1
|
Lye PY, Noor SM, Shohaimi SA, Junoh NF, Tan SC, Iwamoto S, Kotani E, Norazmi MN, Nagamine T, Mori H, Liew MW. Process development for quantitation and vaccine efficacy assessment of recombinant hemagglutinin-neuraminidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Khulape SA, Maity HK, Pathak DC, Ramamurthy N, Ramakrishnan S, Chellappa MM, Dey S. Evaluation of a fusion gene-based DNA prime-protein boost vaccination strategy against Newcastle disease virus. Trop Anim Health Prod 2019; 51:2529-2538. [PMID: 31209691 DOI: 10.1007/s11250-019-01967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023]
Abstract
The low potency of genetic immunization has to date impeded development of commercial vaccines against major infectious diseases. The aim of this study was to develop and evaluate a fusion gene-based DNA prime-protein boost vaccination strategy to improve the efficacy of both DNA and subunit vaccines against Newcastle disease virus (NDV). The fusion (F) protein, a viral surface glycoprotein, is responsible for the cell membrane fusion and spread, also is one of the major targets for immune response. In this study, groups of chickens were vaccinated twice intramuscularly at 14-day interval either with plasmid DNA encoding F protein gene of NDV or with recombinant F protein alone or with plasmid DNA and boosted with the recombinant F protein and compared with birds that were vaccinated with live NDV vaccine. The immune response was evaluated by indirect ELISA, lymphocyte transformation test, virus neutralization test, cytokine analysis, immunophenotyping of peripheral blood mononuclear cells, and protective efficacy study against virulent NDV challenge virus infection. Chickens in prime-boost group developed a higher level of humoral and cellular immune responses as compared with those immunized with plasmid or protein alone. The DNA prime-protein boost using F protein of NDV yielded 91.6% protection against virulent NDV challenge infection better than immunization with DNA vaccine (66.6%) or rF protein (83.3%) alone. These findings suggest that the "DNA prime-protein boost" approach using full-length F gene could enhance the immune response against NDV in the chickens.
Collapse
Affiliation(s)
- Sagar A Khulape
- Directorate on Foot and Mouth Disease Virus, Mukteshwar-Kumaon, Nainital, Uttarakhand, India
| | - Hemanta Kumar Maity
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Dinesh Chandra Pathak
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Narayan Ramamurthy
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Saravanan Ramakrishnan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243 122, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| |
Collapse
|
3
|
Gaikwad SS, Lee HJ, Kim JY, Choi KS. Expression and serological application of recombinant epitope-repeat protein carrying an immunodominant epitope of Newcastle disease virus nucleoprotein. Clin Exp Vaccine Res 2019; 8:27-34. [PMID: 30775348 PMCID: PMC6369128 DOI: 10.7774/cevr.2019.8.1.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The aim of the present study was to develop a serodiagnostic test for differentiation infected from vaccinated animal (DIVA) strategy accompanying the marker vaccine lacking an immunodominant epitope (IDE) of nucleoprotein of Newcastle disease virus (NDV). Materials and Methods Recombinant epitope-repeat protein (rERP) gene encoding eight repeats of the IDE sequence (ETQFLDLMRAVANSMR) by tetra-glycine linker was synthesized. Recombinant baculovirus carrying the rERP gene was generated to express the rERP in insect cells. Specificity and sensitivity of an indirect enzyme-linked immunosorbent assay (ELISA) employing the rERP was evaluated. Results The rERP with molecular weight of 20 kDa was successfully expressed by the recombinant baculovirus in an insect-baculovirus system. The rERP was antigenically functional as demonstrated by Western blotting. An indirect ELISA employing the rERP was developed and its specificity and sensitivity was determined. The ELISA test allowed discrimination of NDV infected sera from epitope deletion virus vaccinated sera. Conclusion The preliminary results represent rERP ELISA as a promising DIVA diagnostic tool.
Collapse
Affiliation(s)
- Satish S Gaikwad
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Parbhani, India
| | - Hyun-Jeong Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Ji-Ye Kim
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Kang-Seuk Choi
- Planning and Coordination Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| |
Collapse
|
4
|
Shen H, Xue C, Lv L, Wang W, Liu Q, Liu K, Chen X, Zheng J, Li X, Cao Y. Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease. Virus Res 2013; 178:430-6. [PMID: 24050994 DOI: 10.1016/j.virusres.2013.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/25/2013] [Accepted: 09/06/2013] [Indexed: 11/15/2022]
Abstract
Avian influenza virus (AIV) and Newcastle disease virus (NDV) are both important pathogens in poultry worldwide. The protection of poultry from avian influenza and Newcastle disease can be achieved through vaccination. We embarked on the development of a bivalent vaccine that would allow for a single immunization against both avian influenza and Newcastle disease. We constructed a chimeric virus-like particle (VLP) that is composed of the M1 protein and HA protein of avian influenza virus and a chimeric protein containing the cytoplasmic and transmembrane domains of AIV neuraminidase protein (NA) and the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein (NA/HN). The single immunization of chickens with the chimeric VLP vaccine induced both AIV H5- and NDV-specific antibodies. The HI titers and specific antibodies elicited by the chimeric VLPs were statistically similar to those elicited in animals vaccinated with the corresponding commercial monovalent vaccines. Chickens vaccinated with chimeric VLP vaccine and then challenged with the Newcastle disease F48E9 virus displayed complete protection. Overall, the chimeric VLP vaccine elicits strong immunity and can protect against Newcastle disease virus challenge.
