Vetter ML, Johnson ME, Antons AK, Unutmaz D, D'Aquila RT. Differences in APOBEC3G expression in CD4+ T helper lymphocyte subtypes modulate HIV-1 infectivity.
PLoS Pathog 2009;
5:e1000292. [PMID:
19197360 PMCID:
PMC2631133 DOI:
10.1371/journal.ppat.1000292]
[Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/08/2009] [Indexed: 01/01/2023] Open
Abstract
The cytidine deaminases APOBEC3G and APOBEC3F exert anti–HIV-1 activity that is countered by the HIV-1 vif protein. Based on potential transcription factor binding sites in their putative promoters, we hypothesized that expression of APOBEC3G and APOBEC3F would vary with T helper lymphocyte differentiation. Naive CD4+ T lymphocytes were differentiated to T helper type 1 (Th1) and 2 (Th2) effector cells by expression of transcription factors Tbet and GATA3, respectively, as well as by cytokine polarization. APOBEC3G and APOBEC3F RNA levels, and APOBEC3G protein levels, were higher in Th1 than in Th2 cells. T cell receptor stimulation further increased APOBEC3G and APOBEC3F expression in Tbet- and control-transduced, but not in GATA3-transduced, cells. Neutralizing anti–interferon-γ antibodies reduced both basal and T cell receptor-stimulated APOBEC3G and APOBEC3F expression in Tbet- and control-transduced cells. HIV-1 produced from Th1 cells had more virion APOBEC3G, and decreased infectivity, compared to virions produced from Th2 cells. These differences between Th1- and Th2-produced virions were greater for viruses lacking functional vif, but also seen with vif-positive viruses. Over-expression of APOBEC3G in Th2 cells decreased the infectivity of virions produced from Th2 cells, and reduction of APOBEC3G in Th1 cells increased infectivity of virions produced from Th1 cells, consistent with a causal role for APOBEC3G in the infectivity difference. These results indicate that APOBEC3G and APOBEC3F levels vary physiologically during CD4+ T lymphocyte differentiation, that interferon-γ contributes to this modulation, and that this physiological regulation can cause changes in infectivity of progeny virions, even in the presence of HIV-1 vif.
Some host cell proteins can hinder, or restrict, the life cycle of HIV-1. APOBEC3G and APOBEC3F are cellular enzymes that decrease HIV-1's ability to replicate in a subsequent target cell if they are present in the virus particle. As a countermeasure, HIV-1 virion infectivity factor (vif) induces degradation of APOBEC3G and APOBEC3F, thereby preventing them from getting into the budding virus. Although vif-defective viruses cannot evade the antiviral effect of APOBEC3G, such viruses are very rarely present in HIV-1-infected humans. It is not yet known whether physiological variation in APOBEC3G and APOBEC3F expression in CD4+ T lymphocytes is substantial enough to reduce vif-positive HIV-1 infectivity. In this study, we found that T helper type 1 (Th1) cells, a subtype of CD4+ lymphocytes, expressed greater amounts of APOBEC3G and APOBEC3F than T helper type 2 (Th2) cells. This difference led to a difference in infectivity of HIV-1 produced from the two cell types, whether vif was expressed or not. These results demonstrate that physiological regulation of APOBEC3G does restrict vif-positive HIV-1, as well as vif-negative HIV-1. In addition, this study reveals biological factors regulating expression of these proteins that may be exploitable for new therapeutic or preventive strategies against HIV-1.
Collapse