1
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
2
|
Phylogenetic Analysis of South African Bovine Leukaemia Virus (BLV) Isolates. Viruses 2020; 12:v12080898. [PMID: 32824449 PMCID: PMC7472093 DOI: 10.3390/v12080898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Bovine leukaemia virus (BLV) causes chronic lymphoproliferative disorder and fatal lymphosarcoma in cattle, leading to significant economic losses in the beef and dairy industries. BLV is endemic globally and eleven genotypes have been identified. To date, only Zambian isolates have been genotyped from Africa. Although high BLV prevalence has been reported in South Africa, there has been no molecular characterisation of South African BLV isolates. To characterise BLV isolates in South Africa for the first time, we investigated the phylogenetic relationships and compared the genetic variability of eight South African BLV isolates with BLV isolates representing the eleven known genotypes from different geographical regions worldwide. Phylogenetic analyses based on full-length and partial env sequences as well as full-length gag sequences revealed that at least two genotypes, genotypes 1 (G1) and 4 (G4), are present in cattle in South Africa, which is consistent with studies from Zambia. However, our analysis revealed that the G1 South African isolate is more similar to other G1 isolates than the G1 Zambian isolates whereas, the G4 South African isolates are more divergent from other G4 isolates but closely related to the G4 Zambian isolate. Lastly, amino acid sequence alignment identified genotype-specific as well as novel amino acid substitutions in the South African isolates. The detection of two genotypes (G1 and G4) in southern Africa highlights the urgent need for disease management and the development of an efficacious vaccine against local strains.
Collapse
|
3
|
Rodríguez SM, Florins A, Gillet N, de Brogniez A, Sánchez-Alcaraz MT, Boxus M, Boulanger F, Gutiérrez G, Trono K, Alvarez I, Vagnoni L, Willems L. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 2011; 3:1210-48. [PMID: 21994777 PMCID: PMC3185795 DOI: 10.3390/v3071210] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads.
Collapse
Affiliation(s)
- Sabrina M. Rodríguez
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Arnaud Florins
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Nicolas Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Alix de Brogniez
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - María Teresa Sánchez-Alcaraz
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Mathieu Boxus
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| | - Fanny Boulanger
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
| | - Gerónimo Gutiérrez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Karina Trono
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Irene Alvarez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Lucas Vagnoni
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina; E-Mails: (G.G.); (K.T.); (I.A.); (L.V.)
| | - Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège (ULg), 4000, Liège, Belgium; E-Mails: (S.M.R.); (N.G.); (F.B.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 5030, Gembloux, Belgium; E-Mails: (A.F.); (A.d.B.); (M.T.S.-A.); (M.B.)
| |
Collapse
|
4
|
De Giuseppe A, Feliziani F, Rutili D, De Mia GM. Expression of the bovine leukemia virus envelope glycoprotein (gp51) by recombinant baculovirus and its use in an enzyme-linked immunosorbent assay. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:147-51. [PMID: 14715562 PMCID: PMC321346 DOI: 10.1128/cdli.11.1.147-151.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding the major envelope glycoprotein (gp51) with its signal sequence, represented by an additional NH2-terminal 33-residue amino acid sequence of bovine leukemia virus (BLV), was inserted into a baculovirus transfer vector. A recombinant virus expressing a secreted gp51 protein in insect cells was isolated. The recombinant gp51 expressed was characterized by using an anti-BLV monoclonal antibody by both Western blotting analysis and enzyme-linked immunosorbent assay (ELISA). The secreted gp51 was used as an antigen, and an ELISA with recombinant gp51 (rgp51) was developed for the detection of BLV antibodies. This new procedure was compared with a previous ELISA method for the detection of BLV antibodies and an agar gel immunodiffusion test performed with an unpurified BLV antigen preparation. The comparative testing of field samples showed that the ELISA with rgp51 is more specific and also suitable for the testing of pooled sera.