Collapse
Affiliation(s)
- Huifang Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rauw F, Gardin Y, Palya V, Anbari S, Lemaire S, Boschmans M, van den Berg T, Lambrecht B. Improved vaccination against Newcastle disease by an in ovo recombinant HVT-ND combined with an adjuvanted live vaccine at day-old. Vaccine 2010; 28:823-33. [DOI: 10.1016/j.vaccine.2009.10.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/01/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
6
|
Potential use of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus expressed in Rachiplusia nu larvae as an immunogen for chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:775-8. [PMID: 19297615 DOI: 10.1128/cvi.00432-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus (NDV) was obtained as a recombinant antigen in Rachiplusia nu larvae. When it was used as an immunogen in chickens, a solid immune response, including neutralizing antibodies, was detected, demonstrating the potential use of this simple and economic strategy in the design of recombinant anti-NDV vaccines.
Collapse
|
7
|
Lee YJ, Sung HW, Choi JG, Lee EK, Yoon H, Kim JH, Song CS. Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutininneuraminidase proteins. J Vet Sci 2008; 9:301-8. [PMID: 18716451 PMCID: PMC2811843 DOI: 10.4142/jvs.2008.9.3.301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recombinant baculoviruses containing the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein gene of the viscerotropic velogenic (vv) Newcastle disease virus (NDV) isolate, Kr-005/00, and a lentogenic La Sota strain of the NDV were constructed in an attempt to develop an effective subunit vaccine to the recent epizootic vvNDV. The level of protection was determined by evaluating the clinical signs, mortality, and virus shedding from the oropharynx and cloaca of chickens after a challenge with vvNDV Kr-005/00. The recombinant ND F (rND F) and recombinant HN (rND HN) glycoproteins derived from the velogenic strain provided good protection against the clinical signs and mortality, showing a 0.00 PI value and 100% protection after a booster immunization. On the other hand, the combined rND F + HN glycoprotein derived from the velogenic strain induced complete protection (0.00 PI value and 100% protection) and significantly reduced the amount of virus shedding even after a single immunization. The rND F and rND HN glycoproteins derived from the velogenic strain had a slightly, but not significantly, greater protective effect than the lentogenic strain. These results suggest that the combined rND F + HN glycoprotein derived from vvNDV can be an ideal subunit marker vaccine candidate in chickens in a future ND eradication program.
Collapse
Affiliation(s)
- Youn-Jeong Lee
- National Veterinary Research and Quarantine Service, Anyang 430-824, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Miller PJ, King DJ, Afonso CL, Suarez DL. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 2007; 25:7238-46. [PMID: 17719150 DOI: 10.1016/j.vaccine.2007.07.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Strains of Newcastle disease virus (NDV) can be separated into genotypes based on genome differences even though they are antigenically considered to be of a single serotype. It is widely recognized that an efficacious Newcastle disease (ND) vaccine made with any NDV does induce protection against morbidity and mortality from a virulent NDV challenge. However, those ND vaccines do not protect vaccinates from infection and viral shed from such a challenge. Vaccines prepared from ND viruses corresponding to five different genotypes were compared to determine if the phylogenetic distance between vaccine and challenge strain influences the protection induced and the amount of challenge virus shed. Six groups of 4-week-old specific pathogen-free Leghorn chickens were given oil-adjuvanted vaccines prepared from one of five different inactivated ND viruses including strains B1, Ulster, CA02, Pigeon84, Alaska 196, or an allantoic fluid control. Three weeks post-vaccination, serum was analyzed for antibody content using a hemagglutination inhibition assay against each of the vaccine antigens and a commercial NDV ELISA. After challenge with virulent CA02, the birds were examined daily for morbidity and mortality and were monitored at selected intervals for virus shedding. All vaccines except for the control induced greater than 90% protection to clinical disease and mortality. The vaccine homologous with the challenge virus reduced oral shedding significantly more than the heterologous vaccines. NDV vaccines formulated to be phylogenetically closer to potential outbreak viruses may provide better ND control by reducing virus transmission from infected birds.
