1
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Saloua KS, Sonia G, Pierre C, Léon S, Darel HJ. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat Res 2014; 181:99-110. [PMID: 24397439 DOI: 10.1667/rr13450.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of studies on lethal radiobiological damage have focused on double-strand breaks (DSBs), a type of clustered DNA damage and the evaluation of their toxicity, while other types of clustered DNA damage have received much less attention. The main purpose of this study is to evaluate the contribution of different lesions induced by ionizing radiation to the loss of plasmid DNA functionality. We employed a simple model system comprising E. coli transformed with an irradiated plasmid [pGEM-3Zf (-)] to determine the effect of DSBs and other lesions including base damage and clustered lesions on the functionality ("viability") of the plasmid. The yields of γ-radiation-induced single-strand breaks (SSBs) and DSBs were measured by gel electrophoresis. We found that the transformation efficiency decreases with radiation dose, but this decrease cannot be explained by the formation of DSBs. For example, at doses of 500 and 700 Gy, the relative transformation efficiency falls from 100% to 53% and 26%, respectively, while only 5.7% and 9.1% of the plasmids contain a DSB. In addition, it is also unlikely that randomly distributed base lesions could explain the loss of functionality of the plasmid, since cells can repair them efficiently. However, clustered lesions other than DSBs, which are difficult to repair and result in the loss of information on both DNA strands, have the potential to induce the loss of plasmid functionality. We therefore measured the yields of γ-radiation-induced base lesions and cluster damage, which are respectively converted into SSBs and DSBs by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). Our data demonstrate that the yield of cluster damage (i.e., lesions that yield DSBs following digestion) is 31 times higher than that of frank DSBs. This finding suggests that frank DSBs make a relatively minor contribution to the loss of DNA functionality induced by ionizing radiation, while other toxic lesions formed at a much higher frequencies than DSBs must be responsible for the loss of plasmid functionality. These lesions may be clustered lesions/locally multiply damaged sites (LMDS), including base damage, SSBs and/or intrastrand and interstrand crosslinks, leading to the loss of vital information in the DNA. Using a mathematical model, we estimate that at least three toxic lesions are required for the inactivation of plasmid functionality, in part because even these complex lesions can be repaired.
Collapse
Affiliation(s)
- Kouass Sahbani Saloua
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
3
|
Aller P, Duclos S, Wallace SS, Doublié S. A crystallographic study of the role of sequence context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on the exonuclease complex. J Mol Biol 2011; 412:22-34. [PMID: 21781974 DOI: 10.1016/j.jmb.2011.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/27/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. & Doublié S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors-including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg-influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.
Collapse
Affiliation(s)
- Pierre Aller
- Department of Microbiology andMolecular Genetics, Stafford Hall, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
4
|
Brown KL, Basu AK, Stone MP. The cis-(5R,6S)-thymine glycol lesion occupies the wobble position when mismatched with deoxyguanosine in DNA. Biochemistry 2009; 48:9722-33. [PMID: 19772348 PMCID: PMC2761728 DOI: 10.1021/bi900695e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Oxidative damage to 5-methylcytosine in DNA, followed by deamination, yields thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, mispaired with deoxyguanosine. The structure of the 5R Tg·G mismatch pair has been refined using a combination of simulated annealing and isothermal molecular dynamics calculations restrained by NMR-derived distance restraints and torsion angle restraints in 5′-d(G1T2G3C4G5Tg6G7T8T9T10G11T12)-3′·5′-d(A13C14A15A16A17C18G19C20G21C22A23C24)-3′; Tg = 5R Tg. In this duplex the cis-5R,6S:trans-5R,6R equilibrium favors the cis-5R,6S epimer [Brown, K. L., Adams, T., Jasti, V. P., Basu, A. K., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 11701−11710]. The cis-5R,6S Tg lesion is in the wobble orientation such that Tg6O2 is proximate to G19 N1H and Tg6 N3H is proximate to G19O6. Both Tg6 and the mismatched nucleotide G19 remain stacked in the helix. The Tg6 nucleotide shifts toward the major groove and stacks below the 5′-neighbor base G5, while its complement G19 stacks below the 5′-neighbor C20. In the 3′-direction, stacking between Tg6 and the G7·C18 base pair is disrupted. The solvent-accessible