1
|
Pernía B, Urbina H, González M, Sena L, Villasana Y, Naranjo-Briceño L. Trametes coccinea IDEA, un hongo súper productor de lacasa aislado de un lago natural de asfalto: Tolerancia y biotransformación de hidrocarburos policíclicos aromáticos. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los hidrocarburos policíclicos aromáticos (HPAs) son compuestos tóxicos que no se degradan fácilmente bajo condiciones naturales tales como fenómenos físicos (fotooxidación, volatilización), químicos (intercambio iónico, complejación, transformación) y biológicos (degradación por microorganismos autóctonos) que además, dependen de la temperatura, humedad y niveles de oxígeno. El objetivo del presente trabajo fue aislar, identificar y caracterizar fenotípicamente hongos hidrocarbono clásticos de ambientes extremos que sean capaces de tolerar HPAs, tales como Trametes coccinea IDEA, que se aisló del Lago de asfalto natural de Guanoco en Venezuela. A fin de estudiar su tolerancia a los HPAs, el hongo se expuso a diferentes concentraciones de naftaleno, fenantreno y pireno (0, 2.5, 25, 50, 100, 200, 400, 800 y 1600 mg/L). Posteriormente, en ensayo en medio de cultivo líquido, se procedió a estudiar el efecto de los HPAs sobre la actividad de enzimas del sistema enzimático de degradación de lignina (SEDL), así como sobre la posible variación en los niveles de toxicidad empleando Lactuca sativa como bioindicador. Los resultados mostraron una mayor tolerancia al pireno, seguido por el naftaleno y fenantreno. Se observó una fuerte inducción de la actividad lacasa en presencia de naftaleno (167.96 U/mgP) y pireno (124.89 U/mgP) con respecto al control, mientras que con fenantreno se obtuvo una baja actividad (88.67 U / mgP). De manera interesante, se evidenció una generación de sub-productos más tóxicos cuando el naftaleno y el fenantreno fueron biotratados por el hongo, mientras que el nivel de toxicidad del pireno disminuyó significativamente. T. coccinea IDEA tiene un alto potencial para ser utilizado en estrategias de biorremediación de hidrocarburos, las cuales deben ser monitoreadas mediante análisis ecotoxicológicos para detectar posibles variaciones de toxicidad de los productos parcialmente biotransformados.
Collapse
Affiliation(s)
- Beatriz Pernía
- Área de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CP, Caracas, Venezuela nstituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil, CP, Guayaquil, Ecuador
| | - Hector Urbina
- Área de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CP, Caracas, Venezuela Division of Plant Industry, Florida Department of Agriculture, Gainesville, FL, USA
| | - Meralys González
- Área de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CP, Caracas, Venezuela
| | - Lucia Sena
- rea de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CP, Caracas, Venezuela
| | - Yanet Villasana
- Grupo Biomass to Bioresources, Universidad Regional Amazónica Ikiam, CP, Tena, Ecuador
| | - Leopoldo Naranjo-Briceño
- Área de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CP, Caracas, Venezuela Grupo de Microbiología Aplicada, Universidad Regional Amazónica Ikiam, CP, Tena, Ecuador
| |
Collapse
|
2
|
Fungal Treatment for the Valorization of Technical Soda Lignin. J Fungi (Basel) 2021; 7:jof7010039. [PMID: 33435491 PMCID: PMC7827817 DOI: 10.3390/jof7010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.
