1
|
Heskamp L, Birkbeck MG, Baxter-Beard D, Hall J, Schofield IS, Elameer M, Whittaker RG, Blamire AM. Motor Unit Magnetic Resonance Imaging (MUMRI) In Skeletal Muscle. J Magn Reson Imaging 2024; 60:2253-2271. [PMID: 38216545 DOI: 10.1002/jmri.29218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Magnetic resonance imaging (MRI) is routinely used in the musculoskeletal system to measure skeletal muscle structure and pathology in health and disease. Recently, it has been shown that MRI also has promise for detecting the functional changes, which occur in muscles, commonly associated with a range of neuromuscular disorders. This review focuses on novel adaptations of MRI, which can detect the activity of the functional sub-units of skeletal muscle, the motor units, referred to as "motor unit MRI (MUMRI)." MUMRI utilizes pulsed gradient spin echo, pulsed gradient stimulated echo and phase contrast MRI sequences and has, so far, been used to investigate spontaneous motor unit activity (fasciculation) and used in combination with electrical nerve stimulation to study motor unit morphology and muscle twitch dynamics. Through detection of disease driven changes in motor unit activity, MUMRI shows promise as a tool to aid in both earlier diagnosis of neuromuscular disorders and to help in furthering our understanding of the underlying mechanisms, which proceed gross structural and anatomical changes within diseased muscle. Here, we summarize evidence for the use of MUMRI in neuromuscular disorders and discuss what future research is required to translate MUMRI toward clinical practice. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Linda Heskamp
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Matthew G Birkbeck
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
- Newcastle Biomedical Research Centre (BRC), Newcastle University, Newcastle upon Tyne, UK
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Daniel Baxter-Beard
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
| | - Julie Hall
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ian S Schofield
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
| | - Mathew Elameer
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Roger G Whittaker
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
- Directorate of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
2
|
Barkhaus PE, Nandedkar SD, de Carvalho M, Swash M, Stålberg EV. Revisiting the compound muscle action potential (CMAP). Clin Neurophysiol Pract 2024; 9:176-200. [PMID: 38807704 PMCID: PMC11131082 DOI: 10.1016/j.cnp.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
The compound muscle action potential (CMAP) is among the first recorded waveforms in clinical neurography and one of the most common in clinical use. It is derived from the summated muscle fiber action potentials recorded from a surface electrode overlying the studied muscle following stimulation of the relevant motor nerve fibres innervating the muscle. Surface recorded motor unit potentials (SMUPs) are the fundamental units comprising the CMAP. Because it is considered a basic, if not banal signal, what it represents is often underappreciated. In this review we discuss current concepts in the anatomy and physiology of the CMAP. These have evolved with advances in instrumentation and digitization of signals, affecting its quantitation and measurement. It is important to understand the basic technical and biological factors influencing the CMAP. If these influences are not recognized, then a suboptimal recording may result. The object is to obtain a high quality CMAP recording that is reproducible, whether the study is done for clinical or research purposes. The initial sections cover the relevant CMAP anatomy and physiology, followed by how these principles are applied to CMAP changes in neuromuscular disorders. The concluding section is a brief overview of CMAP research where advances in recording systems and computer-based analysis programs have opened new research applications. One such example is motor unit number estimation (MUNE) that is now being used as a surrogate marker in monitoring chronic neurogenic processes such as motor neuron diseases.
Collapse
Affiliation(s)
- Paul E. Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Sanjeev D. Nandedkar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI USA
- Natus Medical Inc., Hopewell Junction, NY, USA
| | - Mamede de Carvalho
- Instituto de Medicina Molecular and Institute of Physiology, Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Portugal
- Department of Neurosciences and Mental Health, CHULN-Hospital de Santa Maria, Lisbon, Portugal
| | - Michael Swash
- Barts and the London School of Medicine, Queen Mary University of London, London UK
| | - Erik V. Stålberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Swash M, de Carvalho M. Imaging the fasciculating motor unit. Clin Neurophysiol 2024; 161:242-243. [PMID: 38458902 DOI: 10.1016/j.clinph.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Michael Swash
- Barts and the London School of Medicine, Queen Mary University of London, UK; Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Portugal; Department of Neurosciences and Mental Health, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| |
Collapse
|
4
|
Rohlén R, Lubel E, Grandi Sgambato B, Antfolk C, Farina D. Spatial decomposition of ultrafast ultrasound images to identify motor unit activity - A comparative study with intramuscular and surface EMG. J Electromyogr Kinesiol 2023; 73:102825. [PMID: 37757604 DOI: 10.1016/j.jelekin.2023.102825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The smallest voluntarily controlled structure of the human body is the motor unit (MU), comprised of a motoneuron and its innervated fibres. MUs have been investigated in neurophysiology research and clinical applications, primarily using electromyographic (EMG) techniques. Nonetheless, EMG (both surface and intramuscular) has a limited detection volume. A recent alternative approach to detect MUs is ultrafast ultrasound (UUS) imaging. The possibility of identifying MU activity from UUS has been shown by blind source separation (BSS) of UUS images, using optimal separation spatial filters. However, this approach has yet to be fully compared with EMG techniques for a large population of unique MU spike trains. Here we identify individual MU activity in UUS images using the BSS method for 401 MU spike trains from eleven participants based on concurrent recordings of either surface or intramuscular EMG from forces up to 30% of the maximum voluntary contraction (MVC) force. We assessed the BSS method's ability to identify MU spike trains from direct comparison with the EMG-derived spike trains as well as twitch areas and temporal profiles from comparison with the spike-triggered-averaged UUS images when using the EMG-derived spikes as triggers. We found a moderate rate of correctly identified spikes (53.0 ± 16.0%) with respect to the EMG-identified firings. However, the MU twitch areas and temporal profiles could still be identified accurately, including at 30% MVC force. These results suggest that the current BSS methods for UUS can accurately identify the location and average twitch of a large pool of MUs in UUS images, providing potential avenues for studying neuromechanics from a large cross-section of the muscle. On the other hand, more advanced methods are needed to address the convolutive and partly non-linear summation of velocities for recovering the full spike trains.
