1
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
2
|
Chalif JI, Mentis GZ. Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit Connectivity. ADVANCES IN NEUROBIOLOGY 2022; 28:63-85. [PMID: 36066821 DOI: 10.1007/978-3-031-07167-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter will provide an introduction into motoneuron anatomy, electrophysiological properties, firing patterns focusing on development and also describing several pathological conditions that affect mononeurons. It starts with a historical retrospective describing the early landmark work into motoneurons. The next section lays out the various types of motoneurons (alpha, beta, and gamma) and their subclasses (fast-twitch fatigable, fast-twitch fatigue-resistant, and slow-twitch fatigue resistant), highlighting the functional relevance of this classification scheme. The third section describes the development of motoneurons' passive and active electrophysiological properties. This section also defines the major terms one uses in describing how a neuron functions electrophysiologically. The electrophysiological aspects of a neuron is critical to understanding how it behaves within a circuit and contributes to behavior since the firing of an action potential is how neurons communicate with each other and with muscles. The electrophysiological changes of motoneurons over development underlies how their function changes over the lifetime of an organism. After describing the properties of individual motoneurons, the chapter then turns to revealing how motoneurons interact within complex neural circuits, with other motoneurons as well as sensory neurons, and how these circuits change over development. Finally, this chapter ends with highlighting some recent advances made in motoneuron pathology, focusing on spinal muscular atrophy, amyotrophic lateral sclerosis, and axotomy.
Collapse
Affiliation(s)
- Joshua I Chalif
- Departments of Neurology and Pathology & Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - George Z Mentis
- Departments of Neurology and Pathology & Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Falgairolle M, O'Donovan MJ. Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease. Front Mol Neurosci 2020; 13:74. [PMID: 32523513 PMCID: PMC7261878 DOI: 10.3389/fnmol.2020.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The most evident phenotype of degenerative motoneuron disease is the loss of motor function which accompanies motoneuron death. In both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), it is now clear that dysfunction is not restricted to motoneurons but is manifest in the spinal circuits in which motoneurons are embedded. As mounting evidence shows that motoneurons possess more elaborate and extensive connections within the spinal cord than previously realized, it is necessary to consider the role of this circuitry and its dysfunction in the disease process. In this review article, we ask if the selective vulnerability of the different motoneuron types and the relative disease resistance of distinct motoneuron groups can be understood in terms of their intraspinal connections.
Collapse
Affiliation(s)
- Mélanie Falgairolle
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael J O'Donovan
- Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Paik SK, Yoo HI, Choi SK, Bae JY, Park SK, Bae YC. Distribution of excitatory and inhibitory axon terminals on the rat hypoglossal motoneurons. Brain Struct Funct 2019; 224:1767-1779. [PMID: 31006070 DOI: 10.1007/s00429-019-01874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Detailed information about the excitatory and inhibitory synapses on the hypoglossal motoneurons may help understand the neural mechanism for control of the hypoglossal motoneuron excitability and hence the precise and coordinated movements of the tongue during chewing, swallowing and licking. For this, we investigated the distribution of GABA-, glycine (Gly)- and glutamate (Glut)-immunopositive (+) axon terminals on the genioglossal (GG) motoneurons by retrograde tracing, electron microscopic immunohistochemistry, and quantitative analysis. Small GG motoneurons (< 400 μm2 in cross-sectional area) had fewer primary dendrites, significantly higher nuclear/cytoplasmic ratio, and smaller membrane area covered by synaptic boutons than large GG motoneurons (> 400 μm2). The fraction of inhibitory boutons (GABA + only, Gly + only, and mixed GABA +/Gly + boutons) of all boutons was significantly higher for small GG motoneurons than for large ones, whereas the fraction of Glut + boutons was significantly higher for large GG motoneurons than for small ones. Almost all boutons (> 95%) on both small and large GG motoneurons were GABA + , Gly + or Glut + . The frequency of mixed GABA +/Gly + boutons was the highest among inhibitory boutons types for both small and large GG motoneurons. These findings may elucidate the anatomical substrate for precise regulation of the motoneuron firing required for the fine movements of the tongue, and also suggest that the excitability of small and large GG motoneurons may be regulated differently.
