1
|
Jiang H, Yang J, Jiang D, Sun X. An FcεRI-IgE-based genetically encoded microfluidic cell sensor for fast Gram-negative bacterial screening in food samples. Analyst 2020; 145:2297-2304. [PMID: 32016182 DOI: 10.1039/c9an02289a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An FcεRI-IgE-based genetically encoded microfluidic cell sensor was constructed for fast Gram-negative bacterial screening in food samples. CD14-Fcε IgE, produced by the gene engineered antibodies (GEAs) technology, was used for the recognition of the target bacteria or lipopolysaccharide (LPS). Stable cell lines expressing GCaMP6s, a genetically encoded indicator of calcium flux, were first established for monitoring mast cell activation and improving detection sensitivity. The microfluidic system was designed to improve automation and control the reaction time. Once Gram-negative bacteria bound to the CD14-Fcε IgE on the RBL-2H3 cell surface, RBL-2H3 cell receptor (FcεRI)-induced Ca2+ signaling pathway was immediately activated to release Ca2+. The elevated intracellular Ca2+ triggers GCaMP6s for reporting the presence of Gram-negative bacteria. The developed biosensor was able to detect 80 CFU mL-1 Gram-negative bacteria within 2.5 min in pure culture samples. The biosensor was used to detect Gram-negative bacteria in pork samples. With its short screening time and easy operation, the proposed biosensor shows promise in future applications of foodborne pathogen testing in 1 h to 1 day.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China. and Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Donglei Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing, Jiangsu 210023, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A microbial fuel cell (MFC) is a type of bio-electrochemical system with novel features, such as electricity generation, wastewater treatment, and biosensor applications. In recent years, progressive trends in MFC research on its chemical, electrochemical, and microbiological aspects has resulted in its noticeable applications in the field of sensing. This review was consequently aimed to provide an overview of the most interesting new applications of MFCs in sensors, such as providing the required electrical current and power for remote sensors (energy supply device for sensors) and detection of pollutants, biochemical oxygen demand (BOD), and specific DNA strands by MFCs without an external analytical device (self-powered biosensors). Moreover, in this review, procedures of MFC operation as a power supply for pH, temperature, and organic loading rate (OLR) sensors, and also self-powered biosensors of toxicity, pollutants, and BOD have been discussed.
Collapse
|
3
|
Ozasa K, Won J, Song S, Tamaki S, Ishikawa T, Maeda M. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis. PLoS One 2017; 12:e0172813. [PMID: 28234984 PMCID: PMC5325543 DOI: 10.1371/journal.pone.0172813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022] Open
Abstract
The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light.
Collapse
Affiliation(s)
| | - June Won
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Simon Song
- Department of Mechanical Convergence Engineering, Hanyang University, Seongdong-gu, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seongdong-gu, Seoul, Korea
| | - Shun Tamaki
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Takahiro Ishikawa
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Mizuo Maeda
- Bioengineering Lab, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
4
|
Jiang H, Jiang D, Shao J, Sun X, Wang J. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci Rep 2016; 6:36987. [PMID: 27841364 PMCID: PMC5107890 DOI: 10.1038/srep36987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023] Open
Abstract
Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Donglei Jiang
- School of Food Science and Technology, Jiangsu Key Labortary of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingdong Shao
- Zhangjiagang Entry-Exit Inspection And Quarantine Bureau, Zhangjiagang, Jiangsu 215600, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiasheng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602, USA
| |
Collapse
|
5
|
Perullini M, Ferro Y, Durrieu C, Jobbágy M, Bilmes SA. Sol-gel silica platforms for microalgae-based optical biosensors. J Biotechnol 2014; 179:65-70. [PMID: 24637376 DOI: 10.1016/j.jbiotec.2014.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
An advanced hybrid biosensing platform with improved optical quality is developed based on the acidic encapsulation of microalgi in silica matrices synthesized by TAFR (tetraethoxysilane derived alcohol free route). The three microalgi (Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii) were previously immobilized in alginate following the two-step procedure. Tuning the alginate protecting function with the aid of Tris-HCl buffer, the sol-gel synthesis was conducted at pH 4.0 well below the tolerance limit imposed by the encapsulated microalgae. The acidic condensation of Si(IV) generates silica matrices with outstanding optical properties that suit the requirements of biosensors based on optical detection methods.