surface area of the Tg nucleotide increases as compared to the native Watson−Crick hydrogen-bonded T·A base pair. An increase in T2 relaxation rates for the Tg6 base protons is attributed to puckering of the Tg base, accompanied by increased disorder at the Tg·G mismatch pair. The axial vs equatorial conformation of the Tg6 CH3 group cannot be determined with certainty from the NMR data. The rMD trajectories suggest that in either the axial or equatorial conformations the cis-5R,6S Tg lesion does not form strong intrastrand hydrogen bonds with the imidazole N7 atom of the 3′-neighbor purine G7. The wobble pairing and disorder of the Tg·G mismatch correlate with the reduced thermodynamic stability of the mismatch and likely modulate its recognition by DNA base excision repair systems.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
5
|
Brown KL, Adams T, Jasti VP, Basu AK, Stone MP. Interconversion of the cis-5R,6S- and trans-5R,6R-thymine glycol lesions in duplex DNA. J Am Chem Soc 2008; 130:11701-10. [PMID: 18681438 PMCID: PMC2646635 DOI: 10.1021/ja8016544] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Chemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
6
|
Aller P, Rould MA, Hogg M, Wallace SS, Doublié S. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc Natl Acad Sci U S A 2007; 104:814-8. [PMID: 17210917 PMCID: PMC1783396 DOI: 10.1073/pnas.0606648104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymine glycol (Tg) is a common product of oxidation and ionizing radiation, including that used for cancer treatment. Although Tg is a poor mutagenic lesion, it has been shown to present a strong block to both repair and replicative DNA polymerases. The 2.65-A crystal structure of a binary complex of the replicative RB69 DNA polymerase with DNA shows that the templating Tg is intrahelical and forms a regular Watson-Crick base pair with the incorporated A. The C5 methyl group protrudes axially from the ring of the damaged pyrimidine and hinders stacking of the adjacent 5' template guanine. The position of the displaced 5' template guanine is such that the next incoming nucleotide cannot be incorporated into the growing primer strand, and it explains why primer extension past the lesion is prohibited even though DNA polymerases can readily incorporate an A across from the Tg lesion.
Collapse
Affiliation(s)
- Pierre Aller
- Departments of *Microbiology and Molecular Genetics and
| | - Mark A. Rould
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Matthew Hogg
- Departments of *Microbiology and Molecular Genetics and
| | - Susan S. Wallace
- Departments of *Microbiology and Molecular Genetics and
- To whom correspondence may be addressed at:
Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068. E-mail:
or
| | - Sylvie Doublié
- Departments of *Microbiology and Molecular Genetics and
- To whom correspondence may be addressed at:
Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068. E-mail:
or
| |
Collapse
|
7
|
Andreev VM, Gonikberg EM, Kuznetsova NV. A novel method of transfection of marine bacteria Pseudoalteromonas espejiana with deoxyribonucleic acid of bacteriophage PM2. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406070052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Alanazi M, Leadon SA, Mellon I. Global genome removal of thymine glycol in Escherichia coli requires endonuclease III but the persistence of processed repair intermediates rather than thymine glycol correlates with cellular sensitivity to high doses of hydrogen peroxide. Nucleic Acids Res 2002; 30:4583-91. [PMID: 12409447 PMCID: PMC135796 DOI: 10.1093/nar/gkf588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using a monoclonal antibody that specifically recognizes thymine glycol (Tg) in DNA, we measured the kinetics of the removal of Tg from the genomes of wild-type and repair gene mutant strains of Escherichia coli treated with hydrogen peroxide. Tg is rapidly and efficiently removed from the total genomes of repair-proficient cells in vivo and the removal of Tg is completely dependent on the nth gene that encodes the endonuclease III glycosylase. Hence, it appears that little redundancy in the repair of Tg occurs in vivo, at least under the conditions used here. Moreover, previous studies have found that nth mutants are not sensitive to killing by hydrogen peroxide but xth mutant strains (deficient in the major AP endonuclease, exonuclease III) are sensitive. We find that cell death correlates with the persistence of single-strand breaks rather than the persistence of Tg. We attempted to measure transcription-coupled removal of Tg in the lactose operon using the Tg-specific monoclonal antibody in an immunoprecipitation approach but were not successful in achieving reproducible results. Furthermore, the analysis of transcription-coupled repair in the lactose operon is complicated by potent inhibition of beta-galactosidase expression by hydrogen peroxide.