Collapse
Affiliation(s)
- Robin Rohlén
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Emma Lubel
- Department of Bioengineering, Imperial College London, London, UK
| | | | | | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
5
|
Rohlén R, Carbonaro M, Cerone GL, Meiburger KM, Botter A, Grönlund C. Spatially repeatable components from ultrafast ultrasound are associated with motor unit activity in human isometric contractions . J Neural Eng 2023; 20:046016. [PMID: 37437598 DOI: 10.1088/1741-2552/ace6fc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Objective.Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences requires decomposing a velocity field into components, each consisting of an image and a signal. These components can be associated with putative MU activity or spurious movements (noise). The differentiation between putative MUs and noise has been accomplished by comparing the signals with MU firings obtained from needle electromyography (EMG). Here, we examined whether the repeatability of the images over brief time intervals can serve as a criterion for distinguishing putative MUs from noise in low-force isometric contractions.Approach.UUS images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-based components. For each contraction, velocity sequences from the same eight-second ultrasound recording were separated into consecutive two-second epochs and decomposed. To evaluate the repeatability of components' images across epochs, we calculated the Jaccard similarity coefficient (JSC). JSC compares the similarity between two images providing values between 0 and 1. Finally, the association between the components and the MUs from HDsEMG was assessed.Main results.All the MU-matched components had JSC > 0.38, indicating they were repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8 ± 1.6 matches over 4.9 ± 1.8 MUs). The repeatable components (JSC > 0.38) represented 14% of the total components (6.5 ± 3.3 components). These findings align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from noise and can be used for data reduction.Significance.This study provides the foundation for developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging of MUs. These methods are relevant for studying muscle neuromechanics and designing novel neural interfaces.
Collapse
Affiliation(s)
- Robin Rohlén
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Marco Carbonaro
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Giacinto L Cerone
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Kristen M Meiburger
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Department of Electronics and Telecommunication, Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Christer Grönlund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Lubel E, Grandi-Sgambato B, Barsakcioglu DY, Ibanez J, Tang MX, Farina D. Kinematics of individual muscle units in natural contractions measured in vivo using ultrafast ultrasound. J Neural Eng 2022; 19. [PMID: 36001952 DOI: 10.1088/1741-2552/ac8c6c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The study of human neuromechanical control at the motor unit (MU) level has predominantly focussed on electrical activity and force generation, whilst the link between these, i.e., the muscle deformation, has not been widely studied. To address this gap, we analysed the kinematics of muscle units in natural contractions. APPROACH We combined high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) recordings, at 1000 frames per second, from the tibialis anterior muscle to measure the motion of the muscular tissue caused by individual MU contractions. The MU discharge times were identified online by decomposition of the HDsEMG and provided as biofeedback to 12 subjects who were instructed to keep the MU active at the minimum discharge rate (9.8 ± 4.7 pulses per second; force less than 10% of the maximum). The series of discharge times were used to identify the velocity maps associated with 51 single muscle unit movements with high spatio-temporal precision, by a novel processing method on the concurrently recorded US images. From the individual MU velocity maps, we estimated the region of movement, the duration of the motion, the contraction time, and the excitation-contraction (E-C) coupling delay. MAIN RESULTS Individual muscle unit motions could be reliably identified from the velocity maps in 10 out of 12 subjects. The duration of the motion, total contraction time, and E-C coupling were 17.9 ± 5.3 ms, 56.6 ± 8.4 ms, and 3.8 ± 3.0 ms (n = 390 across 10 participants). The experimental measures also provided the first evidence of muscle unit twisting during voluntary contractions and MU territories with distinct split regions. SIGNIFICANCE The proposed method allows for the study of kinematics of individual MU twitches during natural contractions. The described measurements and characterisations open new avenues for the study of neuromechanics in healthy and pathological conditions.
Collapse
Affiliation(s)
- Emma Lubel
- Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Bruno Grandi-Sgambato
- Department of Bioengineering, Imperial College London, Exhibition road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Deren Y Barsakcioglu
- Department of Bioengineering, Imperial College London, Exhibition road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Jaime Ibanez
- Bioengineering Group, Imperial College London, Engineering, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, Department of Bioeng, London, -- Select One --, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Exhibition road, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
7
|
de Carvalho M, Swash M. Imaging motor unit territory. Clin Neurophysiol 2022; 141:88-89. [DOI: 10.1016/j.clinph.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
|
8
|
Heskamp L, Miller AR, Birkbeck MG, Hall J, Schofield I, Blamire AM, Whittaker RG. In vivo 3D imaging of human motor units in upper and lower limb muscles. Clin Neurophysiol 2022; 141:91-100. [PMID: 35853787 DOI: 10.1016/j.clinph.2022.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess in-vivo cross-sectional and 3D morphology of human motor units in hand, forearm and lower leg muscles using magnetic resonance imaging (MRI). METHODS Diffusion weighted MRI was used with in-scanner electrical stimulation in healthy controls to image motor units at a single slice in lower leg, forearm and hand muscles (n = 6) and multiple slices in the lower leg for 3D assessment (n = 7). RESULTS Motor unit cross-sectional area (CSA) and maximum Feret diameter (FDmax) did not differ between the lower leg (CSA: 22.4 ± 8.4 mm2; FDmax: 8.7 ± 2.4 mm), forearm (CSA: 23.6 ± 14.1 mm2; FDmax: 9.0 ± 3.3 mm) and hand (CSA: 26.8 ± 12.8 mm2 and FDmax: 9.6 ± 2.7 mm) (ANOVA; p = 0.487 and p = 0.587, respectively). Lower leg motor units were 8.0 ± 3.8 cm long with largest CSA in the motor unit's middle section. 3D motor unit imaging revealed a complex structure with several units splitting and re-forming along their length. CONCLUSIONS Motor unit MRI (MUMRI) can be applied to upper limb muscles, and can reveal the 3D structure of human motor units in-vivo. SIGNIFICANCE MUMRI provides the first in-vivo 2D images of upper limb motor units and 3D images of lower leg motor units. 3D imaging suggest a more complex human motor unit structure than previously thought.
Collapse
|
9
|
Maitland S, Escobedo-Cousin E, Schofield I, O'Neill A, Baker S, Whittaker R. Electrical cross-sectional imaging of human motor units in vivo. Clin Neurophysiol 2022; 136:82-92. [DOI: 10.1016/j.clinph.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2022]
|
10
|
Birkbeck MG, Blamire AM, Whittaker RG, Sayer AA, Dodds RM. The role of novel motor unit magnetic resonance imaging to investigate motor unit activity in ageing skeletal muscle. J Cachexia Sarcopenia Muscle 2021; 12:17-29. [PMID: 33354940 PMCID: PMC7890268 DOI: 10.1002/jcsm.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is a progressive and generalized disease, more common in older adults, which manifests as a loss of muscle strength and mass. The pathophysiology of sarcopenia is still poorly understood with many mechanisms suggested. Age associated changes to the neuromuscular architecture, including motor units and their constituent muscle fibres, represent one such mechanism. Electromyography can be used to distinguish between different myopathies and produce counts of motor units. Evidence from electromyography studies suggests that with age, there is a loss of motor units, increases to the sizes of remaining units, and changes to their activity patterns. However, electromyography is invasive, can be uncomfortable, does not reveal the exact spatial position of motor units within muscle and is difficult to perform in deep muscles. We present a novel diffusion-weighted magnetic resonance imaging technique called 'motor unit magnetic resonance imaging (MUMRI)'. MUMRI aims to improve our understanding of the changes to the neuromuscular system associated with ageing, sarcopenia and other neuromuscular diseases. To date, we have demonstrated that MUMRI can be used to detect statistically significant differences in fasciculation rate of motor units between (n = 4) patients with amyotrophic lateral sclerosis (mean age ± SD: 53 ± 15) and a group of (n = 4) healthy controls (38 ± 7). Patients had significantly higher rates of fasciculation compared with healthy controls (mean = 99.1/min, range = 25.7-161.0 in patients vs. 7.7/min, range = 4.3-9.7 in controls; P < 0.05. MUMRI has detected differences in size, shape, and distribution of single human motor units between (n = 5) young healthy volunteers (29 ± 2.2) and (n = 5) healthy older volunteers (65.6 ± 14.8). The maximum size of motor unit territories in the older group was 12.4 ± 3.3 mm and 9.7 ± 2.7 mm in the young group; P < 0.05. MUMRI is an entirely non-invasive tool, which can be used to detect physiological and pathological changes to motor units in neuromuscular diseases. MUMRI also has the potential to be used as an intermediate outcome measure in sarcopenia trials.