Collapse
Affiliation(s)
- Antonio De Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, 06126 Perugia, Italy
| | | | | | | |
Collapse
|
5
|
Daniel RC, Gatei MH, Good MF, Boyle DB, Lavin MF. Recombinant viral vaccines for enzootic bovine leucosis. Immunol Cell Biol 1993; 71 ( Pt 5):399-404. [PMID: 8270269 DOI: 10.1038/icb.1993.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently published studies on the development and use of recombinant vaccinia virus (VV) vaccines incorporating either the complete envelope (env) gene or only a fragment of the env gene consisting of the coding sequence for the env glycoprotein 51 (gp51) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV. The evidence for this protection is based on the lack of persistence of high titres of anti-gp51 antibodies compared with unvaccinated BLV infected controls, on the enhanced CD4 proliferative responses to specific BLV gp51 synthetic peptides in the vaccinated sheep, and on the inability to detect BLV pro-virus by polymerase chain reaction in the vaccinated sheep after 4 months following challenge infection compared with continual detection in unvaccinated sheep over a 16 month trial period. It has been suggested that cell-mediated immune responses may be an important aspect of protective immunity against BLV infection and it has been reported that large tracts of amino acid sequences within the env and pol genes are highly conserved in different isolates from different countries which is of importance in designing peptide derived vaccines.
Collapse
Affiliation(s)
- R C Daniel
- Department of Farm Animal Medicine and Production, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
6
|
Gatei MH, Naif HM, Kumar S, Boyle DB, Daniel RC, Good MF, Lavin MF. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: correlation of protection with CD4 T-cell response to gp51 peptide 51-70. J Virol 1993; 67:1803-10. [PMID: 7680387 PMCID: PMC240230 DOI: 10.1128/jvi.67.4.1803-1810.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously constructed vaccinia virus (VV) recombinants containing a complete or truncated envelope (env) gene of bovine leukemia virus (BLV). Only recombinants carrying the complete env gene (VV-BLV2 and VV-BLV3) expressed env glycoprotein on the surface of virus-infected cells and produced an antibody response in rabbits. In the present study, these VV recombinants were used to immunize sheep prior to challenge with BLV-infected peripheral blood mononuclear cells. Both humoral and cell-mediated immunity were monitored in infected animals. Sheep inoculated with recombinants containing the complete env gene showed a CD4 response to a defined epitope of gp51, but this response was absent 4 months postchallenge. Anti-gp51 antibodies appeared in animals inoculated with complete env 2 weeks after challenge, reached a peak at 4 weeks, and subsequently declined over 16 months. No CD4 response was recorded in animals inoculated with recombinants containing truncated env gene (VV-BLV1). BLV-infected control animals and those animals receiving VV-BLV1 were slower to develop antibodies postchallenge, and the titers of anti-gp51 antibodies continued to increase over 16 months. Proviral DNA was detected by the polymerase chain reaction in the four groups at 6 weeks after challenge. However, it could not be detected 4 months postinfection in the VV groups inoculated with complete env. Provirus was present in the VV-BLV1 and control groups over the 16-month trial period. These results demonstrate that vaccination with VV recombinants containing the complete env gene of BLV protects sheep against infection and that protection correlated with a CD4 T-cell response to a defined epitope.
Collapse
Affiliation(s)
- M H Gatei
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, Brisbane
| | | | | | | | | | | | | |
Collapse
|
7
|
Reddy DA, Bergmann CC, Meyer JC, Berriman J, Both GW, Coupar BE, Boyle DB, Andrew ME, Bellamy AR. Rotavirus VP6 modified for expression on the plasma membrane forms arrays and exhibits enhanced immunogenicity. Virology 1992; 189:423-34. [PMID: 1322583 DOI: 10.1016/0042-6822(92)90566-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major inner capsid protein of rotavirus is VP6, a 42-kDa polypeptide that forms the icosahedral surface of the rotavirus single-shelled particle. A chimeric form of VP6 (VP6sc) was constructed containing an upstream leader sequence derived from the influenza virus hemagglutinin and a downstream membrane-spanning (anchor) domain from a mouse immunoglobulin gene. When VP6sc was expressed in cells using a recombinant vaccinia virus, the protein was transported, glycosylated, and anchored in the plasma membrane as a trimer with the major domains of the protein orientated externally. Immunofluorescence and immunolabeling with colloidal gold indicated that VP6sc also localized in patches on the cell surface; electron microscopy revealed that the protein assembled into two-dimensional arrays which exhibited the same periodicity as the paracrystalline arrays formed by purified (viral) VP6. Mice inoculated with a recombinant vaccinia virus that expressed VP6sc produced rotavirus-specific antibodies at a titer 10 times higher than that achieved when wild-type, intracellular VP6 was delivered in the same way. Presentation at the cell surface therefore may represent a general method for enhancing the immunogenicity of rotavirus proteins.
Collapse
Affiliation(s)
- D A Reddy
- Centre for Gene Technology, School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|