Collapse
Affiliation(s)
- Mohammed Alanazi
- Department of Biochemistry and Molecular Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
9
|
Tornaletti S, Maeda LS, Lloyd DR, Reines D, Hanawalt PC. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 2001; 276:45367-71. [PMID: 11571287 PMCID: PMC3373304 DOI: 10.1074/jbc.m105282200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine glycols are formed in DNA by exposure to ionizing radiation or oxidative stress. Although these lesions are repaired by the base excision repair pathway, they have been shown also to be subject to transcription-coupled repair. A current model for transcription-coupled repair proposes that RNA polymerase II arrested at a DNA lesion provides a signal for recruitment of the repair enzymes to the lesion site. Here we report the effect of thymine glycol on transcription elongation by T7 RNA polymerase and RNA polymerase II from rat liver. DNA substrates containing a single thymine glycol located either in the transcribed or nontranscribed strand were used to carry out in vitro transcription. We found that thymine glycol in the transcribed strand blocked transcription elongation by T7 RNA polymerase approximately 50% of the time but did not block RNA polymerase II. Thymine glycol in the nontranscribed strand did not affect transcription by either polymerase. These results suggest that arrest of RNA polymerase elongation by thymine glycol is not necessary for transcription-coupled repair of this lesion. Additional factors that recognize and bind thymine glycol in DNA may be required to ensure RNA polymerase arrest and the initiation of transcription-coupled repair in vivo.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Lauren S. Maeda
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Daniel R. Lloyd
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Philip C. Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
- To whom correspondence should be addressed: Dept. of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020. Tel.: 650-723-2424; Fax: 650-725-1848;
| |
Collapse
|
10
|
Gifford CM, Blaisdell JO, Wallace SS. Multiprobe RNase protection assay analysis of mRNA levels for the Escherichia coli oxidative DNA glycosylase genes under conditions of oxidative stress. J Bacteriol 2000; 182:5416-24. [PMID: 10986244 PMCID: PMC110984 DOI: 10.1128/jb.182.19.5416-5424.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Accepted: 06/21/2000] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), MutY DNA glycosylase, endonuclease VIII, and endonuclease III are oxidative base excision repair DNA glycosylases that remove oxidized bases from DNA, or an incorrect base paired with an oxidized base in the case of MutY. Since genes encoding other base excision repair proteins have been shown to be part of adaptive responses in E. coli, we wanted to determine whether the oxidative DNA glycosylase genes are induced in response to conditions that cause the type of damage their encoded proteins remove. The genes fpg, mutY, nei, and nth encode Fpg, MutY, endonuclease VIII, and endonuclease III, respectively. Multiprobe RNase protection assays were used to examine the transcript levels of these genes under conditions that induce the SoxRS, OxyR, and SOS regulons after a shift from anaerobic to aerobic growth and at different stages along the growth curve. Transcript levels for all four genes decreased as cells progressed from log-phase growth to stationary phase and increased after cells were shifted from anaerobic to aerobic growth. None of the genes were induced by hydrogen peroxide, paraquat, X rays, or conditions that induce the SOS response.
Collapse
Affiliation(s)
- C M Gifford
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
11
|
Frosina G. Overexpression of enzymes that repair endogenous damage to DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2135-49. [PMID: 10759836 DOI: 10.1046/j.1432-1327.2000.01266.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A significant contribution to human mutagenesis and carcinogenesis may come from DNA damage of endogenous, rather than exogenous, origin. Efficient repair mechanisms have evolved to cope with this. The main repair pathway involved in repair of endogenous damage is DNA base excision repair. In addition, an important contribution is given by O6-alkylguanine DNA alkyltranferase, that repairs specifically the miscoding base O6-alkylguanine. In recent years, several attempts have been carried out to enhance the efficiency of repair of endogenous damage by overexpressing in mammalian cells single enzymatic activities. In some cases (e.g. O6-alkylguanine DNA alkyltransferase or yeast AP endonuclease) this approach has been successful in improving cellular protection from endogenous and exogenous mutagens, while overexpression of other enzymatic activities (e.g. alkyl N-purine glycosylase or DNA polymerase beta) were detrimental and even produced a genome instability phenotype. The reasons for these different outcomes are analyzed and alternative enzymatic activities whose overexpression may improve the efficiency of repair of endogenous damage in human cells are proposed.