Collapse
Affiliation(s)
- Matthew G Birkbeck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roger G Whittaker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avan Aihie Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Richard M Dodds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Rohlén R, Stålberg E, Grönlund C. Identification of single motor units in skeletal muscle under low force isometric voluntary contractions using ultrafast ultrasound. Sci Rep 2020; 10:22382. [PMID: 33361807 PMCID: PMC7759573 DOI: 10.1038/s41598-020-79863-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
The central nervous system (CNS) controls skeletal muscles by the recruitment of motor units (MUs). Understanding MU function is critical in the diagnosis of neuromuscular diseases, exercise physiology and sports, and rehabilitation medicine. Recording and analyzing the MUs’ electrical depolarization is the basis for state-of-the-art methods. Ultrafast ultrasound is a method that has the potential to study MUs because of the electrical depolarizations and consequent mechanical twitches. In this study, we evaluate if single MUs and their mechanical twitches can be identified using ultrafast ultrasound imaging of voluntary contractions. We compared decomposed spatio-temporal components of ultrasound image sequences against the gold standard needle electromyography. We found that 31% of the MUs could be successfully located and their firing pattern extracted. This method allows new non-invasive opportunities to study mechanical properties of MUs and the CNS control in neuromuscular physiology.
Collapse
Affiliation(s)
- Robin Rohlén
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden.
| | - Erik Stålberg
- Department of Clinical Neurophysiology, Institute of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Neurosciences, University Hospital, Uppsala, Sweden
| | - Christer Grönlund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Masked least-squares averaging in processing of scanning-EMG recordings with multiple discharges. Med Biol Eng Comput 2020; 58:3063-3073. [PMID: 33128161 DOI: 10.1007/s11517-020-02274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Removing artifacts from nearby motor units is one of the main objectives when processing scanning-EMG recordings. Methods such as median filtering or masked least-squares smoothing (MLSS) can be used to eliminate artifacts in recordings with just one discharge of the motor unit potential (MUP) at each location. However, more effective artifact removal can be achieved if several discharges per position are recorded. In this case, processing usually involves averaging the discharges available at each position and then applying a median filter in the spatial dimension. The main drawback of this approach is that the median filter tends to distort the signal waveform. In this paper, we present a new algorithm that operates on multiple discharges simultaneously and in the spatial dimension. We refer to this algorithm as the multi-masked least-squares smoothing (MMLSS) algorithm: an extension of the MLSS algorithm for the case of multiple discharges. The algorithm is tested using simulated scanning-EMG signals in different recording conditions, i.e., at different levels of muscle contraction and for different numbers of discharges per position. The results demonstrate that the algorithm eliminates artifacts more effectively than any previously available method and does so without distorting the waveform of the signal. Graphical abstract The raw scanning-EMG signal, which can be composed by several discharges of the MU, is processed by the MMLSS algorithm so as to eliminate the artifact interference. Firstly, artifacts are detected for each discharge from the raw signal, obtaining a multi-discharge validity mask that indicates the samples that have been corrupted by artifacts. Secondly, a least-squares smoothing procedure simultaneously operating in the spatial dimension and among the discharges is applied to the raw signal. This second step is performed using only the not contaminated samples according to the validity mask. The resulting MMLSS-processed scanning-EMG signal is clean of artifact interference.
Collapse
|
13
|
Williams SE, Koch KC, Disselhorst-Klug C. Non-invasive assessment of motor unit activation in relation to motor neuron level and lesion location in stroke and spinal muscular atrophy. Clin Biomech (Bristol, Avon) 2020; 78:105053. [PMID: 32563725 DOI: 10.1016/j.clinbiomech.2020.105053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuromuscular disorders e.g. spinal muscular atrophy and stroke have a negative impact on functional movement capability. These disorders affect lower and upper motor neurons respectively. METHODS In this study high spatial resolution electromyography was used to record the motor unit activity in 3 groups: healthy subjects, a spinal muscular atrophy group and a stroke group. 7 clinically sensitive parameters were used to analyze the activation patterns of a few motor units. FINDINGS In the case of spinal muscular atrophy there was no effect on motor unit activation but on their number. Stroke was characterized by fewer active motor units and a significantly reduced firing rate with low variability. INTERPRETATION The results suggest, that for stroke, information from the brain is modified thereby resulting in motor units firing at their natural frequency. Thus, high spatial resolution electromyography and the chosen parameters facilitate non-invasive, objective differentiation and analysis of the activation patterns of motor units in neuromuscular disorders.
Collapse
Affiliation(s)
- Sybele E Williams
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany.
| | - Kathrin C Koch
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
14
|
Generalization of a wavelet-based algorithm to adaptively detect activation intervals in weak and noisy myoelectric signals. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
de Carvalho M, Swash M. Motor unit estimation by MRI: Integrating old and new ideas. Clin Neurophysiol 2020; 131:1379-1380. [PMID: 32201104 DOI: 10.1016/j.clinph.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.
