1
|
Shi R, Hou L, Wei L, Quan R, Zhou B, Jiang H, Wang J, Zhu S, Song J, Wang D, Liu J. Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Front Microbiol 2021; 12:636307. [PMID: 33679671 PMCID: PMC7928314 DOI: 10.3389/fmicb.2021.636307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) invades multiple tissues and organs of pigs of different ages and are widely spread throughout pig farms, emerging as an important viral pathogen that can potentially damage the pig industry worldwide. Since PCV3 is a newly discovered virus, many aspects of its life cycle remain unknown. Porcine kidney epithelial cells are important host targets for PCV3. Here, we used systematic approaches to dissect the molecular mechanisms underlying the cell entry and intracellular trafficking of PCV3 in PK15 cells, a cell line of porcine kidney epithelial origin. A large number of PCV3 viral particles were found to colocalize with clathrin but not caveolin-1 after entry, and PCV3 infection was significantly decreased when treated with chlorpromazine, dynasore, knockdown of clathrin heavy chain expression via RNA interference, or overexpression of a dominant-negative mutant of EPS15 in PCV3-infected cells. After internalization, the viral particles were further observed to colocalize with Rab5 and Rab7, and knockdown of both expression by RNA interference significantly inhibited PCV3 replication. We also found that PCV3 infection was impeded by ammonium chloride treatment, which indicated the requirement of an acidic environment for viral entry. Taken together, our findings demonstrate that PCV3 enters PK15 cells through a clathrin- and dynamin-2-mediated endocytic pathway, which requires early and late endosomal trafficking, as well as an acidic environment, providing an insightful theoretical basis for further understanding the PCV3 life cycle and its pathogenesis.
Collapse
Affiliation(s)
- Ruihan Shi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Padmanabhan R, Tanimoto A, Sasaguri Y. Transactivation of human cdc2 promoter by adenovirus E1A. Curr Top Microbiol Immunol 2003; 272:365-97. [PMID: 12747556 DOI: 10.1007/978-3-662-05597-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expression of the adenovirus oncoprotein E1A 12S induces the heterotrimeric transcription factor, NF-Y. NF-Y binds to the two CCAAT motifs upstream of the transcriptional start site of the human cdc2 promoter and is required for activation of the promoter by E1A 12S in cycling cells. The observations that a number of eukaryotic cell cycle regulatory genes also contain the CCAAT motifs and NF-Y binds to them support the notion that E1A 12S could play an important role in deregulated expression of these genes through activation of NF-Y gene in cycling cells.
Collapse
Affiliation(s)
- R Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, 3900 Reservoir Road, Washington DC, WA 20057, USA.
| | | | | |
Collapse
|
3
|
Sanchez TA, Habib I, Leland Booth J, Evetts SM, Metcalf JP. Zinc finger and carboxyl regions of adenovirus E1A 13S CR3 are important for transactivation of the cytomegalovirus major immediate early promoter by adenovirus. Am J Respir Cell Mol Biol 2000; 23:670-7. [PMID: 11062146 DOI: 10.1165/ajrcmb.23.5.3675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) is an important cause of disease in susceptible patients. We previously demonstrated that an adenovirus early gene product can transactivate the CMV major immediate early (IE) promoter in inflammatory cells. This effect was due to the conserved region 3 (CR3) of the adenovirus E1A 13S gene product. There are two domains in the CR3 region, a zinc finger (aa 147-177) and a carboxyl (aa 180-188) domain. Both are crucial for transactivation of downstream promoter elements of adenovirus in E1A 13S. We sought to determine if either or both of these specific domains is also necessary for transactivation of the CMV IE promoter by the adenovirus E1A 13S gene product. We cotransfected T-lymphocyte Jurkat cells and monocyte/macrophage-like THP-1 cells with plasmids expressing wild-type (WT) or CR3 mutant E1A 13S and a CMV IE chloramphenicol acetyltransferase (CAT) reporter construct. With extracts of cells coinfected with E1A WT set to 100%, mutation in the zinc finger domain, the carboxyl domain, or both domains decreased CMV IE CAT activity by >/= 96%. In contrast, a mutation in the region between the zinc finger and carboxyl domains reduced CMV IE CAT activity by only 24 to 26%. Mixing studies in Jurkat cells confirmed the importance of these domains. We also evaluated the active site of the CMV IE promoter involved in transactivation in THP-1 cells using CMV IE promoter deletions and single promoter element constructs. These studies showed that progressive deletion of the 19-bp CMV IE repeats containing cyclic AMP response element binding protein/activating transcription factor (CREB/ATF) sites resulted in progressive loss of activity. The importance of this element was confirmed using single promoter elements containing CMV IE 16-, 18-, 19-, and 21-bp repeats. Finally, using a 19-bp single promoter element construct and the CR3 mutants we demonstrated that mutations in the zinc finger (C171S) carboxyl region (S185N) or both regions (C171S/ S185N) resulted in significant (83, 94, and 85%) loss of activity. We conclude that the zinc finger and carboxyl domains of the CR3 region of E1A 13S are necessary for transactivation of the CMV promoter and that this occurs mainly through activation of the 19-bp CREB/ATF site of the promoter.
Collapse
Affiliation(s)
- T A Sanchez
- Pulmonary and Critical Care Division, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
4
|
Wong HK, Ziff EB. The human papillomavirus type 16 E7 protein complements adenovirus type 5 E1A amino-terminus-dependent transactivation of adenovirus type 5 early genes and increases ATF and Oct-1 DNA binding activity. J Virol 1996; 70:332-40. [PMID: 8523545 PMCID: PMC189822 DOI: 10.1128/jvi.70.1.332-340.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously shown that conserved region 1 (CR1) of the adenovirus type 5 (Ad5) E1A protein synergizes with CR3 in the transactivation of Ad5 early genes (H.K. Wong and E. B. Ziff, J. Virol. 68:4910-4920, 1994). CR1 lies within the E1A amino terminus and binds host regulatory proteins such as the RB protein, p107, p130, and p300. Since simian virus 40 (SV40) large T antigen and human papillomavirus type 16 (HPV16) E7 protein also bind host regulatory factors, we investigated whether these viral proteins can complement E1A mutants which are defective in early gene activation. We show that the HPV16 E7 protein but not SV40 T antigen can complement mutations in the Ad5 E1A CR1 in the transactivation of viral early promoters. The inability of SV40 T antigen to complement suggests that RB binding on its own is not sufficient for early promoter transactivation by the E1A amino terminus. Nuclear runoff assays show that complementation by HPV16 E7 restores the ability of the E1A mutants to stimulate early gene expression at the level of transcription. Furthermore, nuclear extracts from the E7-transformed cells show increased binding activity of ATF and Oct-1, factors that can recognize the elements of Ad5 early genes, consistent with gene activation by E1A and E7 at the transcriptional level.
Collapse
Affiliation(s)
- H K Wong
- Department of Biochemistry, Howard Hughes Medical Institute, Kaplan Cancer Center, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|