Collapse
Affiliation(s)
- Sang Kyoo Paik
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Hong Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 77 Gyeryong-ro 771 beon-gil, Jung-Gu, Daejeon, 34824, South Korea
| | - Seung Ki Choi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea.
| |
Collapse
|
5
|
Locomotor training maintains normal inhibitory influence on both alpha- and gamma-motoneurons after neonatal spinal cord transection. J Neurosci 2011; 31:26-33. [PMID: 21209186 DOI: 10.1523/jneurosci.6433-09.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injuries lead to impairments, which are accompanied by extensive reorganization of neuronal circuits caudal to the injury. Locomotor training can aid in the functional recovery after injury, but the neuronal mechanisms associated with such plasticity are only sparsely known. We investigated ultrastructurally the synaptic inputs to tibialis anterior motoneurons (MNs) retrogradely labeled in adult rats that had received a complete midthoracic spinal cord transection at postnatal day 5. A subset of the injured rats received locomotor training. Both γ- and α-MNs were studied. The total number of boutons apposing γ-MNs, but not α-MNs, was reduced after neonatal spinal cord transection. The proportion of inhibitory to excitatory boutons, however, was increased significantly in both α-MNs and γ-MNs in spinally transected rats, but with locomotor training returned to levels observed in intact rats. The specific densities and compositions of synaptic boutons were, however, different between all three groups. Surprisingly, we observed the atypical presence of both C- and M-type boutons apposing the somata of γ-MNs in the spinal rats, regardless of training status. We conclude that a neonatal spinal cord transection induces significant reorganization of synaptic inputs to spinal motoneurons caudal to the site of injury with a net increase in inhibitory influence, which is associated with poor stepping. Spinal cord injury followed by successful locomotor training, however, results in improved bipedal stepping and further synaptic changes with the proportion of inhibitory and excitatory inputs to the motoneurons being similar to that observed in intact rats.
Collapse
|
6
|
Abstract
Although often considered as a group, spinal motor neurons are highly diverse in terms of their morphology, connectivity, and functional properties and differ significantly in their response to disease. Recent studies of motor neuron diversity have clarified developmental mechanisms and provided novel insights into neurodegeneration in amyotrophic lateral sclerosis (ALS). Motor neurons of different classes and subtypes--fast/slow, alpha/gamma--are grouped together into motor pools, each of which innervates a single skeletal muscle. Distinct mechanisms regulate their development. For example, glial cell line-derived neurotrophic factor (GDNF) has effects that are pool-specific on motor neuron connectivity, column-specific on axonal growth, and subtype-specific on survival. In multiple degenerative contexts including ALS, spinal muscular atrophy (SMA), and aging, fast-fatigable (FF) motor units degenerate early, whereas motor neurons innervating slow muscles and those involved in eye movement and pelvic sphincter control are strikingly preserved. Extrinsic and intrinsic mechanisms that confer resistance represent promising therapeutic targets in these currently incurable diseases.
Collapse
Affiliation(s)
- Kevin C Kanning
- Department of Pathology, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
7
|
Paik SK, Park SK, Jin JK, Bae JY, Choi SJ, Yoshida A, Ahn DK, Bae YC. Ultrastructural analysis of glutamate-immunopositive synapses onto the rat jaw-closing motoneurons during postnatal development. J Neurosci Res 2010; 89:153-61. [DOI: 10.1002/jnr.22544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/20/2010] [Accepted: 10/04/2010] [Indexed: 11/07/2022]
|
8
|
Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev 2009; 4:42. [PMID: 19954518 PMCID: PMC2800842 DOI: 10.1186/1749-8104-4-42] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Gamma motor neurons (gamma-MNs) selectively innervate muscle spindle intrafusal fibers and regulate their sensitivity to stretch. They constitute a distinct subpopulation that differs in morphology, physiology and connectivity from alpha-MNs, which innervate extrafusal muscle fibers and exert force. The mechanisms that control the differentiation of functionally distinct fusimotor neurons are unknown. Progress on this question has been limited by the absence of molecular markers to specifically distinguish and manipulate gamma-MNs. Recently, it was reported that early embryonic gamma-MN precursors are dependent on GDNF. Using this knowledge we characterized genetic strategies to label developing gamma-MNs based on GDNF receptor expression, showed their strict dependence for survival on muscle spindle-derived GDNF and generated an animal model in which gamma-MNs are selectively lost. RESULTS In mice heterozygous for both the Hb9::GFP transgene and a tau-lacZ-labeled (TLZ) allele of the GDNF receptor Gfralpha1, we demonstrated that small motor neurons with high Gfralpha1-TLZ expression and lacking Hb9::GFP display structural and synaptic features of gamma-MNs and are selectively lost in mutants lacking target muscle spindles. Loss of muscle spindles also results in the downregulation of Gfralpha1 expression in some large diameter MNs, suggesting that spindle-derived factors may also influence populations of alpha-MNs with beta-skeletofusimotor collaterals. These molecular markers can be used to identify gamma-MNs from birth to the adult and to distinguish gamma- from beta-motor axons in the periphery. We also found that postnatal gamma-MNs are also distinguished by low expression of the neuronal nuclear protein (NeuN). With these markers of gamma-MN identity, we show after conditional elimination of GDNF from muscle spindles that the survival of gamma-MNs is selectively dependent on spindle-derived GDNF during the first 2 weeks of postnatal development. CONCLUSION Neonatal gamma-MNs display a unique molecular profile characterized by the differential expression of a series of markers - Gfralpha1, Hb9::GFP and NeuN - and the selective dependence on muscle spindle-derived GDNF. Deletion of GDNF expression from muscle spindles results in the selective elimination of gamma-MNs with preservation of the spindle and its sensory innervation. This provides a mouse model with which to explore the specific role of gamma-fusimotor activity in motor behaviors.