Collapse
|
3
|
Mariano LG, Carvalho AGD, Trevisan H, Fernandes MDCA. Identification and control of wood-deteriorating fungi. ARQUIVOS DO INSTITUTO BIOLÓGICO 2020. [DOI: 10.1590/1808-1657000082020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Wood is rich in organic compounds; thus, it is susceptible to attacks by several deteriorating agents because they acknowledge such attacks as a necessary energy supply. Fungi stand out among these agents since they can attack the wood in trees (before felling) and in several post-felling stages. Fungi are biological agents that use organic compounds as food sources, and that is the reason why they degrade most chemical components found in wood. Wood attacked by fungi suffers significant value loss, since these degrading agents affect their mechanical and aesthetic properties. Fungi — which are classified as staining, molding and rotting — are one of the main responsible for the biggest losses in the timber industry. Wood can be virtually used in a whole range of environments, a fact that makes it susceptible to attacks by different fungal species, since the ideal conditions for fungal development change from species to species. In other words, the fact that one or more fungal species are capable of deteriorating wood is directly related to conditions wood is subjected to. Thus, it is essential knowing how to evaluate fungal attacks, symptoms to be taken into consideration at the time to identify the type of attacking organism and the attack stage, as well as the control and prevention measures to be applied to these organisms.
Collapse
|
4
|
Pointing SB, Jones EBG, Vrijmoed LLP. Optimization of laccase production byPycnoporus sanguineusin submerged liquid culture. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. B. Pointing
- Centre for Research in Fungal Diversity, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - E. B. G. Jones
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - L. L. P. Vrijmoed
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
5
|
Garcia LF, Lacerda MFAR, Thomaz DV, de Souza Golveia JC, Pereira MDGC, de Souza Gil E, Schimidt F, Santiago MF. Optimization of laccase–alginate–chitosan-based matrix toward 17 α-ethinylestradiol removal. Prep Biochem Biotechnol 2019; 49:375-383. [DOI: 10.1080/10826068.2019.1573195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | | | | | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Fernando Schimidt
- Departamento de Quimica, Instituto Federal de Goias - IFG, Ciência e Tecnologia de Goiás, Instituto Federal de Educação, Goiânia, GO, Brazil
| | | |
Collapse
|
6
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Liu J, Wang ML, Tonnis B, Habteselassie M, Liao X, Huang Q. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. BIORESOURCE TECHNOLOGY 2013. [PMID: 23195655 DOI: 10.1016/j.biortech.2012.10.095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study investigates fungal pretreatment of switchgrass involving solid state fermentation (SSF) to improve saccharification and simultaneously produce enzymes as co-products. The results revealed that the fungus Pycnoporus sp. SYBC-L3 can significantly degrade lignin and enhance enzymatic hydrolysis efficiency. After a 36-d cultivation period, nearly 30% reduction in lignin content was obtained without significant loss of cellulose and hemicellulose, while a considerable amount of laccase, as high as 6.3 U/g, was produced. After pretreatment, pores on switchgrass surface were observed using scanning electron microscopy (SEM). The enzymatic hydrolysis efficiency for the switchgrass with 36-d pretreatment was about 50% greater than the untreated one. Our results suggest that solid state fungal cultivation may be a good method for switchgrass pretreatment, which can simultaneously achieve high efficiency of enzymatic hydrolysis and production of some useful enzymes for other industrial utilization.
Collapse
Affiliation(s)
- Jiayang Liu
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chan YS, Mat Don M. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:282-8. [DOI: 10.1016/j.msec.2012.08.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/12/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
9
|
Lomascolo A, Uzan-Boukhris E, Herpoël-Gimbert I, Sigoillot JC, Lesage-Meessen L. Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 2011; 92:1129-49. [PMID: 22038244 DOI: 10.1007/s00253-011-3596-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/02/2011] [Accepted: 09/18/2011] [Indexed: 11/24/2022]
Abstract
The genus Pycnoporus forms a cosmopolitan group of four species belonging to the polyporoid white-rot fungi, the most representative group of homobasidiomycetes causing wood decay. Pycnoporus fungi are listed as food- and cosmetic-grade microorganisms and emerged in the early 1990s as a genus whose biochemistry, biodegradation and biotechnological properties have since been progressively detailed. First highlighted for their original metabolic pathways involved in the functionalization of plant cell wall aromatic compounds to yield high-value molecules, e.g. aromas and antioxidants, the Pycnoporus species were later explored for their potential to produce various enzymes of industrial interest, such as hydrolases and oxidases. However, the most noteworthy feature of the genus Pycnoporus is its ability to overproduce high redox potential laccase-a multi-copper extracellular phenoloxidase-as the predominant ligninolytic enzyme. A major potential use of the Pycnoporus fungi is thus to harness their laccases for various applications such as the bioconversion of agricultural by-products and raw plant materials into valuable products, the biopulping and biobleaching of paper pulp and the biodegradation of organopollutants, xenobiotics and industrial contaminants. All the studies performed in the last decade show the genus Pycnoporus to be a strong contender for white biotechnology. In this review, we describe the properties of Pycnoporus fungi in relation to their biotechnological applications and potential.