Collapse
Affiliation(s)
- G Frosina
- DNA Repair Unit, Mutagenesis laboratory, Istituto Nazionale Ricerca Cancro, Genova, Italy.
| |
Collapse
|
12
|
Affiliation(s)
- B J Glassner
- Cancer Cell Biology, Division of Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Harrison L, Hatahet Z, Purmal AA, Wallace SS. Multiply damaged sites in DNA: interactions with Escherichia coli endonucleases III and VIII. Nucleic Acids Res 1998; 26:932-41. [PMID: 9461450 PMCID: PMC147348 DOI: 10.1093/nar/26.4.932] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.
Collapse
Affiliation(s)
- L Harrison
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
14
|
Saito Y, Uraki F, Nakajima S, Asaeda A, Ono K, Kubo K, Yamamoto K. Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. J Bacteriol 1997; 179:3783-5. [PMID: 9171430 PMCID: PMC179178 DOI: 10.1128/jb.179.11.3783-3785.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nth and nei genes of Escherichia coli affect the production of endonuclease III and endonuclease VIII, respectively, glycosylases/apurinic lyases that attack DNA damaged by oxidizing agents. Here, we provide evidence that oxidative lethal lesions are repaired by both endonuclease III and endonuclease VIII and that spontaneous mutagenic lesions are repaired mainly by endonuclease III.
Collapse
Affiliation(s)
- Y Saito
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
We have examined protein synthesis directed by bacteriophage T7 which had been alkylated with methyl methanesulfonate so as to produce apurinic sites in its DNA in vivo. Both repair-proficient and repair-deficient (xth nfo mutant) strains of Escherichia coli served as host cells. In repair-proficient cells, all three classes of phage proteins were synthesized, although with significant delays. In mutant cells, only class I proteins were produced and their synthesis was delayed and reduced, demonstrating a perturbation of protein synthesis and providing the first in vivo indication that transcription is inhibited by abasic sites. However, the proposed effects of abasic sites on transcription appear to be weaker than those on replication.
Collapse
Affiliation(s)
- G Sanchez
- Département de biochimie, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
16
|
Ventur Y, Schulte-Frohlinde D. Biological inactivation of pBR322 plasmid DNA by enzyme- and radiation-induced single-strand damage under various conditions. Mutat Res 1994; 315:65-74. [PMID: 7517012 DOI: 10.1016/0921-8777(94)90029-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of three different kinds of single-strand breaks (ssb) on the biological activity of plasmid DNA (pBR322) was studied. The single-strand breaks were produced either by gamma-irradiation (together with base and sugar damage) or by DNase I digestion which introduced ligatable ssb. Non-ligatable ssb--single-strand gaps of three nucleotides in length--were generated in the nicked DNA by exonuclease III treatment. The biological activity (N/N(o)) of this damaged DNA was assessed in vivo by transformation of E. coli (CMK) repair wild-type cells. The activity of the enzymes of E. coli was studied in vitro by incubation in a protein extract of E. coli making use of an in vitro assay introduced earlier, which makes it possible to distinguish between enzymatic degradation (dsb formation) and repair of damaged plasmid DNA. The biological activity (D37) of DNA with non-ligatable ssb, as determined by electrotransformation, was about 56% lower than that of DNA with ligatable ssb. The biological activity of enzymatically damaged DNA is greater in calcium-treated cells than in electroporated cells. It is proposed that this is due to a calcium-dependent inhibition of nucleases. In contrast to the enzymatically damaged DNA, with gamma-radiation-damaged DNA a calcium-dependent increase in survival was not observed. Therefore, calcium-dependent nucleases do not play a role in the repair of damage produced by gamma-irradiation. The enzyme activity data show that the single-strand damages are either converted into dsb or repaired. A comparison of the efficiency of dsb formation in the extract for two of the single-strand damages is presented. The efficiency depends on the kind of damage and on the presence of cofactors, especially ATP and dNTPs.
