1
|
Kandel MB, Yamamoto S, Midorikawa R, Morise J, Wakazono Y, Oka S, Takamiya K. N-glycosylation of the AMPA-type glutamate receptor regulates cell surface expression and tetramer formation affecting channel function. J Neurochem 2018; 147:730-747. [PMID: 30092607 DOI: 10.1111/jnc.14565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022]
Abstract
The AMPA-type glutamate receptor (AMPA-R) plays a primary role in principal excitatory synaptic transmission and many neuronal functions including synaptic plasticity that underlie learning and memory. N-glycosylation is one of the major post-translational modifications of membrane proteins, but its specific roles in neurons remain largely unknown. AMPA-R subunits are N-glycosylated at their extracellular domains during their biosynthesis in the lumen of the endoplasmic reticulum and Golgi system. Six N-glycosylation sites are presumed to exist in the extracellular domain of GluA1, which is a member of the AMPA-R subunits. We observed that the intracellular trafficking and cell surface expression were strongly suppressed in the GluA1 mutants lacking N-glycans at N63/N363 in HEK293T cells. Multimer analysis using Blue Native-PAGE displayed the impaired tetramer formation in the glycosylation mutants (N63S and N363S), indicating that the mis-transport was caused by impaired tetramer formation. N63S and N363S mutants were primarily degraded via the lysosomal pathway. Flag-tagged N363S GluA1, but not N63S GluA1, expressed in primary cortical neuron cultures prepared from GluA1 knockout mice was observed to localize at the cell surface. Co-expression of GluA2 partially rescued tetramer formation and the cell surface expression of N363S GluA1 but not N63S GluA1, in HEK293T cells. Electrophysiological analysis also demonstrated functional heteromers of N363S GluA1 with GluA2. These data suggest that site-specific N-glycans on GluA1 subunit regulates tetramer formation, intracellular trafficking, and cell surface expression of AMPA-R. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Munal Babu Kandel
- Faculty of Medicine, Department of Neuroscience, University of Miyazaki, Miyazaki, Japan
| | - Saki Yamamoto
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Midorikawa
- Faculty of Medicine, Department of Neuroscience, University of Miyazaki, Miyazaki, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiko Wakazono
- Faculty of Medicine, Department of Neuroscience, University of Miyazaki, Miyazaki, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kogo Takamiya
- Faculty of Medicine, Department of Neuroscience, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
2
|
Subedi GP, Sinitskiy AV, Roberts JT, Patel KR, Pande VS, Barb AW. Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Structure 2018; 27:55-65.e3. [PMID: 30482728 DOI: 10.1016/j.str.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
The structural and functional roles of highly conserved asparagine-linked (N)-glycans on the extracellular ligand-binding domain (LBD) of the N-methyl-D-aspartate receptors are poorly understood. We applied solution- and computation-based methods that identified N-glycan-mediated intradomain and interglycan interactions. Nuclear magnetic resonance (NMR) spectra of the GluN1 LBD showed clear signals corresponding to each of the three N-glycans and indicated the reducing end of glycans at N440 and N771 potentially contacted nearby amino acids. Molecular dynamics simulations identified contacts between nearby amino acids and the N440- and N771-glycans that were consistent with the NMR spectra. The distal portions of the N771-glycan also contacted the core residues of the nearby N471-glycan. This result was consistent with mass spectrometry data indicating the limited N471-glycan core fucosylation and reduced branch processing of the N771-glycan could be explained by interglycan contacts. We discuss a potential role for the GluN1 LBD N-glycans in interdomain contacts formed in NMDA receptors.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Anton V Sinitskiy
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, 318 Campus Drive, Room S295, Stanford, CA 94305, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive Molecular Biology Building, Room 4210, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Galligan JJ, Fritz KS, Tipney H, Smathers RL, Roede JR, Shearn CT, Hunter LE, Petersen DR. Profiling impaired hepatic endoplasmic reticulum glycosylation as a consequence of ethanol ingestion. J Proteome Res 2011; 10:1837-47. [PMID: 21319786 DOI: 10.1021/pr101101s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is a prominent cause of morbidity and mortality in the United States. Alterations in protein folding occur in numerous disease states, including ALD. The endoplasmic reticulum (ER) is the primary site of post-translational modifications (PTM) within the cell. Glycosylation, the most abundant PTM, affects protein stability, structure, localization, and activity. Decreases in hepatic glycosylation machinery have been observed in rodent models of ALD, but specific protein targets have not been identified. Utilizing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry, glycoproteins were identified in hepatic microsomal fractions from control and ethanol-fed mice. This study reports for the first time a global decrease in ER glycosylation. Additionally, the identification of 30 glycoproteins within this fraction elucidates pathway-specific alterations in ALD impaired glycosylation. Among the identified proteins, triacylglycerol hydrolase (TGH) is positively affected by glycosylation, showing increased activity following the addition of sugar moieties. Impaired TGH activity is associated with increased cellular storage of lipids and provides a potential mechanism for the observed pathologies associated with ALD.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, United States
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Reyes-Montaño EA, Lareo LR, Chow DC, Pérez-Gómez G. Immunolocalization and Biochemical Characterization of N-methyl-D-aspartate Receptor Subunit NR1 from Rat Brain. Protein J 2006; 25:95-108. [PMID: 16862452 DOI: 10.1007/s10930-006-0001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Indexed: 11/24/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor subunit NR1 gene can produce eight isoforms in rat brain. A novel methodology for purifying NMDA receptor NR1 subunit from rat brain is reported here using chicken polyclonal antibodies (IgYs) against synthetic peptides corresponding to N1, C1 and C2' cassettes. The isolated protein was recognized by produced IgYs and commercial anti-NR1 IgGs, shown by MALDI-TOF MS a MW = 131,192 Da (glycosylated form); the enzymatically deglycosylated protein revealed a MW = 102,754 Da. The NMDA receptor NR1 subunit was characterized as being a heavily N-glycosylated protein. The isoelectric point was determined (6.3) as being different from that predicted for any of the isoforms (7.9-9.02). Attempts to separate the isoforms from the purified NR1 were unsuccessful, indicating the presence of just one isoform (NR1(111)). Immunohistochemistry on hippocampus regions CA1, CA3 and Dentate gyrus with anti-N1, anti-N2 and anti-C2' IgYs showed different staining intensity, depending upon the antibody assayed.