Collapse
Affiliation(s)
- Anne Lomascolo
- UMR INRA de Biotechnologie des Champignons Filamenteux, ESIL, Marseille, France.
| | | | | | | | | |
Collapse
|
10
|
Lu L, Zhao M, Zhang BB, Yu SY, Bian XJ, Wang W, Wang Y. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl Microbiol Biotechnol 2007; 74:1232-9. [PMID: 17186237 DOI: 10.1007/s00253-006-0767-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The white rot fungus Pycnoporus sanguineus produced high amount of laccase in the basal liquid medium without induction. Laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 61.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme oxidized typical substrates of laccases including 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate), 2,6-dimethoxyphenol, and syringaldazine. The optimum pH and temperature for the purified laccase were 3.0 and 65 degrees C, respectively. The enzyme was stable up to 40 degrees C, and high laccase activity was maintained at pH 2.0-5.0. Sodium azide, L-cysteine, and dithiothreitol strongly inhibited the laccase activity. The purified enzyme efficiently decolorized Remazol Brilliant Blue R in the absence of added redox mediators. The high production of P. sanguineus laccase as well as its decolorization ability demonstrated its potential applications in dye decolorization.
Collapse
Affiliation(s)
- Lei Lu
- College of Life Sciences, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Garcia TA, Santiago MF, Ulhoa CJ. Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography. Appl Microbiol Biotechnol 2007; 75:311-8. [PMID: 17216440 DOI: 10.1007/s00253-006-0817-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/13/2006] [Accepted: 12/16/2006] [Indexed: 10/23/2022]
Abstract
A laccase from Pycnoporus sanguineus was purified by two steps using phenyl-Sepharose columm. A typical procedure provided 54.1-fold purification, with a yield of 8.37%, using syringaldazine as substrate. The molecular weight of the purified laccase was 69 and 68 kDa as estimated by 12% (w/v) SDS-PAGE gel and by gel filtration, respectively. The K (m) values for the substrates ABTS, syringaldazine, and guaiacol were 58, 8.3, and 370 muM, respectively. The enzyme's pH optimum for syringaldazine was 4.2 and optimal activity was 50 degrees C. The enzyme showed to be thermostable because when kept at 50 degrees C for 24 and 48 h it retained 93 and 76% activity. This laccase was inhibited by L: -cysteine, beta-mercaptoethanol, NaN(3), NaF, and HgCl(2).