| | - Michael Swash
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Univeridade de Lisboa, Lisbon, Portugal; Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London and Royal London Hospital, UK
| |
Collapse
|
16
|
Birkbeck MG, Heskamp L, Schofield IS, Blamire AM, Whittaker RG. Non-invasive imaging of single human motor units. Clin Neurophysiol 2020; 131:1399-1406. [PMID: 32122767 PMCID: PMC7208543 DOI: 10.1016/j.clinph.2020.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To determine the size, shape and distribution of single human motor units in-vivo in healthy controls of different ages. METHODS A novel diffusion-weighted magnetic resonance imaging (MRI) technique was used in combination with in-scanner electrical stimulation to quantify the shape, cross-sectional area, and dimensions of individual motor units in 10 healthy subjects. RESULTS Thirty-one discrete motor units were studied. The majority were elliptical or crescent shaped, but occasional split motor units were observed. The mean motor unit cross sectional area was 26.7 ± 11.2 mm2, the mean maximum dimension was 10.7 ± 3.3 mm, and the mean minimum dimension was 4.5 ± 1.2 mm. Subjects aged over 40 had significantly larger maximum dimensions than those below this age (p < 0.05). CONCLUSIONS Motor unit MRI (MUMRI) is a novel technique capable of revealing the size, shape and position of multiple motor units in human muscles. It is reproducible, non-invasive, and sufficiently sensitive to detect physiologically relevant changes in motor unit morphology with age. SIGNIFICANCE To our knowledge, these results provide the first imaging assessment of human motor unit morphology. The technique shows promise both as a diagnostic tool and as a biomarker in longitudinal studies of disease progression.
Collapse
Affiliation(s)
- Matthew G Birkbeck
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK.
| | - Linda Heskamp
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ian S Schofield
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew M Blamire
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Roger G Whittaker
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
17
|
PSR-based research of feature extraction from one-second EEG signals: a neural network study. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1579-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
The speed and accuracy of signal classification are the most valuable parameters to create real-time systems for interaction between the brain and the computer system. In this work, we propose a schema of the extraction of features from one-second electroencephalographic (EEG) signals generated by facial muscle stress. We have tested here three sorts of EEG signals. The signals originate from different facial expressions. The phase-space reconstruction (PSR) method has been used to convert EEG signals from these three classes of facial muscle tension. For further processing, the data has been converted into a two-dimensional (2D) matrix and saved in the form of color images. The 2D convolutional neural network (CNN) served to determine the accuracy of the classifications of the previously unknown PSR generated images from the EEG signals. We have witnessed an improvement in the accuracy of the signal classification in the phase-space representation. We have found that the CNN network better classifies colored trajectories in the 2D phase-space graph. At the end of this work, we compared our results with the results obtained by a one-dimensional convolution neural network.
Collapse
|
18
|
Stålberg E, van Dijk H, Falck B, Kimura J, Neuwirth C, Pitt M, Podnar S, Rubin DI, Rutkove S, Sanders DB, Sonoo M, Tankisi H, Zwarts M. Standards for quantification of EMG and neurography. Clin Neurophysiol 2019; 130:1688-1729. [DOI: 10.1016/j.clinph.2019.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
19
|
D’Anna C, Varrecchia T, Schmid M, Conforto S. Using the frequency signature to detect muscular activity in weak and noisy myoelectric signals. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Vieira TM, Lemos T, Oliveira LAS, Horsczaruk CHR, Freitas GR, Tovar-Moll F, Rodrigues EC. Postural Muscle Unit Plasticity in Stroke Survivors: Altered Distribution of Gastrocnemius' Action Potentials. Front Neurol 2019; 10:686. [PMID: 31297085 PMCID: PMC6607468 DOI: 10.3389/fneur.2019.00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular adaptations are well-reported in stroke survivors. The death of motor neurons and the reinnervation of residual muscle fibers by surviving motor neurons, for example, seem to explain the increased density of muscle units after stroke. It is, however, unknown whether reinnervation takes place locally or extensively within the muscle. Here we combine intramuscular and surface electromyograms (EMGs) to address this issue for medial gastrocnemius (MG); a key postural muscle. While seven stroke survivors stood upright, two intramuscular and 15 surface EMGs were recorded from the paretic and non-paretic gastrocnemius. Surface EMGs were triggered with the firing instants of motor units identified through the decomposition of both intramuscular and surface EMGs. The standard deviation of Gaussian curves fitting the root mean square amplitude distribution of surface potentials was considered to assess differences in the spatial distribution of motor unit action potentials and, thus, in the distribution of muscle units between limbs. The median number of motor units identified per subject in the paretic and non-paretic sides was, respectively, 2 (range: 1–3) and 3 (1–4). Action potentials in the paretic gastrocnemius were represented at a 33% wider skin region when compared to the non-paretic muscle (Mann-Whitney; P = 0.014). Side differences in the representation of motor unit were not associated with differences in subcutaneous thickness (skipped-Spearman r = −0.53; confidence interval for r: −1.00 to 0.63). Current results suggest stroke may lead to the enlargement of the gastrocnemius muscle units recruited during standing. The enlargement of muscle units, as assessed from the skin surface, may constitute a new marker of neuromuscular plasticity following stroke.
Collapse
Affiliation(s)
- Taian M Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, and PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Thiago Lemos
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - Laura A S Oliveira
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.,Graduação em Fisioterapia, Instituto Federal de Educação, Ciência e Tecnologia - IFRJ, Rio de Janeiro, Brazil
| | - Carlos H R Horsczaruk
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil
| | - Gabriel R Freitas
- Unidade de Conectividade Cerebral, Instituto D'Or de Pesquisa e Ensino - IDOR, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Unidade de Conectividade Cerebral, Instituto D'Or de Pesquisa e Ensino - IDOR, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências Mofológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Erika C Rodrigues
- Programa de Pós-Graduação em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.,Unidade de Conectividade Cerebral, Instituto D'Or de Pesquisa e Ensino - IDOR, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Sanders DB, Arimura K, Cui L, Ertaş M, Farrugia ME, Gilchrist J, Kouyoumdjian JA, Padua L, Pitt M, Stålberg E. Guidelines for single fiber EMG. Clin Neurophysiol 2019; 130:1417-1439. [PMID: 31080019 DOI: 10.1016/j.clinph.2019.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
Abstract
This document is the consensus of international experts on the current status of Single Fiber EMG (SFEMG) and the measurement of neuromuscular jitter with concentric needle electrodes (CNE - CN-jitter). The panel of authors was chosen based on their particular interests and previous publications within a specific area of SFEMG or CN-jitter. Each member of the panel was asked to submit a section on their particular area of interest and these submissions were circulated among the panel members for edits and comments. This process continued until a consensus was reached. Donald Sanders and Erik Stålberg then edited the final document.