Collapse
Affiliation(s)
- Y Ventur
- Max-Planck Institut für Strahlenchemie, Mülheim a.d. Ruhr, Germany
| | | |
Collapse
|
17
|
Abstract
This study investigates the importance of DNA damage in viral inactivation by phenothiazines and light. Phenothiazines, including methylene blue (MB), toluidine blue and azure B are of particular interest because of their ability to bind to nucleic acids in vitro. Initial studies employing phages T7, MS2 and PM2 indicated that both DNA and RNA phages as well as enveloped and nonenveloped phages can be inactivated by phenothiazine photosensitization. PM2, which contains a lipid-protein bilayer and supercoiled DNA, was used for the mechanistic studies to model blood-borne viruses. Viral DNA damage was assessed following treatment of phage to known levels of viral inactivation by extracting the DNA and analyzing for both direct and piperidine-catalyzed strand cleavage by gel electrophoresis. DNA strand cleavage was found to be both sensitizer concentration and light dose dependent. Both viral inactivation and DNA damage were found to be oxygen-dependent events. In parallel experiments, strand cleavage of isolated PM2 DNA treated with MB and light was also found to be oxygen dependent, in contrast to some previous reports. Transfection studies, which measure the infectivity of the extracted viral DNA, indicated that DNA from MB-treated phage was just as capable of generating progeny virus as the untreated controls. It was therefore concluded that the observed DNA damage is not correlated with loss of phage infectivity.
Collapse
Affiliation(s)
- K G Specht
- American Red Cross, Northwest Ohio Blood Services, Bowling Green
| |
Collapse
|
18
|
Klimczak U, Ludwig DC, Mark F, Rettberg P, Schulte-Frohlinde D. Irradiation of plasmid and phage DNA in water-alcohol mixtures: strand breaks and lethal damage as a function of scavenger concentration. Int J Radiat Biol 1993; 64:497-510. [PMID: 7902389 DOI: 10.1080/09553009314551711] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have measured the yields of strand break formation and biological inactivation as a function of OH scavenger concentration for 60Co gamma-irradiated pBR322 plasmid and M13mp9 RF phage DNA. The yields of single-strand breaks (ssbs), double-strand breaks formed proportionally to dose (alpha dsbs), and lethal damage (LD) decrease with increasing scavenging capacity sigma, their ratios remaining approximately constant up to sigma approximately 10(8) s-1. On a double-logarithmic plot the yields decrease linearly with sigma in parallel lines. At higher scavenging capacities, the yields, while still decreasing, level off to a different extent. Our results for the yields of ssbs and alpha dsbs confirm those of Krisch et al. (1991) using SV40 DNA. The data were analysed assuming that DNA damage is brought about by OH radicals, and a non-scavengeable portion arising from the direct radiation effect. Using a model based on non-homogeneous scavenging kinetics, the dependence on scavenging capacity of the ssb yield could be quantitatively accounted for. From the scavenging dependence of the yield of dsbs which are formed quadratically with dose (beta dsbs) and which are the result of two independent ssbs within a critical distance h, a value of about 13 basepairs was obtained for h. The parallel decrease in the yield of ssbs and alpha dsbs with scavenging capacity was rationalized in terms of the Siddiqi-Bothe mechanism (Siddiqi and Bothe 1987). The efficiency of this mechanism was found to be approximately 0.01. From the analysis of the LD yields it was shown that up to sigma approximately 10(8) s-1, inactivation is predominantly due to single OH radicals which lead to LD with an efficiency of 0.12 per OH-induced ssb. At higher scavenging capacities, a non-scavengeable spur effect similar to the locally multiply damaged sites mechanism of Ward (1988) mainly contributes to LD.
