1
|
Pelaz SG, Jaraíz-Rodríguez M, Álvarez-Vázquez A, Talaverón R, García-Vicente L, Flores-Hernández R, Gómez de Cedrón M, Tabernero M, Ramírez de Molina A, Lillo C, Medina JM, Tabernero A. Targeting metabolic plasticity in glioma stem cells in vitro and in vivo through specific inhibition of c-Src by TAT-Cx43 266-283. EBioMedicine 2020; 62:103134. [PMID: 33254027 PMCID: PMC7708820 DOI: 10.1016/j.ebiom.2020.103134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43266–283 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43266-283. Methods Metabolic impairment induced by the c-Src inhibitor TAT-Cx43266-283 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. Findings TAT-Cx43266–283 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43266-283 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43266–283 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. Interpretation The reduced ability of TAT-Cx43266-283–treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43266-283. Funding Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - María Tabernero
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Carretera de Canto Blanco 8 E, Madrid 28049, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - José M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca 37007, Spain; Departamento de Bioquímica y Biología Celular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Virgen de la Vega, 10ª planta, Paseo de San Vicente, 58-182, Salamanca 37007, Spain.
| |
Collapse
|
2
|
González-Sánchez A, Jaraíz-Rodríguez M, Domínguez-Prieto M, Herrero-González S, Medina JM, Tabernero A. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes. Oncotarget 2018; 7:49819-49833. [PMID: 27391443 PMCID: PMC5226550 DOI: 10.18632/oncotarget.10454] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/26/2016] [Indexed: 11/30/2022] Open
Abstract
Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition.
Collapse
Affiliation(s)
- Ana González-Sánchez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Marta Domínguez-Prieto
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Sandra Herrero-González
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - José M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS. Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 2014; 63:118-31. [PMID: 25130274 DOI: 10.1002/glia.22738] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/23/2014] [Indexed: 01/06/2023]
Abstract
Microglia and astroglia play critical roles in the development, function, and survival of neurons in the CNS. However, under inflammatory conditions the role of astrogliosis in the inflammatory process and its effects on neurons remains unclear. Here, we used several types of cell cultures treated with the bacterial inflammogen LPS to address these questions. We found that the presence of astroglia reduced inflammation-driven neurotoxicity, suggesting that astrogliosis is principally neuroprotective. Neutralization of supernatant glial cell line-derived neurotrophic factor (GDNF) released from astroglia significantly reduced this neuroprotective effect during inflammation. To determine the immunological role of astroglia, we optimized a highly-enriched astroglial culture protocol and demonstrated that LPS failed to induce the synthesis and release of TNF-α and iNOS/NO. Instead we found significant enhancement of TNF-α and iNOS expression in highly-enriched astroglial cultures required the presence of 0.5-1% microglia, respectively. Thus suggesting that microglial-astroglial interactions are required for LPS to induce the expression of pro-inflammatory factors and GDNF from astroglia. Specifically, we found that microglia-derived TNF-α plays a pivotal role as a paracrine signal to regulate the neuroprotective functions of astrogliosis. Taken together, these findings suggest that astroglia may not possess the ability to directly recognize the innate immune stimuli LPS, but rather depend on crosstalk with microglia to elicit release of neurotrophic factors as a counterbalance to support neuronal survival from the collateral damage generated by activated microglia during neuroinflammation.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Mormone E, D'Sousa S, Alexeeva V, Bederson MM, Germano IM. "Footprint-free" human induced pluripotent stem cell-derived astrocytes for in vivo cell-based therapy. Stem Cells Dev 2014; 23:2626-36. [PMID: 24914471 DOI: 10.1089/scd.2014.0151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSC) from somatic cells has enabled the possibility to provide patient-specific hiPSC for cell-based therapy, drug discovery, and other translational applications. Two major obstacles in using hiPSC for clinical application reside in the risk of genomic modification when they are derived with viral transgenes and risk of teratoma formation if undifferentiated cells are engrafted. In this study, we report the generation of "footprint-free" hiPSC-derived astrocytes. These are efficiently generated, have anatomical and physiological characteristics of fully differentiated astrocytes, maintain homing characteristics typical of stem cells, and do not give rise to teratomas when engrafted in the brain. Astrocytes can be obtained in sufficient numbers, aliquoted, frozen, thawed, and used when needed. Our results show the feasibility of differentiating astrocytes from "footprint-free" iPSC. These are suitable for clinical cell-based therapies as they can be induced from patients' specific cells, do not require viral vectors, and are fully differentiated. "Footprint-free" hiPSC-derived astrocytes represent a new potential source for therapeutic use for cell-based therapy, including treatment of high-grade human gliomas, and drug discovery.