Collapse
Affiliation(s)
| | - Kimiyoshi Arimura
- Department of Neurology and Geriatrics, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - LiYing Cui
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | | | | | - James Gilchrist
- Southern Illinois University School of Medicine, Springfield, IL USA.
| | | | - Luca Padua
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Geriatrics, Neurosciences and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Matthew Pitt
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London, UK.
| | - Erik Stålberg
- Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
|
23
|
Artuğ NT, Goker I, Bolat B, Osman O, Orhan EK, Baslo MB. New features for scanned bioelectrical activity of motor unit in health and disease. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Luu BL, Muceli S, Saboisky JP, Farina D, Héroux ME, Bilston LE, Gandevia SC, Butler JE. Motor unit territories in human genioglossus estimated with multichannel intramuscular electrodes. J Appl Physiol (1985) 2018; 124:664-671. [DOI: 10.1152/japplphysiol.00889.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discharge patterns of genioglossus motor units during breathing have been well-characterized in previous studies, but their localization and territories are not known. In this study, we used two newly developed intramuscular multichannel electrodes to estimate the territories of genioglossus motor units in the anterior and posterior regions of the muscle. Seven healthy men participated. Each electrode contained fifteen bipolar channels, separated by 1 mm, and was inserted percutaneously below the chin, perpendicular to the skin, to a depth of 36 mm. Single motor unit activity was recorded with subjects awake, supine, and breathing quietly through a nasal mask for 180 s. Motor unit territories were estimated from the spike-triggered averages of the electromyographic signal from each channel. A total of 30 motor units were identified: 22 expiratory tonic, 1 expiratory phasic, 2 tonic, 3 inspiratory tonic, and 2 inspiratory phasic. Motor units appeared to be clustered based on unit type, with peak activities for expiratory units predominantly located in the anterior and superficial fibers of genioglossus and inspiratory units in the posterior region. Of these motor unit types, expiratory tonic units had the largest estimated territory, a mean 11.3 mm (SD 1.9). Estimated territories of inspiratory motor units ranged from 3 to 6 mm. In accordance with the distribution of motor unit types, the estimated territory of genioglossus motor units varied along the sagittal plane, decreasing from anterior to posterior. Our findings suggest that genioglossus motor units have large territories relative to the cross-sectional size of the muscle. NEW & NOTEWORTHY In this study, we used a new multichannel intramuscular electrode to address a fundamental property of human genioglossus motor units. We describe the territory of genioglossus motor units in the anterior and posterior regions of the muscle and show a decrease in territory size from anterior to posterior and that expiratory-related motor units have larger estimated territories than inspiratory-related motor units.
Collapse
Affiliation(s)
- Billy L. Luu
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| | - Silvia Muceli
- Neurorehabilitation Systems Research Group, Clinic for Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Julian P. Saboisky
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| | - Dario Farina
- Neurorehabilitation Systems Research Group, Clinic for Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Martin E. Héroux
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| | - Lynne E. Bilston
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Randwick, and University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings. Med Biol Eng Comput 2018; 56:1391-1402. [PMID: 29327334 PMCID: PMC6061514 DOI: 10.1007/s11517-017-1773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/13/2017] [Indexed: 02/08/2023]
Abstract
Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference. ![]()
Collapse
|
26
|
Carriou V, Laforet J, Boudaoud S, Al Harrach M. Realistic motor unit placement in a cylindrical HD-sEMG generation model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1704-1707. [PMID: 28268655 DOI: 10.1109/embc.2016.7591044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this work is to assess an automatic optimized algorithm for the positioning of the Motor Units (MUs) within a multilayered cylindrical High Density surface EMG (HD-sEMG) generation model representing a skeletal muscle. The multilayered cylinder is composed of three layers: muscle, adipose and skin tissues. For this purpose, two different algorithms will be compared: an unconstrained random and a Mitchell's Best Candidate (MBC) placements, both with uniform distribution for the MUs positions. These algorithms will then be compared by their fiber density within the muscle and by using a classical amplitude descriptor, the Root-Mean-Square (RMS) amplitude value obtained from 64 HD-sEMG signals recorded by an 8×8 electrode grid of circular electrode during one contraction at 70% Maximum Voluntary Contraction (MVC) in both simulation and experimental conditions for the Biceps Brachii (BB) muscle. The obtained results clearly exposed the necessity to use a specific algorithm to place the MUs within the muscle representation volume in agreement with physiology.
Collapse
|
27
|
Corera Í, Malanda A, Rodriguez-Falces J, Porta S, Navallas J. Motor unit profile: A new way to describe the scanning-EMG potential. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Fast generation model of high density surface EMG signals in a cylindrical conductor volume. Comput Biol Med 2016; 74:54-68. [DOI: 10.1016/j.compbiomed.2016.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
29
|
Artuğ NT, Goker I, Bolat B, Osman O, Kocasoy Orhan E, Baslo MB. The effect of recording site on extracted features of motor unit action potential. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 129:172-185. [PMID: 26817404 DOI: 10.1016/j.cmpb.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant.
Collapse
Affiliation(s)
- N Tuğrul Artuğ
- Electrical and Electronics Engineering, Istanbul Arel University, Tepekent, Buyukcekmece, Istanbul, Turkey.
| | - Imran Goker
- Biomedical Engineering, Istanbul Arel University, Tepekent, Buyukcekmece, Istanbul, Turkey.
| | - Bülent Bolat
- Electronics and Communication Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - Onur Osman
- Electrical and Electronics Engineering, Istanbul Arel University, Tepekent, Buyukcekmece, Istanbul, Turkey.
| | - Elif Kocasoy Orhan
- Istanbul Medical Faculty, Istanbul University, Fatih, Capa, Istanbul, Turkey.
| | - M Baris Baslo
- Istanbul Medical Faculty, Istanbul University, Fatih, Capa, Istanbul, Turkey.
| |
Collapse
|
30
|
Sandberg A. Single fiber EMG Fiber density and its relationship to Macro EMG amplitude in reinnervation. J Electromyogr Kinesiol 2014; 24:941-6. [PMID: 24973305 DOI: 10.1016/j.jelekin.2014.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude. Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated. FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level. The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation.
Collapse
Affiliation(s)
- Arne Sandberg
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
31
|
Arabadzhiev TI, Dimitrov VG, Dimitrov GV. The increase in surface EMG could be a misleading measure of neural adaptation during the early gains in strength. Eur J Appl Physiol 2014; 114:1645-55. [PMID: 24789744 DOI: 10.1007/s00421-014-2893-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To test the validity of using the increase in surface EMG as a measure of neural adaptation during the early gains in strength. METHODS Simulation of EMG signals detected by surface bipolar electrode with 20-mm inter-pole distance at different radial distances from the muscle and longitudinal distances from the end-plate area. The increases in the root mean square (RMS) of the EMG signal due to possible alteration in the neural drive or elevation of the intracellular negative after-potentials, detected in fast fatigable muscle fibres during post-tetanic potentiation and assumed to accompany post-activation potentiation, were compared. RESULTS Lengthening of the intracellular action potential (IAP) profile due to elevation of the negative after-potentials could affect amplitude characteristics of surface EMG detected at any axial distance stronger than alteration in the neural drive. This was irrespective of the fact that the elevation of IAP negative after-potential was applied to fast fatigable motor units (MUs) only, while changes in frequency of activation (simulating neural drive changes) were applied to all MUs. In deeper muscles, where the fibre-electrode distance was larger, the peripheral effect was more pronounced. The normalization of EMG amplitude characteristics to an M-wave one could result only in partial elimination of peripheral factor influence CONCLUSIONS The increase in RMS of surface EMG during the early gains in strength should not be directly related to the changes in the neural drive. The relatively small but long-lasting elevated free resting calcium after high-resistance strength training could result in force potentiation and EMG increase.