Collapse
Affiliation(s)
- Patti J Miller
- Southeast Poultry Research Laboratory, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | | | | | | |
Collapse
|
9
|
Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, Fehérvári-Bone T, Gómez-Lim MA. Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res 2006; 15:455-63. [PMID: 16906446 DOI: 10.1007/s11248-006-0017-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 03/20/2006] [Indexed: 11/25/2022]
Abstract
Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins, including antibodies, antigens and hormones. Here, we report the expression of the fusion (F) gene of the Newcastle disease virus (NDV) in transgenic maize plants. The expression of the transgene, driven by the maize ubiquitin promoter, caused accumulation of the F protein in maize kernels. The presence of the transgene was verified by Southern and western blots. Feeding chickens with kernels containing the F protein induced the production of antibodies, which conferred protection against a viral challenge. This protection was comparable to that conferred by a commercial vaccine. Possible uses of this plant-based F protein as a potential mucosal vaccine are discussed.
Collapse
Affiliation(s)
- Octavio Guerrero-Andrade
- Departamento de Ingeniería Genética de Plantas, Cinvestav Campus Guanajuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Apdo, Postal 629, Irapuato, Guanajuato, México 36500
| | | | | | | | | |
Collapse
|
10
|
Loke CF, Omar AR, Raha AR, Yusoff K. Improved protection from velogenic Newcastle disease virus challenge following multiple immunizations with plasmid DNA encoding for F and HN genes. Vet Immunol Immunopathol 2005; 106:259-67. [PMID: 15963824 DOI: 10.1016/j.vetimm.2005.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 02/21/2005] [Accepted: 03/03/2005] [Indexed: 11/17/2022]
Abstract
Specific-pathogen free (SPF) chickens were inoculated with the plasmid constructs encoding the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of Newcastle disease virus (NDV), either individually or in combination and challenged with velogenic NDV. The antibody level against NDV was measured using commercial enzyme linked immunosorbent assay (ELISA). In the first immunization regimen, SPF chickens inoculated twice with NDV-F or NDV-HN constructs elicited antibody responses 1 week after the second injection. However, the levels of the antibody were low and did not confer significant protection from the lethal challenge. In addition, administration of the plasmid constructs with Freund's adjuvant did not improve the level of protection. In the second immunization regimen, chickens inoculated twice with the plasmid constructs emulsified with Freund's adjuvant induced significant antibody titers after the third injection. Three out of nine (33.3%) chickens vaccinated with pEGFP-HN, five of ten (50.0%) chickens vaccinated with pEGFP-F and nine of ten (90.0%) chickens vaccinated with combined pEGFP-F and pEGFP-HN were protected from the challenge. No significant differences in the levels of protection were observed when the chickens were vaccinated with linearized pEGFP-F. The results suggested that more than two injections with both F and HN encoding plasmid DNA were required to induce higher level of antibodies for protection against velogenic NDV in chickens.
Collapse
Affiliation(s)
- C F Loke
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
11
|
Panshin A, Shihmanter E, Weisman Y, Orvell C, Lipkind M. Antigenic heterogeneity amongst the field isolates of Newcastle Disease Virus (NDV) in relation to the vaccine strain. Part II: studies on viruses isolated from domestic birds in Israel. Comp Immunol Microbiol Infect Dis 2002; 25:173-85. [PMID: 12053915 DOI: 10.1016/s0147-9571(01)00036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Forty three Newcastle disease virus (NDV) strains isolated before and during 1997 in Israel from domestic birds were studied by means of the three panels of monoclonal antibodies prepared against all the viral envelope proteins in order to reveal the possible antigenic differences between them and the VH strain used in Israel for poultry vaccination. Three isolates were found to have significant antigenic differences in the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins as compared to the vaccine strain. As to the matrix protein, almost all the viruses isolated during the year 1997 were found to have considerable differences from the vaccine strain in two of four antigenic sites.
Collapse
Affiliation(s)
- A Panshin
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel.
| | | | | | | | | |
Collapse
|
12
|
Panshin A, Shihmanter E, Weisman Y, Orvell C, Lipkind M. Antigenic heterogeneity among the field isolates of Newcastle disease virus (NDV) in relation to the vaccine strain: 1. Studies on viruses isolated from wild birds in Israel. Comp Immunol Microbiol Infect Dis 2002; 25:95-108. [PMID: 11848133 DOI: 10.1016/s0147-9571(01)00026-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to reveal the viruses strongly differing from the VH NDV strain used in Israel for poultry vaccination, 54 NDV strains isolated during the last 15 years in Israel from feral birds were studied by means of the panels of 39 monoclonal antibodies. Six isolates were found to have considerable antigenic differences in envelope proteins as compared to the vaccine strain. In four cases, the differences were related mostly to the hemagglutinin-neuraminidase glycoprotein, in one case to the fusion glycoprotein, and in one case to the matrix protein.
Collapse
Affiliation(s)
- A Panshin
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel.
| | | | | | | | | |
Collapse
|