1
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. Enzymes 2020; 47:491-515. [PMID: 32951833 DOI: 10.1016/bs.enz.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.
Collapse
|
3
|
Schmitz LM, Rosenthal K, Lütz S. Enzyme-Based Electrobiotechnological Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 167:87-134. [PMID: 29134460 DOI: 10.1007/10_2017_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidoreductases are enzymes with a high potential for organic synthesis, as their selectivity often exceeds comparable chemical syntheses. The biochemical cofactors of these enzymes need regeneration during synthesis. Several regeneration methods are available but the electrochemical approach offers an efficient and quasi mass-free method for providing the required redox equivalents. Electron transfer systems involving direct regeneration of natural and artificial cofactors, indirect electrochemical regeneration via a mediator, and indirect electroenzymatic cofactor regeneration via enzyme and mediator have been investigated. This chapter gives an overview of electroenzymatic syntheses with oxidoreductases, structured by the enzyme subclass and their usage of cofactors for electron relay. Particular attention is given to the productivity of electroenzymatic biotransformation processes. Because most electroenzymatic syntheses suffer from low productivity, we discuss reaction engineering concepts to overcome the main limiting factors, with a focus on media conductivity optimization, approaches to prevent enzyme inactivation, and the application of advanced cell designs. Graphical Abstract.
Collapse
Affiliation(s)
- Lisa Marie Schmitz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
4
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
5
|
Rohdich F, Wiese A, Feicht R, Simon H, Bacher A. Enoate reductases of Clostridia. Cloning, sequencing, and expression. J Biol Chem 2001; 276:5779-87. [PMID: 11060310 DOI: 10.1074/jbc.m008656200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enr genes specifying enoate reductases of Clostridium tyrobutyricum and Clostridium thermoaceticum were cloned and sequenced. Sequence comparison shows that enoate reductases are similar to a family of flavoproteins comprising 2,4-dienoyl-coenzyme A reductase from Escherichia coli and old yellow enzyme from yeast. The C. thermoaceticum enr gene product was expressed in recombinant Escherichia coli cells growing under anaerobic conditions. The recombinant enzyme was purified and characterized.
Collapse
Affiliation(s)
- F Rohdich
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany.
| | | | | | | | | |
Collapse
|
6
|
Production of pyruvate from (R)-lactate in an enzyme–membrane reactor with coupled electrochemical regeneration of the artificial mediator anthraquinone-2,6-disulfonate. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(98)00135-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Somers WA, Hartingsveldt WV, Stigter EC, Lugt JPVD. Electrochemical regeneration of redox enzymes for continuous use in preparative processes. Trends Biotechnol 1997. [DOI: 10.1016/s0167-7799(97)89424-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kashiwagi Y, Yanagisawa Y, Shibayama N, Nakahara K, Kurashima F, Anzai J, Osa T. Preparative, electroenzymatic reduction of ketones on an all components-immobilized graphite felt electrode. Electrochim Acta 1997. [DOI: 10.1016/s0013-4686(97)85509-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Kashiwagi Y, Yanagisawa Y, Shibayama N, Nakahara K, Kurashima F, Anzai JI, Osa T. Preparative, Electroenzymatic Reduction of NAD+to NADH on a Thin Poly(Acrylic Acid) Layer-Coated Graphite Felt Electrode Coimmobilizing Ion-paired Methyl Viologen-Cation-Exchange Polymer and Diaphorase. CHEM LETT 1996. [DOI: 10.1246/cl.1996.1093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Schmedding DJM, Somers W, van Dijk C, Günther H, van der Lugt JP, Simon H. Effect of the half wave potential and change of some viologens on the rate of conversion of crotonic acid into butyric acid by enoate reductase. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02447485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|