Collapse
Affiliation(s)
- Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
9
|
Paik SK, Bae JY, Park SE, Moritani M, Yoshida A, Yeo EJ, Choi KS, Ahn DK, Moon C, Shigenaga Y, Bae YC. Developmental changes in distribution of γ-aminobutyric acid- and glycine-immunoreactive boutons on rat trigeminal motoneurons. I. Jaw-closing motoneurons. J Comp Neurol 2007; 503:779-89. [PMID: 17570498 DOI: 10.1002/cne.21423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously described the distribution pattern of inhibitory synapses on rat jaw-closing (JC) alpha- and gamma-motoneurons. In the present study, we investigated developmental changes in inhibitory synapses on JC motoneurons. We performed a quantitative ultrastructural analysis of putative inhibitory synaptic boutons on JC motoneuron somata by using postembedding immunogold labeling for GABA and glycine. In total, 206, 350, and 497 boutons contacting JC motoneuron somata were analyzed at postnatal days 2 (P2), 11 (P11) and 31 (P31), respectively. The size of the somata increased significantly during postnatal development. The size distribution was bimodal at P31. Mean length of the boutons and percentage of synaptic covering also increased during postnatal development, whereas bouton density did not differ significantly among the three age groups. Synaptic boutons on the somata of JC alpha-motoneurons could be classified into four types: boutons immunoreactive for 1) GABA only, 2) glycine only, 3) both GABA and glycine, and 4) neither GABA nor glycine. There was no developmental change in the proportion of putative inhibitory boutons to the total number of studied boutons. However, the glycine-only boutons increased significantly (15.1% to 27.3%), and the GABA-only boutons decreased significantly (17.7% to 2.6%) during the period from P11 to P31. Our ultrastructural data indicate that the inhibitory synaptic input to JC motoneurons is developmentally regulated and that there is a postnatal switch from GABA to glycine. The postnatal changes revealed in the present study could play an important role in the maturation of the oral motor system.
Collapse
Affiliation(s)
- Sang Kyoo Paik
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Brain Korea 21, Kyungpook National University, Daegu 700-412, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ichiyama RM, Broman J, Edgerton VR, Havton LA. Ultrastructural synaptic features differ between alpha- and gamma-motoneurons innervating the tibialis anterior muscle in the rat. J Comp Neurol 2006; 499:306-15. [PMID: 16977622 DOI: 10.1002/cne.21110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the synaptology of retrogradely labeled spinal motoneurons after injection of horseradish peroxidase into the tibialis anterior (TA) muscle of adult rat. In total, 32 TA motoneurons were investigated in the electron microscope and demonstrated a bimodal size distribution with cell diameter peaks at 40 microm and 20 microm, likely representing alpha- and gamma-motoneurons, respectively. Both alpha- and gamma-motoneurons were apposed by S- and F-type synaptic boutons, whereas only alpha-motoneurons demonstrated inputs by the large M- and C-type boutons. The proportion of cell body membrane covered by synaptic inputs was surprisingly indistinguishable between alpha-motoneurons (72.2%) and gamma-motoneurons (63.5%). The ratio between the number of F- and S-type boutons in apposition with the motoneuron cell body (F/S ratio) and the ratio between the soma membrane coverage provided by F- and S-type boutons were both significantly higher in alpha- than in gamma-motoneurons. When comparing our data with previous findings in other species, we conclude that rat TA alpha-motoneurons are similar to cat and primate alpha-motoneurons with regard to synaptic terminal morphology, frequency, and distribution. However, rat gamma-motoneurons show a markedly higher total synaptic coverage and frequency than cat gamma-motoneurons, although both species exhibit appositions made by the same synaptic types and similar ratios between inhibitory and excitatory inputs.