Collapse
Affiliation(s)
- Elisabetta Mormone
- 1 Department of Neurosurgery, Icahn School of Medicine at Mount Sinai , New York, New York
| | | | | | | | | |
Collapse
|
5
|
The modulation of phosphatase expression impacts the proliferation efficiency of HSV-1 in infected astrocytes. PLoS One 2013; 8:e79648. [PMID: 24260274 PMCID: PMC3829861 DOI: 10.1371/journal.pone.0079648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/02/2013] [Indexed: 01/06/2023] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) is a major pathogen that causes human neurological diseases, including herpes simplex encephalitis (HSE). Previous studies have shown that astrocytes are involved in HSV-1 systemic pathogenesis in the central nervous system (CNS), although the mechanism remains unclear. In this study, a high-throughput RNAi library screening method was used to analyze the effect of host phosphatase gene regulation on HSV-1 replication using Macaca mulatta primary astrocytes in an in vitro culture system. The results showed that the downregulation of five phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) significantly inhibited HSV-1 infection, suggesting that these phosphatases were needed in HSV-1 replication in rhesus astrocytes. Although statistically significant, the effect of downregulation of these phosphatases on HSV-1 replication in a human astrocytoma cell line appears to be more limited. Our results suggest that the phosphatase genes in astrocytes may regulate the immunological and pathological reactions caused by HSV-1 CNS infection through the regulation of HSV-1 replication or of multiple signal transduction pathways.
Collapse
|
6
|
PNKP knockdown by RNA interference inhibits herpes simplex virus-1 replication in astrocytes. Virol Sin 2013; 28:345-51. [PMID: 24213989 DOI: 10.1007/s12250-013-3350-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a major pathogen that causes various central nervous system (CNS) diseases, including herpes simplex encephalitis and meningitis. According to recent studies, PNKP significantly affects the proliferation of HSV-1 in astrocytes. Here, we used viral proliferation curves to confirm the significant inhibitory effects of PNKP on HSV-1 proliferation. PNKP downregulation was also confirmed by analyzing the transcription of viral genes. We found that PNKP downregulation affects the viral DNA copy number. This study preliminarily confirms that PNKP affects viral proliferation by affecting HSV-1 genome cyclization. These results also suggest that astrocytes play a specific role in preventing HSV-1 infection.
Collapse
|
7
|
Valle-Casuso JC, González-Sánchez A, Medina JM, Tabernero A. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 2012; 7:e32448. [PMID: 22384254 PMCID: PMC3285680 DOI: 10.1371/journal.pone.0032448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
8
|
Du F, Qian ZM, Zhu L, Wu XM, Qian C, Chan R, Ke Y. Purity, cell viability, expression of GFAP and bystin in astrocytes cultured by different procedures. J Cell Biochem 2010; 109:30-7. [PMID: 19899109 DOI: 10.1002/jcb.22375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primary astrocyte cultures are the most commonly used in vitro model for neurobiological studies. We speculated that different protocols might induce differences not only in the percentage of astrocytes but also in their biological characteristics. In this study, we investigated the effects of four major protocols on the purity of astrocytes, cell viability, expression of glial fibrillary acidic protein (GFAP) and bystin of cultured astrocytes using MTT assay, immunocytochemical staining, and Western blot analysis. We demonstrated that the purity of astrocytes (98.9%) generated by the subculture (SC) procedure is significantly higher than those generated by primary culture (PC), shaken once culture (SK-1) or shaken twice culture (SK-2). We also showed that expressions of GFAP and bystin in astrocytes that are purified by the SK-2 or SK-1 procedures are significantly higher than those in astrocytes prepared by PC or SC. In addition, astrocytes cultured by SK-2 or SK-1 have a higher level of cell viabilities at most time points after ischemia compared with astrocytes cultured by PC or SC. These suggested that physical stimulation induced by "shaken" or culture operation might be able to activate astrocytes and implied that different procedures induce differences not only in the purity but also in the biological characteristics of astrocytes, such as the percentage of activated astrocytes, GFAP, and bystin expressions and responses to ischemia. A more detailed analysis about the effect of "culture protocol factor" on the biological characteristics of astrocytes is absolutely needed.