Collapse
Affiliation(s)
- Todor I Arabadzhiev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113, Sofia, Bulgaria,
| | | | | |
Collapse
|
32
|
Rodriguez-Falces J, Navallas J, Malanda A, Rodriguez-Martin O. Comparison of the duration and power spectral changes of monopolar and bipolar M waves caused by alterations in muscle fibre conduction velocity. J Electromyogr Kinesiol 2014; 24:452-64. [PMID: 24774228 DOI: 10.1016/j.jelekin.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 02/07/2023] Open
Abstract
The muscle compound action potential (M wave) recorded under monopolar configuration reflects both the propagation of the action potentials along the muscle fibres and their extinction at the tendon. M waves recorded under a bipolar configuration contain less cross talk and noise than monopolar M waves, but they do not contain the entire informative content of the propagating potential. The objective of this study was to compare the effect of changes in muscle fibre conduction velocity (MFCV) on monopolar and bipolar M waves and how this effect depends on the distance between the recording electrodes and tendon. The study was based on a simulation approach and on an experimental investigation of the characteristics of surface M waves evoked in the vastus lateralis during 4-s step-wise isometric contractions in knee extension at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% MVC. The peak-to-peak duration (Durpp) and median frequency (Fmedian) of the M waves were calculated. For monopolar M waves, changes in Durpp and Fmedian produced by MFCV depended on the distance from the electrode to the tendon, whereas, for bipolar M waves, changes in Durpp and Fmedian were largely independent of the electrode-to-tendon distance. When the distance between the detection point and tendon lay between approximately 15 and 40mm, changes in Durpp of bipolar M waves were more pronounced than those of distal monopolar M waves but less marked than those of proximal monopolar M waves, and the opposite occurred for Fmedian. Since, for bipolar M waves, changes in duration and power spectral features produced by alterations in MFCV are not influenced by the electrode-to-tendon distance, the bipolar electrode configuration is a preferable choice over monopolar arrangements to estimate changes in conduction velocity.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain.
| | - Javier Navallas
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Armando Malanda
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Olivia Rodriguez-Martin
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| |
Collapse
|
33
|
Rodriguez-Falces J, Gila L, Dimitrova NA. Evaluation of the criteria to identify single-fibre potentials in human muscle fibres. BIOLOGICAL CYBERNETICS 2012; 106:323-338. [PMID: 22806128 DOI: 10.1007/s00422-012-0500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/14/2012] [Indexed: 06/01/2023]
Abstract
The criterion normally used to identify a potential generated by a single muscle fibre (SFAP) is that it must have identical shape at consecutive discharges. Technical problems accompanying the recording of single-fibre electromyographic (SFEMG) potentials introduce certain variability in the shape of these potentials, thereby compromising the ability to detect pure SFAPs. This study aims to determine the conditions necessary for two fibres to generate a compound potential that fulfils the single-fibre criterion. This has been done by analysing the alterations in the waveform of compound spikes formed by the summation of two SFAPs whose relative weight in the composite potential can differ considerably. Several factors responsible for this shape variability, with a geometrical, physiological or accidental origin, have been included in our study. It has been shown that a distant interfering component will be hardly detected in the composite potential if it is smaller than approximately 15 % of the main component. For this interfering component to generate a notch in the rising phase of the compound potential, it must be greater than about 30 % of the main component. A compound potential will fulfil the single-fibre criterion if the time dispersion between the individual components is less than 80-120 μs. These results permit the estimation of the amplitude of interfering potentials so they could be useful in fibre density studies. The article also emphasises the inherent variability of SFEMG potentials and the impact of this variability on jitter estimation.
Collapse
|
34
|
Tomczykiewicz K, Dobrowolski AP, Wierzbowski M. Evaluation of motor unit potential wavelet analysis in the electrodiagnosis of neuromuscular disorders. Muscle Nerve 2012; 46:63-9. [PMID: 22692996 DOI: 10.1002/mus.23286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Electrophysiological studies of human motor units can use various electromyographic techniques. Together with the development of new techniques for analysis and processing of bioelectric signals, motor unit action potential (MUAP) wavelet analysis represents an important change in the development of electromyographic techniques. METHODS The proposed approach involves isolating single MUAPs, computing their scalograms, taking the maximum values of the scalograms in 5 selected scales, and averaging across MUAPs to give a single five-dimensional feature vector per muscle. After Support Vector Machine analysis, the feature vector is reduced to a single decision parameter that allows the subject to be assigned to 1 of 3 groups: myogenic, healthy, or neurogenic. The software is available as freeware. RESULTS MUAP wavelet analysis yielded consistent results for the diagnostic index and muscle classification, with only 7 incorrect classifications out of a total of 1,015 samples. CONCLUSIONS This proposed approach provides a sensitive and reliable method for evaluating and characterizing MUAPs.
Collapse
Affiliation(s)
- Kazimierz Tomczykiewicz
- Military Institute of Health Service, Department of Neurology, 128 Szaserow St., 00-909 Warsaw, Poland.
| | | | | |
Collapse
|
35
|
Vieira TMM, Loram ID, Muceli S, Merletti R, Farina D. Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised? J Physiol 2010; 589:431-43. [PMID: 21115645 DOI: 10.1113/jphysiol.2010.201806] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In cat medial gastrocnemius (MG), fibres supplied by individual motoneurones (muscle units) distribute extensively along the muscle longitudinal axis. In the human MG, the size of motor unit territory is unknown. It is uncertain if the absolute size of muscle unit territory or the size relative to the whole muscle is most comparable with the cat. By comparing intramuscular and surface electromyograms we tested whether muscle units extend narrowly or widely along the human MG muscle. Due to the pennation of the MG, if individual motoneurones supply fibres scattered along the muscle, then action potentials of single motor units are expected to appear sparsely on the surface of the skin. In nine healthy subjects, pairs of wire electrodes were inserted in three locations along the MG muscle (MG60%, MG75% and MG90%). A longitudinal array of 16 surface electrodes was positioned alongside the intramuscular electrodes. While subjects stood quietly, 55 motor units were identified, of which, significantly more units were detected in the most distal sites. The surface action potentials had maximum amplitude at 4.40 ±1.67 (mean±S.D.), 8.02±2.16 and 11.63±2.09 cm (P <0.001) from the most proximal surface electrode, for motor units in the MG60%, MG75% and MG90% locations, respectively. Single motor unit potentials were recorded by five consecutive surface electrodes, at most, indicating that muscle units extend shortly along the MG longitudinal axis. It is concluded that relative to the whole muscle, and compared with the cat, muscle units in human MG are localised. The localisation of muscle units might have implications for the regional control of muscle activity.