Collapse
Affiliation(s)
- Ronaldo M Ichiyama
- Department of Physiological Science, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
11
|
Chen J, Butowt R, Rind HB, von Bartheld CS. GDNF increases the survival of developing oculomotor neurons through a target-derived mechanism. Mol Cell Neurosci 2003; 24:41-56. [PMID: 14550767 DOI: 10.1016/s1044-7431(03)00098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is the most potent motoneuron survival factor. We show here that in the chick oculomotor system, endogenous GDNF is derived largely from extraocular muscle but less from glial cells and not from muscle spindles. Increased levels of GDNF exclusively in the target rescued 30% of oculomotor neurons that would normally die during developmental cell death, a rate of rescue similar to that with systemic GDNF application. Thus, GDNF supports motoneuron survival in a retrograde, target-derived fashion, as opposed to a local paracrine route or an indirect route via sensory afferents. Persephin, another member of the GDNF family, did not increase survival with target delivery, despite its retrograde transport from the target. Unlike GDNF, however, persephin increased neurite outgrowth from oculomotor nuclei in vitro. Thus, one GDNF family member acts as a muscle-derived retrograde survival factor, whereas another one has distinct functions on neurite outgrowth.
Collapse
Affiliation(s)
- Jennifer Chen
- Department of Physiology and Cell Biology, MS 352, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
12
|
Rhrich-Haddout F, Kassar-Duchossoy L, Bauchet L, Destombes J, Thiesson D, Butler-Browne G, Lyoussi B, Baillet-Derbin C, Horvat JC. Alpha-motoneurons of the injured cervical spinal cord of the adult rat can reinnervate the biceps brachii muscle by regenerating axons through peripheral nerve bridges: combined ultrastructural and retrograde axonal tracing study. J Neurosci Res 2001; 64:476-86. [PMID: 11391702 DOI: 10.1002/jnr.1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following our previous studies related to brachial plexus injury and repair, the present experimentation was designed to examine the ultrastructural features of those motoneurons of the locally injured cervical spinal cord of adult rats that were seen to regenerate into peripheral nerve (PN) bridges and to reinnervate nearby skeletal muscles. Here, the peripheral connection of the PN bridge was made with the biceps brachii (BB) muscle. Three months postsurgery, the spinal motoneurons labelled by retrograde axonal transport of horseradish peroxidase (HRP), after its injection into the BB, were selected on thick sections, using light microscopy, for the presence of dark amorphous granules of the HRP reaction product. Serial ultrathin sections were then made from the selected material. For the 10 labelled neurons studied, we examined the synaptic boutons present on the membrane of the neuronal soma. For five of them, we could observe three of the six types of synaptic boutons described for the alpha-motoneurons of the cat (S-type with spherical vesicles, F-types with flattened vesicles, and C-type with subsynaptic cistern). The largest boutons (type C) are specific to alpha-motoneurons. In comparison to normal material, we noticed a decrease in the number of boutons and an increase in the number of glial processes. After a transient phase of trophic changes, the reinnervated BB muscles showed a return of their fibers to nearly normal diameters as well as evidence of fiber type grouping. Simultaneous staining with silver and cholinesterase also revealed the presence of new motor endplates frequently contacted by several motoneurons. The present study indicates that, after a local spinal injury, typical alpha-motoneurons can reinnervate a skeletal muscle by regenerating axons into the permissive microenvironment provided by a PN graft. These data offer prospects for clinical reconstruction of the brachial plexus after avulsion of one or several nerve roots.
Collapse
Affiliation(s)
- F Rhrich-Haddout
- Laboratory of Neurobiology and URA CNRS 2115, René Descartes University, 45 rue de Saintes-Pères, F-75270 Paris cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|