Collapse
Affiliation(s)
- Fang Du
- Jiangsu Key Laboratory of Neuroregeneration, Department of Neurochemistry, Nantong University, Nantong 226001, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Choi JR, Heo H, Lang Y, Shin KS, Kang SJ. Apoptosis signal-regulating kinase 1 regulates the expression of caspase-11. FEBS Lett 2009; 583:3016-20. [PMID: 19695249 DOI: 10.1016/j.febslet.2009.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/24/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Caspase-11 is an inducible caspase involved in the regulation of cell death and inflammation. In the present study, we examined whether apoptosis signal-regulating kinase 1 (Ask1)-mediated signaling pathway is involved in the expression of caspase-11 induced by lipopolysaccharide (LPS). We found that the induction of caspase-11 was suppressed by the inhibitors of NADPH oxidase (Nox) or knockdown of Nox4 that acts downstream of toll-like receptor 4 and generates Ask1-activating reactive oxygen species. Overexpression of dominant negative tumor necrosis factor receptor associate factor 6 also suppressed the induction of caspase-11. Importantly, knockdown or dominant negative form of Ask1 suppressed the induction of caspase-11 following LPS stimulation. Taken together, our results show that Ask1 regulates the expression of caspase-11 following LPS stimulation.
Collapse
Affiliation(s)
- Jong-Ryoul Choi
- Department of Molecular Biology, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Herrero-González S, Valle-Casuso JC, Sánchez-Alvarez R, Giaume C, Medina JM, Tabernero A. Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 2009; 57:222-33. [PMID: 18756537 DOI: 10.1002/glia.20748] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In previous studies, we showed that endothelin-1 increased astrocyte proliferation and glucose uptake. These effects were similar to those observed with other gap junction inhibitors, such as carbenoxolone (CBX). Because 24-h treatment with endothelin-1 or CBX downregulates the expression of connexin43, the main protein forming astrocytic gap junctions, which can also be involved in proliferation, in this study, we addressed the possible role of connexin43 in the effects of endothelin-1. To do so, connexin43 was silenced in astrocytes by siRNA. The knock down of connexin43 increased the rate of glucose uptake, characterized by the upregulation of GLUT-1 and type I hexokinase. Neither endothelin-1 nor CBX were able to further increase the rate of glucose uptake in connexin43-silenced astrocytes. In agreement, no effects of endothelin-1 and CBX on GLUT-1 and type I hexokinase were observed in connexin-43 silenced astrocytes or in astrocytes from connexin43 knock-out (KO) mice. Our previous studies suggested a close relationship between glucose uptake and astrocyte proliferation. Consistent with this, connexin43-silenced astrocytes exhibited an increase in Ki-67, a marker of proliferation. The effects of ET-1 on retinoblastoma phosphorylation on Ser780 and on the upregulation of cyclins D1 and D3 were affected by the levels of connexin43. In conclusion, our results indicate that connexin43 participates in the effects of endothelin-1 on glucose uptake and proliferation in astrocytes. Interestingly, although the rate of growth in connexin43 KO astrocytes has been reported to be reduced, we observed that an acute reduction in connexin43 by siRNA increased proliferation and glucose uptake.
Collapse
|
11
|
Tabernero A, Sánchez-Alvarez R, Medina JM. Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes. J Neurochem 2006; 96:973-82. [PMID: 16412096 DOI: 10.1111/j.1471-4159.2005.03623.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We showed previously that the inhibition of gap junctional communication in astrocytes increased bromodeoxyuridine (BrdU) incorporation and promoted changes in the metabolic phenotype destined to fulfil the requirements of cell proliferation. In the present study we investigated the changes in the cell cycle of astrocytes promoted by the inhibition of intercellular communication through gap junctions. Thus, the presence of endothelin-1 and carbenoxolone, two gap junction uncouplers, promoted an increase in the percentage of astrocytes found in the S, G2 and M phases of the cell cycle, with a concomitant decrease in G0 and G1 phases. In addition, the levels of Ki-67, a protein present during all active phases of the cell cycle but absent from resting cells, increased after the inhibition of gap junctional communication. These effects were not observed when the inhibition of gap junctions was prevented with tolbutamide, indicating that the inhibition of gap junctional communication promotes the entry of astrocytes into the cell cycle. The passage of the cells from a quiescent state to the cell cycle is ultimately regulated by the degree of retinoblastoma phosphorylation. Inhibition of gap junctions increased the phosphorylation of retinoblastoma at Ser 780 but not at Ser 795 or Ser 807/811. In addition, the levels of cyclins D1 and D3 increased, whereas those of p21 and p27 were not significantly modified. Because D-type cyclins are key regulators of retinoblastoma protein phosphorylation, it is suggested that the phosphorylation of retinoblastoma protein at Ser 780, observed under our experimental conditions, is a consequence of the increase in the levels of cyclins D1 and D3. Our work provides evidence for the involvement of cyclins D1 and D3 as sensors of the inhibition of gap junctional communication in astrocytes.