Collapse
Affiliation(s)
- Taian M M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Politecnico di Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
36
|
Whither needle EMG? Clin Neurophysiol 2010; 121:1373-1375. [DOI: 10.1016/j.clinph.2010.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/23/2022]
|
37
|
Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I. A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 2010; 48:875-86. [PMID: 20535575 DOI: 10.1007/s11517-010-0642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 05/13/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop a muscle architecture model able to account for the observed distributions of innervation ratios and fiber densities of different types of motor units in a muscle. A model algorithm is proposed and mathematically analyzed in order to obtain an inverse procedure that allows, by modification of input parameters, control over the output distributions of motor unit fiber densities. The model's performance was tested with independent data from a glycogen depletion study of the medial gastrocnemius of the rat. Results show that the model accurately reproduces the observed physiological distributions of innervation ratios and fiber densities and their relationships. The reliability and accuracy of the new muscle architecture model developed here can provide more accurate models for the simulation of different electromyographic signals.
Collapse
Affiliation(s)
- Javier Navallas
- Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona, Navarra, Spain.
| | | | | | | | | |
Collapse
|
38
|
Large motor unit territories by scanning electromyography in patients with juvenile myoclonic epilepsy. J Clin Neurophysiol 2010; 27:212-5. [PMID: 20461011 DOI: 10.1097/wnp.0b013e3181e0b228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Juvenile myoclonic epilepsy is a genetically inherited disorder characterized by myoclonic jerks and generalized seizures. It has been proposed that patients with juvenile myoclonic epilepsy have larger motor units (MUs) than normals by MU number estimation and macro electromyography techniques. In this study, an experimental setup for scanning electromyography was built to investigate electrophysiologic cross-sections of the MU territories in 9 patients with juvenile myoclonic epilepsy, 3 patients with spinal muscular atrophy, and 10 healthy volunteers. Scanning electromyography was performed on the biceps brachii muscle. For each MU, three-dimensional maps of the MU territories were plotted. The length of MU cross-section and the maximum amplitude of each MU were measured from these maps and compared among the three groups of subjects. Like spinal muscular atrophy patients, patients with juvenile myoclonic epilepsy had significantly larger MU territories than normal controls.
Collapse
|
39
|
Influence of motor unit synchronization on amplitude characteristics of surface and intramuscularly recorded EMG signals. Eur J Appl Physiol 2009; 108:227-37. [PMID: 19771446 DOI: 10.1007/s00421-009-1206-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
The increase in muscle strength without noticeable hypertrophic adaptations is very important in some sports. Motor unit (MU) synchronisation and higher rate of MU activation are proposed as possible mechanisms for such a strength and electromyogram (EMG) increase in the early phase of a training regimen. Root mean square and/or integrated EMG are amplitude measures commonly used to estimate the adaptive changes in efferent neural drive. EMG amplitude characteristics could change also because of alteration in intracellular action potential (IAP) spatial profile. We simulated MUs synchronization under different length of the IAP profile. Different synchronization was simulated by variation of the percent of discharges in a referent MU, to which a variable percent of remaining MUs was synchronized. Population synchrony index estimated the degree of MU synchronization in EMG signals. We demonstrate that the increase in amplitude characteristics due to MU synchronization is stronger in surface than in intramuscularly detected EMG signals. However, the effect of IAP profile lengthening on surface detected EMG signals could be much stronger than that of MU synchronization. Thus, changes in amplitude characteristics of surface detected EMG signals with progressive strength training could hardly be used as an indicator of changes in neural drive without testing possible changes in IAPs.
Collapse
|
40
|
Studying motor end-plate topography by means of scanning-electromyography. Clin Neurophysiol 2009; 120:1335-41. [DOI: 10.1016/j.clinph.2009.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/24/2009] [Accepted: 05/15/2009] [Indexed: 11/19/2022]
|
41
|
Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV. Interpretation of EMG integral or RMS and estimates of "neuromuscular efficiency" can be misleading in fatiguing contraction. J Electromyogr Kinesiol 2009; 20:223-32. [PMID: 19233687 DOI: 10.1016/j.jelekin.2009.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/17/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022] Open
Abstract
In occupational and sports physiology, reduction of neuromuscular efficiency (NME) and elevation of amplitude characteristics, such as root mean square (RMS) or integral of surface electromyographic (EMG) signals detected during fatiguing submaximal contraction are often related to changes in neural drive. However, there is data showing changes in the EMG integral (I(EMG)) and RMS due to peripheral factors. Causes for these changes are not fully understood. On the basis of computer simulation, we demonstrate that lengthening of intracellular action potential (IAP) profile typical for fatiguing contraction could affect EMG amplitude characteristics stronger than alteration in neural drive (central factors) defined by number of active motor units (MUs) and their firing rates. Thus, relation of these EMG amplitude characteristics only to central mechanisms can be misleading. It was also found that to discriminate between changes in RMS or I(EMG) due to alterations in neural drive from changes due to alterations in peripheral factors it is better to normalize RMS of EMG signals to the RMS of M-wave. In massive muscles, such normalization is more appropriate than normalization to either peak-to-peak amplitude or area of M-wave proposed in literature.
Collapse
Affiliation(s)
- Todor I Arabadzhiev
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
42
|
Challenges in computerized MUAP analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1567-424x(08)00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Motor unit tracking with high-density surface EMG. J Electromyogr Kinesiol 2008; 18:920-30. [PMID: 18996724 DOI: 10.1016/j.jelekin.2008.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/22/2022] Open
|
44
|
Arabadzhiev TI, Dimitrov GV, Chakarov VE, Dimitrov AG, Dimitrova NA. Changes in intracellular action potential profile affect parameters used in turns/amplitude analysis. Muscle Nerve 2008; 37:713-20. [PMID: 18506716 DOI: 10.1002/mus.21022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The influence of changes in the intracellular action potential (IAP) spatial profile on motor unit potentials (MUPs), number of turns per second (NTs), and mean turn amplitude were simulated and analyzed. We show why measurement of NTs was "the best indicator of neurogenic affection" and why the lower diagnostic yield of turns/amplitude analysis in myopathy could be due to changes in IAP shape caused by elevated free calcium concentration. The results explain the complications observed when interference electromyographic signals obtained during high levels of isometric contractions were analyzed. We show that, in contrast to earlier assumptions, the effect of increased IAP spike duration on NTs was stronger than that of a decrease in muscle fiber propagation velocity (MFPV). The decrease in the NTs could occur without a drop-out of MUs and/or a decrease in their firing rates, and without a change in MFPV and synchronous firing.