Collapse
Affiliation(s)
- U Klimczak
- Max-Planck-Institut für Strahlenchemie, Mülheim a.d. Ruhr, Germany
| | | | | | | | | |
Collapse
|
19
|
Evans J, Maccabee M, Hatahet Z, Courcelle J, Bockrath R, Ide H, Wallace S. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. Mutat Res 1993; 299:147-56. [PMID: 7683083 DOI: 10.1016/0165-1218(93)90092-r] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used thymine glycol and dihydrothymine as representative ring saturation products resulting from free-radical interaction with DNA pyrimidines, and urea glycosides and beta-ureidoisobutyric acid (UBA) as models for pyrimidine-ring fragmentation products. We have shown that thymine glycol and the ring-fragmentation products urea and beta-ureidoisobutyric acid, as well as abasic sites, are strong blocks to DNA polymerases in vitro. In contrast, dihydrothymine is not a block to any of the polymerases tested. For thymine glycol, termination sites were observed opposite the putative lesions, whereas for the ring-fragmentation products, the termination sites were primarily one base prior to the lesion. These and other data have suggested that thymine glycol codes for an A, and that a base is stably inserted opposite the damage, whereas when a base is inserted opposite the non-coding lesions, it is removed by the 3-->5 exonuclease activity of DNA polymerase I. Despite their efficiency as blocking lesions, thymine glycol, urea and UBA can be bypassed at low frequency in certain specific sequence contexts. When the model lesions were introduced individually into single-stranded biologically active DNA, we found that thymine glycol, urea, beta-ureidoisobutyric acid, and abasic sites were all lethal lesions having an activation efficiency of 1, whereas dihydrothymine was not. Thus the in vitro studies predicted the in vivo results. When the survival of biologically active single-stranded DNA was examined in UV-induced Escherichia coli cells where the block to replication was released, no increase in survival was observed for DNA containing urea or abasic sites, suggesting inefficient bypass of these lesions. In contrast, beta-ureidoisobutyric acid survival was slightly enhanced, and transfecting DNA containing thymine glycols was significantly reactivated. When mutation induction by unique lesions was measured using f1-K12 hybrid DNA containing an E. coli target gene, thymine glycols and dihydrothymine were found to be inefficient as premutagenic lesions, suggesting that in vivo, as in vitro, they primarily code for A. In contrast, urea and beta-ureidoisobutyric acid were efficient premutagenic lesions, with beta-ureidoisobutyric acid being about 4-5-fold more effective than urea glycosides, which have approximately the same rate of mutation induction as abasic sites from purines. Sequence analysis of the mutations resulting from these ring-fragmentation products shows that the mutations produced are both lesion and sequence context dependent. The possible roles that bypass efficiency and lesion-directed misinsertion might play in mutagenesis are discussed.
Collapse
Affiliation(s)
- J Evans
- University of Vermont, Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, Burlington 05405
| | | | | | | | | | | | | |
Collapse
|
20
|
Ventur Y, Schulte-Frohlinde D. Does the enzymatic conversion of DNA single-strand damage into double-strand breaks contribute to biological inactivation of gamma-irradiated plasmid DNA? Int J Radiat Biol 1993; 63:167-71. [PMID: 8094412 DOI: 10.1080/09553009314550221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Y Ventur
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Rurh, Germany
| | | |
Collapse
|
21
|
Abstract
Ultraviolet irradiation of DNA results in various pyrimidine modifications. We have demonstrated formation of both cis-thymine hydrate and trans-thymine hydrate (6-hydroxy-5,6-dihydrothymine) in UV-irradiated poly(dA-dT):poly(dA-dT). Both are released from DNA as free bases by bacterial and human glycosylases. Thymine hydrates are stable in DNA and can be detected in control, unirradiated substrates. We examined the effects of thymine hydrates in UV-irradiated substrate poly(dA-dT):poly(dA-dT) on E. coli DNA polymerase I activity. Enzymic incorporation of labeled thymidine-5'-monophosphate significantly decreased with increasing UV dose. Reversal of DNA thymine hydrates to thymines by mild heating of the substrate prior to enzymic reaction resulted in partial recovery of nucleotide incorporation. Cyclobutane thymine dimers are formed between non-adjacent thymines in UV-irradiated poly(dA-dT):poly(dA-dT). These are responsible for the incomplete recovery of DNA polymerase activity following heating due to their heat stability. Analyses of the irradiated and hydrolyzed substrate also demonstrated formation of minor yields of photoproducts formed by covalent linkage of adjacent thymines and adenines by UV-irradiation. Therefore, the thymine hydrates formed in UV-irradiated DNA partially inhibit polymerase activity during DNA synthesis and thus could be potentially lethal if unrepaired.