Collapse
Affiliation(s)
- Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto De Neurociencias De Castilla Y Leon, Universidad de Salamanca, Salamanca, Spain
| | | | | |
Collapse
|
12
|
Sánchez-Alvarez R, Tabernero A, Medina JM. Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem 2004; 89:703-14. [PMID: 15086527 DOI: 10.1046/j.1471-4159.2004.02398.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that endothelin-1 increases glucose uptake in astrocytes. In the present work we investigate the mechanism through which endothelin-1 (ET-1) increases glucose uptake. Our results show that ET-1 activates a short-term and a long-term mechanism. Thus, ET-1 induced a rapid change in the localization of both GLUT-1 and type I hexokinase. These changes are probably aimed at rapidly increasing the entry and phosphorylation of glucose. In addition, ET-1 upregulated GLUT-1 and type I hexokinase and induced the expression of isoforms not normally expressed in astrocytes, such as GLUT-3 and type II hexokinase. These changes provide astrocytes with the machinery required to sustain a high rate of glucose uptake for a longer period of time. Our previous work had suggested that the effect of ET-1 on glucose uptake was associated with the inhibition of gap junctions. In this work, we compare the effect of ET-1 with that of carbenoxolone, a classical inhibitor of gap junction communication. Carbenoxolone increased glucose uptake to the same extent as ET-1 following the same mechanisms. Thus, carbenoxolone induced a rapid change in the localization of both GLUT-1 and type I hexokinase, upregulated GLUT-1 and type I hexokinase and induced the expression of GLUT-3 and type II hexokinase. When the inhibition of gap junction was prevented by tolbutamide, neither ET-1 nor carbenoxolone were able to increase the levels of GLUT-1, GLUT-3, type I hexokinase or type II hexokinase, indicating that these events are closely related to gap junctions.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
13
|
Sánchez-Alvarez R, Tabernero A, Sánchez-Abarca LI, Orfao A, Giaume C, Medina JM. Proliferation of C6 glioma cells is blunted by the increase in gap junction communication caused by tolbutamide. FEBS Lett 2001; 509:202-6. [PMID: 11741589 DOI: 10.1016/s0014-5793(01)03181-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously reported that tolbutamide prevents the inhibition of gap junction communication in astrocytes. Here, we show that tolbutamide increases gap junction communication and connexin 43 expression in poorly coupled C6 glioma cells. The increase in communication is concurrent with the inhibition of the rate of proliferation due to a block of the progression of C6 glioma cells through the S phase of the cell cycle. The effects of tolbutamide were quantitatively similar to that found after the elevation of intracellular cAMP. Furthermore, the effects of tolbutamide and cAMP were additive. The possible beneficial effect of tolbutamide on gene therapy for gliomas is discussed.