Collapse
Affiliation(s)
- Mercedes Perullini
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina.
| | - Yannis Ferro
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 ENTPE, Université de Lyon, France
| | - Claude Durrieu
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 ENTPE, Université de Lyon, France
| | - Matías Jobbágy
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Sara A Bilmes
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
6
|
Chu YF, Hsu CH, Soma PK, Lo YM. Immobilization of bioluminescent Escherichia coli cells using natural and artificial fibers treated with polyethyleneimine. BIORESOURCE TECHNOLOGY 2009; 100:3167-3174. [PMID: 19285859 DOI: 10.1016/j.biortech.2009.01.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
Biosensors based on whole-cell bioluminescence have the potential to become a cost-effective alternative to conventional detection methods upon validation of target selectivity and sensitivity. However, quantitative analysis of bioluminescence is greatly hindered due to lack of control over the total number of cells in a suspending culture. In this study, the effect of surface properties of genetically engineered luminous E. coli cells and fibrous matrices on the immobilization capacity and effectiveness under various environmental conditions were characterized. Four different fibers, including cotton, polyester, viscose rayon, and silk, were investigated. Although cell adhesion was observed on untreated viscose and cotton fibers, viscose fiber pretreated with 0.667% polyethyleneimine (PEI) was found capable of immobilizing the most viable E. coli DPD2234 cells, followed by viscose treated with 0.33% and 1% PEI. The cells immobilized on PEI-treated viscose remained viable and yielded 20% or more bioluminescence signals immediately upon contact with the inducer up to 72 h without feeding nutrients to the cells, suggesting that viscose treated with 0.667% PEI could provide a stable immobilization mechanism for bioluminescent E. coli cells with long sensing period, quick response time, and good signal reproducibility.
Collapse
Affiliation(s)
- Yi-Fang Chu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | |
Collapse
|
7
|
Fritzsche M, Fredriksson JM, Carlsson M, Mandenius CF. A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy. Anal Biochem 2009; 387:271-5. [DOI: 10.1016/j.ab.2009.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/14/2009] [Accepted: 01/18/2009] [Indexed: 02/01/2023]
|
8
|
Manzoori JL, Amjadi M, Orooji M. Application of Crude Extract of Kohlrabi (Brassica oleracea gongylodes) as a Rich Source of Peroxidase in the Spectrofluorometric Determination of Hydrogen Peroxide in Honey Samples. ANAL SCI 2006; 22:1201-6. [PMID: 16966810 DOI: 10.2116/analsci.22.1201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Crude extract of kohlrabi (Brassica oleracea gongylodes) was prepared by a simple procedure and its enzymatic activity and total protein concentration were determined. It was found that this crude extract is a rich source of peroxidase (POx) and has high specific activity. Cross-linked polyvinylpyrrolidone was used as a stabilizer in the preparation of the crude extract. The POx activity of kohlrabi crude extract did not vary for at least 2 months when deoxygenated and stored at 4 degrees C. This extract was applied for the spectrofluorometric determination of hydrogen peroxide using homovanillic acid as a fluorogenic substrate. POx catalyzes the hydrogen peroxide oxidation of homovanillic acid to produce a dimer which shows strong fluorescence at 420 nm with excitation at 312 nm. In the optimum conditions, the calibration graph for hydrogen peroxide was linear up to 190 ng mL(-1), with a detection limit of 4.4 ng mL(-1). The relative standard deviation (RSD) was 1.48% for 50 ng mL(-1) hydrogen peroxide. The proposed method was successfully applied to the determination of hydrogen peroxide in honey. The concentration-time profile of H2O2 produced upon dilution of honey was studied and H2O2 contents of some different honeys from various areas of Iran were determined.
