bioenergetic consequences of the production of the extracellular enzyme glucoamylase. Growth yields (g biomass per mol substrate) were high, indicating that growth was very efficient and protein production for biomass was not exceedingly energy consuming. It has been found that the energy costs for the production of this extracellular enzyme is very high. Depending on the efficiency of energy conservation the glucoamylase protein yield on ATP is between 1.3 and 2.6 g protein per mol ATP, which is equal or less than 10% of the theoretical maximum of 25.5. These high energy costs most probably have to be invested in the process of excretion. A comparison between an industrial over-producing strain and the wild type Aspergillus niger showed that this over-producing strain most probably is a regulatory mutant. Two regions of specific growth rates could be determined (one at specific growth rates lower and one at specific growth rates higher than 0.1 h-1), which are characterized by differences in mycelium morphology and a significant deviation from linearity in the linear equation for substrate utilization. Analysis of the region of specific growth rates higher than 0.1 h-1 yielded maintenance requirements of virtual zero. It has been concluded that for a good analysis of the growth behaviour of filamentour fungi the linear equation for substrate utilization is not suitable, since it contains no term for the process of differentiation.
Collapse
Affiliation(s)
- M Metwally
- Department of Microbiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
van der Aar P, van Verseveld H, Stouthamer A. Stimulated glycolytic flux increases the oxygen uptake rate and aerobic ethanol production, during oxido-reductive growth of Saccharomyces cerevisiae. J Biotechnol 1990. [DOI: 10.1016/0168-1656(90)90082-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Determination of specific monoclonal antibody secretion rate during very slow hybridoma growth. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/bf00369579] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Ykema A, Bakels RHA, Verwoert IIGS, Smit H, van Verseveld HW. Growth yield, maintenance requirements, and lipid formation in the oleaginous yeastApiotrichum curvatum. Biotechnol Bioeng 1989; 34:1268-76. [DOI: 10.1002/bit.260341005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Silva NAD, Bailey JE. Construction and Characterization of a Temperature-Sensitive Expression System in Recombinant Yeast. Biotechnol Prog 1989. [DOI: 10.1002/btpr.5420050107] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Pons A, Dussap CG, Gros JB. ModellingXanthomonas campestris batch fermentations in a bubble column. Biotechnol Bioeng 1989; 33:394-405. [DOI: 10.1002/bit.260330404] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
|
43
|
|