Collapse
Affiliation(s)
- R Sánchez-Alvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Edificio Departamental, Pza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Cidad P, Garcia-Nogales P, Almeida A, Bolaños JP. Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide. J Neurochem 2001; 79:17-24. [PMID: 11595753 DOI: 10.1046/j.1471-4159.2001.00523.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The induction of nitric oxide (NO) synthase in astrocytes by endotoxin and/or cytokine treatment is associated with increased glucose consumption and glycolysis, but the mechanism whereby this phenomenon occurs remains obscure. In this work, we have addressed this issue and found that incubation of cultured rat astrocytes with lipopolysaccharide (LPS; 1 microg/mL) for 24 h increased the level of constitutively expressed GLUT1 glucose transporter mRNA, and triggered GLUT3 mRNA expression, which was absent in normal astrocytes. The occurrence of GLUT3 protein after LPS treatment was corroborated by western blotting and immunocytochemistry. A 4-h incubation of astrocytes in the absence of glucose, or under an oxygen-poor (3%) atmosphere also resulted in GLUT3 mRNA overexpression. Experiments performed with 2-deoxy-D-[U-14C]glucose (at 0.1 mM of D-glucose) confirmed that LPS (0.1-10 microg/mL) dose-dependently increased the rate of glucose uptake (by a factor of 1.6 at 1 microg/mL of LPS), which was paralleled with the increase in NO synthesis. Furthermore, blockade of NO synthase with 2-amino-5,6-dihydro-6-methyl-(4H)-1,3-thiazine (AMT; 50 microM) partially (by 45%) prevented the LPS-mediated increase in glucose uptake. Finally, incubation of astrocytes with the NO donor 1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA; 100 microM) increased by a factor of 1.4 the rate of glucose uptake. We conclude that the increase in GLUT3-driven glucose uptake in astrocytes would have a neuroprotective role under conditions in which NO formation is combined with hypoglycaemia, such as in brain ischemia.
Collapse
Affiliation(s)
- P Cidad
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
15
|
Tabernero A, Jiménez C, Velasco A, Giaume C, Medina JM. The enhancement of glucose uptake caused by the collapse of gap junction communication is due to an increase in astrocyte proliferation. J Neurochem 2001; 78:890-8. [PMID: 11520909 DOI: 10.1046/j.1471-4159.2001.00476.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that several gap junction uncouplers increase the uptake of glucose in astrocytes. The aim of the present work was to study whether the increase in glucose uptake was a consequence of the inhibition of gap junction communication and the purpose of this effect. Our results show that alpha-glycyrrhetinic acid and endothelin-1 increase the uptake of glucose in highly, but not in poorly, coupled astrocytes. This effect depended on connexin 43 levels and was abolished when the inhibition of gap junction communication was prevented by tolbutamide or ouabain. The inhibition of gap junctions increased the rate of glucose incorporation into DNA and RNA, which was inhibited by treatment with dehydroepiandrosterone, an inhibitor of glucose-6-phosphate dehydrogenase, the regulatory enzyme of the pentose phosphate pathway. The inhibition of gap junctions significantly increased astrocyte proliferation, which was counteracted by tolbutamide. These effects were not observed in poorly coupled astrocytes expressing low levels of connexin 43. The increase in astrocyte proliferation caused by gap junction inhibition was prevented when either glucose uptake or the pentose phosphate pathway were inhibited. We conclude that the inhibition of gap junction communication induces astrocyte proliferation, resulting in an enhancement of glucose uptake and its utilization through the pentose phosphate pathway to provide ribose-5-phosphate for the synthesis of nucleic acids.
Collapse
Affiliation(s)
- A Tabernero
- Unidad de Investigación, Hospital Universitario de Salamanca, Spain
| | | | | | | | | |
Collapse
|
16
|
Sills GJ, Butler E, Thompson GG, Brodie MJ. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure 1999; 8:404-11. [PMID: 10600581 DOI: 10.1053/seiz.1999.0326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In light of theirclosely related mechanisms of action, and preliminary clinical evidence suggesting that they possess similar efficacies, it has been anecdotally suggested that vigabatrin and tiagabine may prove to be therapeutically indistinguishable. As a result, we have conducted a preclinical comparison of their anticonvulsant profile and mechanism of action. Pentylenetetrazol and maximal electroshock seizures were employed to determine the experimental anticonvulsant profile. Mechanisms of action were investigated using assays of gamma -aminobutyric acid (GABA), GABA-transaminase and glutamic acid decarboxylase in mouse brain and GABA uptake and GABA-transaminase in rat astrocyte cultures. Vigabatrin was without effect on either pentylenetetrazol- or maximal electroshock-induced seizures, whereas tiagabine increased the latency to pentylenetetrazol seizures and reduced the incidence of maximal electroshock seizures. In mouse brain assays, tiagabine was without effect, while vigabatrin increased GABA concentrations and reduced GABA-transaminase and glutamic acid decarboxylase activities. In cortical astrocyte cultures, vigabatrin reduced the activities of both GABA uptake and GABA-transaminase, whereas tiagabine blocked GABA uptake alone. These results suggest that vigabatrin and tiagabine have differing efficacy in experimental seizure models and distinct neurochemical effects. It is possible, then, that these drugs will have different spectra of activity and toxicity profiles in human epilepsy.