Collapse
Affiliation(s)
- Jamshid L Manzoori
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Iran.
| | | | | |
Collapse
|
9
|
Durrieu C, Chouteau C, Barthet L, Chovelon J, Tran‐Minh C. A Bi‐enzymatic Whole‐Cell Algal Biosensor for Monitoring Waste Water Pollutants. ANAL LETT 2004. [DOI: 10.1081/al-120037589] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Durrieu C, Tran-Minh C. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2002; 51:206-209. [PMID: 11971642 DOI: 10.1006/eesa.2001.2140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A biosensor is constructed to detect heavy metals from inhibition of alkaline phosphatase (AP) present on the external membrane of Chlorella vulgaris microalgae. The microalgal cells are immobilized on removable membranes placed in front of the tip of an optical fiber bundle inside a homemade microcell. C. vulgaris was cultivated in the laboratory and its alkaline phosphatase activity is strongly inhibited in the presence of heavy metals. This property has been used for the determination of those toxic compounds.
Collapse
Affiliation(s)
- Claude Durrieu
- Laboratoire des Sciences de l'Environnement, Ecole Nationale des Travaux Publiques de l'Etat, 3 Rue Maurice Audin, 69518 Vaulx en Velin cedex, France.
| | | |
Collapse
|
11
|
Qian Z, Tan T. A model for multicomponent biosensing and its application to a dead cell-based BOD biosensor. Chem Eng Sci 1998. [DOI: 10.1016/s0009-2509(98)00141-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jardemark K, Farre C, Jacobson I, Zare RN, Orwar O. Screening of receptor antagonists using agonist-activated patch clamp detection in chemical separations. Anal Chem 1998; 70:2468-74. [PMID: 9666721 DOI: 10.1021/ac971147k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a capillary electrophoresis-patch clamp detection system optimized for screening of antagonists and inhibitors of ligand-gated ion channels. In this system, highly selective receptor agonists are delivered through the electrophoresis capillary to the cell surface where they continuously activate a receptor, resulting in increased steady-state transmembrane currents. Thus, receptor selection and biosensor functionality is simply achieved by selection of an appropriate agonist. The antagonists are fractionated in the same electrophoresis capillary and inhibit the agonist-evoked response, resulting in transiently decreased steady-state transmembrane currents. Specifically, a mixture containing 6-cyano-7-nitroquinoxaline-2,3-dione, that reversibly blocks alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and kainate receptors, and 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, a broad-spectrum glutamate receptor antagonist, were separated and detected by kainate-activated patch-clamped interneurons freshly dissociated from rat brain olfactory bulb. In addition, Mg2+ that reversibly blocks the N-methyl-D-aspartate receptor in a voltage-dependent way was detected using the same cell detector system when activated by N-methyl-D-aspartate and the co-agonist glycine. The presented method offers new possibilities for drug screening and for identifying endogenous receptor antagonists and to determine their mode of action on any ionotropic receptor system of interest.
Collapse
Affiliation(s)
- K Jardemark
- Department of Anatomy and Cell Biology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
This review discusses current developments in biosensors for toxic materials of defence interest with particular emphasis on the biological element of such devices. A wide variety of synthetic chemicals, toxins of plant or animal origin and biological materials--including various disease micro-organisms as well as some bacterial exotoxins--have either been used as warfare agents or are perceived as having the potential to be used for that purpose. Although an enormous effort is being put into developing biosensors, relatively few analytes, especially toxic materials, can yet be measured by commercially available devices. The factors which currently mitigate against the use of enzyme, natural receptor or antibody based biosensors for unattended continuous environmental monitoring of toxic materials include the inherent instability and availability of suitable proteins and--for receptors and antibodies--the essentially irreversible nature of the binding event, which necessitates a continuous supply of reagents for sequential measurements. Assays involving antibody or DNA based biosensors are time consuming when working in a hazardous environment. Nevertheless, biosensors are capable of being used for extremely sensitive and specific on-site measurements of contamination by specific toxic materials. Methods for improving the stability, extending the range and altering the binding characteristics of sensing molecules are discussed.
Collapse
Affiliation(s)
- B M Paddle
- DSTO, Aeronautical and Maritime Research Laboratory, Department of Defence, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
|
17
|
Possible clinical applications of tissue and cell biosensors. BIOMEDICAL ENGINEERING 1995. [DOI: 10.1007/bf00558879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Tescione L, Belfort G. Construction and evaluation of a metal ion biosensor. Biotechnol Bioeng 1993; 42:945-52. [DOI: 10.1002/bit.260420805] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
|