Collapse
Affiliation(s)
- T Ganguly
- Department of Pathology, Temple University School of Medicine, Philadelphia, PA 19140
| | | |
Collapse
|
22
|
Basu AK, Loechler EL, Leadon SA, Essigmann JM. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci U S A 1989; 86:7677-81. [PMID: 2682618 PMCID: PMC298133 DOI: 10.1073/pnas.86.20.7677] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mutational specificity and genetic requirements for mutagenesis by 5,6-dihydroxy-5,6-dihydrothymine (thymine glycol), one of the principal DNA lesions induced by oxidation and ionizing radiation, has been investigated in Escherichia coli. Thymine glycol was positioned at a unique site in the single-stranded genome of a bacteriophage M13mp19 derivative. Replication of the genome in E. coli yielded targeted mutations at a frequency of 0.3%; the mutations were exclusively T----C. Mutagenesis was independent of SOS and nth (nth encodes endonuclease III, a thymine glycol repair enzyme). The adduct was not detectably mutagenic in duplex DNA. A chemical rationalization for the mutation observed for thymine glycol was developed by applying molecular modeling and molecular mechanical calculations to the same DNA sequence studied in vivo. Modeling suggested that the 5R,6S isomer of cis-thymine glycol, when not base paired, was displaced laterally by approximately 0.5 A toward the major groove in comparison to the position that thymine would otherwise occupy. This perturbation of DNA structure should increase the likelihood of a guanine.thymine glycol wobble base pair during replication, which would explain the mutational specificity of the base observed in the genetic experiments.
Collapse
Affiliation(s)
- A K Basu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
23
|
Schulte-Frohlinde D. The effect of oxygen and thiols on the radiation damage of DNA. FREE RADICAL RESEARCH COMMUNICATIONS 1989; 6:181-3. [PMID: 2663667 DOI: 10.3109/10715768909073465] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Laspia MF, Wallace SS. Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli. J Bacteriol 1988; 170:3359-66. [PMID: 2457010 PMCID: PMC211302 DOI: 10.1128/jb.170.8.3359-3366.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genetic requirements for the excision repair of thymine glycols, urea residues, and apurinic (AP) sites were examined by measuring the survival in Escherichia coli mutants of phi X174 replicative form (RF) I transfecting DNA containing selectively introduced lesions. phi X RF I DNA containing thymine glycols was inactivated at a greater rate in mutants deficient in endonuclease III (nth) than in wild-type hosts, suggesting that endonuclease III is involved in the repair of thymine glycols in vivo. phi X RF I DNA containing thymine glycols was also inactivated at a greater rate in mutants that were deficient in both exonuclease III and endonuclease IV (xth nfo) than in wild-type hosts, suggesting that a class II AP endonuclease is required for the in vivo processing of thymine glycols. phi X duplex-transfecting DNA containing urea residues or AP sites was inactivated at a greater rate in xth nfo double mutants than in wild-type, but not single-mutant, hosts, suggesting that exonuclease III or endonuclease IV is required for the repair of these damages and that either activity can substitute for the other. These data are in agreement with the known in vitro substrate specificities of endonuclease III, exonuclease III, and endonuclease IV.
Collapse
Affiliation(s)
- M F Laspia
- Department of Microbiology, New York Medical College, Valhalla 10595
| | | |
Collapse
|
25
|
Herskind C. Single-strand breaks can lead to complex configurations of plasmid DNA in vitro. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1987; 52:565-75. [PMID: 3499409 DOI: 10.1080/09553008714552061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA species which migrate extremely slowly in agarose gel electrophoresis may be formed from plasmid DNA containing radiation-induced single-strand breaks (ssbs). Postirradiation heat treatment in low ionic strength buffer and subsequent incubation with Mg2+ strongly enhanced the formation of these species. Electron micrographs taken after such treatment show numerous complex configurations containing DNA material from several plasmid molecules. Less extreme formation of slowly migrating DNA occurred without postirradiation heat treatment or Mg2+ incubation when the DNA was co-precipitated with calcium phosphate in a physiologically balanced buffer and incubated under conditions used for DNA-mediated gene transfer. The data suggest that homologous pairing between single-stranded regions formed in relation to ssbs may contribute to cohesion between different molecules. The significance of the cohesion process for gene transfer experiments and cellular radiation effects is discussed.
Collapse
Affiliation(s)
- C Herskind
- MRC Radiobiology Unit, Didcot, Oxon, U.K
| |
Collapse
|