Collapse
Affiliation(s)
- Telma Alves Garcia
- Faculdade de Farmácia, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | | | | |
Collapse
|
13
|
Halaouli S, Asther M, Kruus K, Guo L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol 2005; 98:332-43. [PMID: 15659188 DOI: 10.1111/j.1365-2672.2004.02481.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Tyrosinase production by Pycnoporus cinnabarinus and Pycnoporus sanguineus was screened among 20 strains originating from various geographical areas, particularly from tropical environments. The tyrosinase from the most efficient strain was purified and characterized and tested for food additive applications. METHODS AND RESULTS Monophenolase and diphenolase activities of tyrosinase were measured from cell lysate from the 20 Pycnoporus strains, for 8-10 days of cultivation. The strain P. sanguineus CBS 614.73 showed the highest productivity (45.4 and 163.6 U g(-1) protein per day for monophenolase and diphenolase respectively). P. sanguineus CBS 614.73 tyrosinase was purified from concentrated cell lysate, anion-exchange, size-exclusion and hydroxyapatite chromatography, with a final yield of 2% and a purification factor of 35-38. The pure enzyme was a monomere with a molecular mass of 45 kDa and it showed four isoforms or isoenzymes with pI between 4.5-5. No N-glycosylation was found. The N-terminal amino acid sequence was IVTGPVGGQTEGAPAPNR. The enzyme was shown to be almost fully active in a pH range of 6-7, in a large temperature range (30-70 degrees C), and was stable below 60 degrees C. The main kinetic constants were determined. The tyrosinase was able to convert p-tyrosol and p-coumaric acid into hydroxytyrosol and caffeic acid, respectively, and it could also catalyse the cross-linking formation of a model protein. CONCLUSIONS Among the genus Pycnoporus, known for the production of laccase, the strain P. sanguineus CBS 614.73 was shown to produce one other phenoloxidase, a new monomeric tyrosinase with a specific activity of 30 and 84 U mg(-1) protein for monophenolase and diphenolase respectively. SIGNIFICANCE AND IMPACT OF THE STUDY This study identified P. sanguineus CBS 614.73 as a potential producer of a tyrosinase which demonstrated effectiveness in the synthesis of antioxidant molecules and in protein cross-linking.
Collapse
Affiliation(s)
- S Halaouli
- UMR 1163 INRA-Université de Provence de Biotechnologie des Champignons Filamenteux, IFR 86 de Biotechnologie Agro-Industrielle de Marseille, Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction. ACTA ACUST UNITED AC 2002. [DOI: 10.1017/s0953756202006494] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Eggert C. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol Res 1997; 152:315-8. [PMID: 9352667 DOI: 10.1016/s0944-5013(97)80046-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concentrated culture fluid of the wood-rotting basidiomycete Pycnoporus cinnabarinus showed biological activity against a variety of bacterial strains. The maximal inhibitory effect was obtained for Gram-positive bacteria of the genus Streptococcus. In general, inhibition was higher for Gram-positive than Gram-negative bacteria. P. cinnabarinus produces the phenoxazinone derivative, cinnabarinic acid. This red pigment accumulates in sporocarps as well as in liquid cultures. As shown previously, laccase secreted by the fungus oxidizes the precursor 3-hydroxyanthranilic acid to cinnabarinic acid. The present study demonstrates that this reaction is necessary for the production of antibacterial compounds by the fungus. The biological activity of concentrated P. cinnabarinus culture fluid was nearly identical with that of cinnabarinic acid, synthesized by purified laccase in vitro.
Collapse
Affiliation(s)
- C Eggert
- Institut für Allgemeine Mikrobiologie und Mikrobengenetik, Friedrich-Schiller Universität Jena, Germany
| |
Collapse
|
16
|
Eggert C, Temp U, Dean JF, Eriksson KE. Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Lett 1995; 376:202-6. [PMID: 7498542 DOI: 10.1016/0014-5793(95)01274-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The phenoxazinone chromophore occurs in a variety of biological systems, including numerous pigments and certain antibiotics. It also appears to form as part of a mechanism to protect mammalian tissue from oxidative damage. During cultivation of the basidiomycete, Pycnoporus cinnabarinus, a red pigment was observed to accumulate in the culture medium. It was identified as the phenoxazinone derivative, cinnabarinic acid (CA). Laccase was the predominant extracellular phenoloxidase activity in P. cinnabarinus cultures. In vitro studies showed that CA was formed after oxidation of the precursor, 3-hydroxyanthranilic acid (3-HAA), by laccases. Moreover, oxidative coupling of 3-HAA to form CA was also demonstrated for the mammalian counterpart of laccase, the blue copper oxidase, ceruloplasmin.
Collapse
Affiliation(s)
- C Eggert
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602-7229, USA
| | | | | | | |
Collapse
|