Collapse
Affiliation(s)
- G J Sills
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, Scotland, UK.
| | | | | | | |
Collapse
|
17
|
Granda B, Tabernero A, Sánchez-Abarca LI, Medina JM. The K-ATP channel regulates the effect of Ca2+ on gap junction permeability in cultured astrocytes. FEBS Lett 1998; 427:41-5. [PMID: 9613596 DOI: 10.1016/s0014-5793(98)00390-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using the scrape-loading technique we show that tolbutamide and glybenzcyclamide, two inhibitors of the K+ channel sensitive to ATP (K-ATP channel), partially prevent the inhibition of gap junction permeability promoted by Ca2+ in cultured astrocytes. This effect was dose-dependent, reaching a maximum at 400 microM and 1 microM of tolbutamide and glybenzcyclamide, respectively. The presence of the Ca2+ ionophore A-23187 strongly reduced the concentration of Ca2+ required to block gap junction permeability but did not abolish the effect of tolbutamide and glybenzcyclamide. These results suggest that the effect of these two compounds are not brought about by control of the intracellular concentration of Ca2+ but probably by the promotion of plasma membrane depolarization.
Collapse
Affiliation(s)
- B Granda
- Departamento de Bioquímica y Biologia Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
18
|
Almeida A, Medina JM. A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:209-14. [PMID: 9507134 DOI: 10.1016/s1385-299x(97)00044-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A rapid method (about 1.5 h) for the isolation of intact functional mitochondria from neurons and astrocytes in primary culture is described. Mitochondria isolated by this method are metabolically active and tightly coupled as shown by respiratory control ratio values, which were about 4 with glutamate-malate as substrate. The activities of marker enzymes revealed the occurrence of a low degree of cytosolic (5%) or synaptosomal (5.5%) contamination in the mitochondrial fractions. In addition, the activity of citrate synthase was increased by 4 fold in both neuronal and astrocytic mitochondria with respect to values found in cell homogenates. These results confirm that the method affords mitochondrial preparations from cultured brain cells at suitable levels of purity and enrichment for the study of their mitochondrial function. Since mitochondrial damage has been associated with the pathogenesis of certain neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases (P. Chagnon, C. Betard, Y. Robitaille, A. Cholette, D. Gauvreau, Distribution of brain cytochrome oxidase activity in various neurodegenerative disease, Neuroreport 6 (1995) 711-715 [6]; S.J. Kish, C. Bergeron, A. Rajput, S. Dozic, F. Mastrogiacomo, L. Chang, J.M. Wilson, L.M. DiStefano, J.N. Nobrega, Brain cytochrome oxidase in Alzheimer's disease, J. Neurochem. 59 (1992) 776-779 [10]; A.H.V. Schapira, J.M. Cooper, D. Dexter, J.B. Clark, P. Jenner, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson's disease, J. Neurochem. 54 (1990) 823-827 [15]), the method described here shed light on the possible susceptibility of neuronal or astrocytic mitochondria to deleterious effects of these diseases.
Collapse
Affiliation(s)
- A Almeida
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Edificio Departamental, Avda. del Campo Charro, 37007 Salamanca, Spain
| | | |
Collapse
|
19
|
Almeida A, Medina JM. Isolation and characterization of tightly coupled mitochondria from neurons and astrocytes in primary culture. Brain Res 1997; 764:167-72. [PMID: 9295206 DOI: 10.1016/s0006-8993(97)00453-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work provides a rapid method for isolation of intact functional mitochondria from neurons and astrocytes in primary culture. By using this method, it was found that the respiratory control ratio was 1.5-fold greater in neuronal than in astrocytic mitochondria using both NAD-linked (glutamate/malate) and FAD-linked (succinate) substrates. The difference observed in RCR values was due to the lower rate of respiration in state 4 found in neurons as compared to that found in astrocytes, because both cell types showed the same rate of respiration in state 3. The P/O ratio was also higher in neurons than in astrocytes. Our results suggest that the coupling between the mitochondrial respiratory chain and oxidative phosphorylation is stronger in neurons than in astrocytes. These results may be of relevance for the understanding of the differential susceptibility of brain cells to impairments of energy metabolism observed in certain neurodegenerative diseases.
Collapse
Affiliation(s)
- A Almeida
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | |
Collapse
|