Collapse
Affiliation(s)
- Todor I Arabadzhiev
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria.
| | | | | | | | | |
Collapse
|
45
|
Witte RS, Kim K, Martin BJ, O'Donnell M. Effect of fatigue on muscle elasticity in the human forearm using ultrasound strain imaging. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:4490-3. [PMID: 17947090 DOI: 10.1109/iembs.2006.260850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The etiology of skeletal muscle fatigue is not well understood partly because techniques portraying muscle performance in vivo are limited by either their invasiveness (e.g., needle electrodes) or poor spatial resolution (e.g., surface EMG). To better characterize effects of FES and muscle fatigue, we captured real-time high resolution dynamics of the human forearm before and after a fatigue exercise using ultrasound strain imaging. A 10 MHz linear ultrasound probe aligned with the fiber axis of the 3rd flexor digitorum superficialis (FDS) provided scans at 3-msec intervals during isometric twitch and tetanic contractions evoked by low and high frequency electrical stimuli (ES). Ultrasound images synchronized with traditional force and EMG were obtained for 5 healthy adults before and after a fatiguing exercise, induced by sustained maximal exertion of the middle finger pressed against a restraint until the initial force decreased by 75%. Immediately after fatigue, twitch and tetanic stimuli generated 55.1% and 19.5% less force, respectively, implying that low frequency fatigue dominated. The force deficit was associated with a decrease in several mechanical properties of the fatigued muscle during twitch contractions, such as transverse peak strain (34 +/- 15%) and half peak strain duration (32.3 +/- 12.5 msec). Changes were not uniform across the imaged section of the muscle, suggesting that boundary conditions or fiber heterogeneity affected the strain profile. Indeed, high stress zones appeared closer to the muscle-tendon junction during isometric contractions. This study provided new insight on the elastic behavior of muscle and potential mechanisms of injury, especially directed at prolonged stimulation and control of a neuromuscular prosthesis.
Collapse
Affiliation(s)
- Russell S Witte
- Dept. of Biomed. Eng., Michigan Univ., Ann Arbor, MI 48109-2099, USA.
| | | | | | | |
Collapse
|
46
|
Arabadzhiev T, Dimitrov G, Dimitrov A, Chakarov V, Dimitrova N. Factors affecting the turns analysis of the interference EMG signal. Biomed Signal Process Control 2008. [DOI: 10.1016/j.bspc.2007.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Farina D, Yoshida K, Stieglitz T, Koch KP. Multichannel thin-film electrode for intramuscular electromyographic recordings. J Appl Physiol (1985) 2008; 104:821-7. [DOI: 10.1152/japplphysiol.00788.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is currently not possible to record electromyographic (EMG) signals from many locations concurrently inside the muscle in a single wire electrode system. We developed a thin-film wire electrode system for multichannel intramuscular EMG recordings. The system was fabricated using a micromachining process, with a silicon wafer as production platform for polyimide-based electrodes. In the current prototype, the flexible polymer structure is 220 μm wide, 10 μm thick, and 1.5 cm long, and it has eight circular platinum-platinum chloride recording sites of 40-μm diameter distributed along the front and back surfaces with 1,500-μm intersite spacing. The system prototype was tested in six experiments where the electrode was implanted into the medial head of the gastrocnemius muscle of rabbits, perpendicular to the pennation angle of the muscle fibers. Asynchronous motor unit activity was induced by eliciting the withdrawal reflex or sequential crushes of the sciatic nerve using a pair of forceps. Sixty-seven motor units were identified from these recordings. In the bandwidth 200 Hz to 5 kHz, the peak-to-peak amplitude of the action potentials of the detected motor units was 75 ± 12 μV and the root mean square of the noise was 1.6 ± 0.4 μV. The noise level and amplitude of the action potentials were similar for measures separated by up to 40 min. The experimental tests demonstrated that thin film is a promising technology for a new type of flexible-wire intramuscular EMG recording system with multiple detection sites.
Collapse
|
48
|
Karlsson L, Hammarberg B, Stålberg E. An application of a muscle model to study electromyographic signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2003; 71:225-233. [PMID: 12799055 DOI: 10.1016/s0169-2607(02)00092-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A simulation program for research and teaching electromyography (EMG) has been developed. It has a great number of parameters that may be optionally changed in simulations of normal and diseased muscle. The simulator is user-friendly and fast and can actually be run without much help from the manual. It is easy to introduce new motor units (MU), to change MU and individual muscle fibre parameters, to insert an EMG electrode and to change its position. The model allows simulation of the most common pathological situations. The resulting signals are displayed in a conventional form. The generated EMG signals obtained with the three electrodes that have been used so far are reasonably similar to the signals obtained in real recordings. A few shortcomings in simulating, e.g. end plate zone and abnormal volume conduction characteristics do not seem to influence the principal results. The simulator can, therefore, be used in teaching and even for research.
Collapse
Affiliation(s)
- Lars Karlsson
- Department of Clinical Neurophysiology, University Hospital, SE-751 85 Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Stålberg E, Fuglsang-Frederiksen A, Bischoff C. Quantitation and standardization in EMG and neurography. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2003; 53:101-11. [PMID: 12740983 DOI: 10.1016/s1567-424x(09)70144-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- E Stålberg
- Department of Clinical Neurophysiology, University Hospital, S-75185 Uppsala, Sweden.
| | | | | |
Collapse
|
50
|
Abstract
Single-fiber EMG is a technique introduced in 1963 by Stålberg and Ekstedt for recording single muscle fiber action potentials by means of a specially constructed needle with a 25-microm recording surface. The needle is positioned in the muscle to record from two or more time-locked potentials belonging to the same motor unit. Jitter is the variability in the arrival time of action potentials to the recording electrode between consecutive discharges. This variability reflects end-plate conduction and is measured along with fiber density, which is the average number of fibers belonging to the same motor unit that is in the recording area. An abnormal test is one in which more than 10%, or the mean, of 20 fiber pairs has increased jitter when compared with normal reference values. Increased fiber density is seen with reinnervation. Single-fiber EMG is more sensitive than conventional EMG and is the most sensitive, but not specific, test for myasthenia gravis. Lambert-Eaton myasthenic syndrome, and other neuromusculasr junction pathology. It has been useful in the evaluation of some neuropathies and myopathies and has provided valuable information on the motor unit spatial arrangement, territory, microphysiology, and pathophysiology.
Collapse
Affiliation(s)
- Justina L Tanhehco
- Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|