Collapse
|
5
|
Maruo K, Nagata T, Yamamoto S, Nagai K, Yajima Y, Maruo S, Nishizaki T. Tunicamycin inhibits NMDA and AMPA receptor responses independently of N-glycosylation. Brain Res 2003; 977:294-7. [PMID: 12834891 DOI: 10.1016/s0006-8993(03)02838-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a whole-cell patch-clamp configuration, currents through N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels were monitored in cultured rat hippocampal neurons, and those currents were depressed to 25 and 28% of basal levels, respectively, by 3-min treatment with tunicamycin (10 microM), an inhibitor of protein N-glycosylation. Tunicamycin (10 microM) reduced amplitude of population spikes elicited in the dentate gyrus of rat hippocampal slices, reaching 78% of basal levels 60 min after the beginning of treatment, and long-term potentiation (LTP) of the perforant path was never induced in the presence of tunicamycin. Tunicamycin, thus, appears to serve as a modulator for NMDA and AMPA receptors, regardless of N-glycosylation, thereby inhibiting neurotransmission and LTP in the dentate gyrus.
Collapse
Affiliation(s)
- Keishi Maruo
- Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Nishizaki T. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:172-6. [PMID: 12829329 DOI: 10.1016/s0169-328x(03)00171-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability.
Collapse
Affiliation(s)
- Tomoyuki Nishizaki
- Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| |
Collapse
|
7
|
Green T, Rogers CA, Contractor A, Heinemann SF. NMDA receptors formed by NR1 in Xenopus laevis oocytes do not contain the endogenous subunit XenU1. Mol Pharmacol 2002; 61:326-33. [PMID: 11809857 DOI: 10.1124/mol.61.2.326] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of N-methyl-D-aspartate-selective ionotropic glutamate receptors (NMDA receptors) requires two agonists, glutamate and glycine. These ligands are thought to bind to the NR2 and NR1 subunits, respectively, apparently ruling out the formation of functional homomeric receptors. However, NMDA-mediated currents are observed when the mammalian NR1 subunit is expressed alone in Xenopus laevis oocytes. These currents have been generally ascribed to a functional association between NR1 and the endogenous glutamate receptor subunit XenU1. To determine whether such a functional association does in fact occur, we have isolated cDNAs for both XenU1 and XenU1a, a presumed nonallelic counterpart. We investigated whether the coexpression of either XenU1 or XenU1a with NR1 in either X. laevis oocytes and human embryonic kidney (HEK) 293 cells had any effect on the observed NMDA receptor responses. In oocytes, coinjection of XenU1 with NR1 did not increase the observed currents compared with injection of NR1 alone; similarly, in HEK 293 cells, coexpression of XenU1 and NR1 did not result in the formation of functional channels. We also found no pharmacological or biochemical evidence for interaction between the two subunits. We conclude, therefore, that XenU1 does not associate with the NR1 subunit and that an alternative explanation must be sought for the channels observed when NR1 is expressed alone in oocytes.
Collapse
Affiliation(s)
- Tim Green
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, California, USA.
| | | | | | | |
Collapse
|
8
|
Machaidze GG, Mikeladze D. Different effects of lectins on the ligand binding of the NMDA receptors and sigma sites in rat brain hippocampus synaptic membranes. Neurochem Res 2001; 26:457-62. [PMID: 11513469 DOI: 10.1023/a:1010961808570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of the lectins concanavalin A, WGA, ricin, abrin, and the mistletoe lectins from Viscum album MLI, MLII, and MLIII on the binding of ligands of the NMDA and sigma receptors in rat hippocampus synaptic plasma membranes were investigated. Binding of [3H]MK-801, [3H]glutamate, [3H]5,7-DCKA, and [3H]glycine to the membranes was decreased by 40-60% after addition of galactose-specific lectins (mistletoe lectins MLI, MLII, ricin, abrin) at concentrations of 0.01 mg/ml, but was not affected by the glucose- and mannose-specific lectin Con A, an acetylglucosamine-specific lectin WGA, or an acetylgalactosamine-specific lectin MLIII. The binding of [3H]SKF 10047 was decreased only in the presence of MLIII and did not change after addition of the other lectins. It is suggested that lectin-sensitive ligand binding sites of sigma- and NMDA receptors are located separately, and that the carbohydrate side chains of the sigma receptor do not participate in the modulation of the NMDA-receptor.
Collapse
Affiliation(s)
- G G Machaidze
- Department of Biophysical Chemistry, Biozentrum, University of Basel, Switzerland.
| | | |
Collapse
|
9
|
Xin KQ, Hamajima K, Hattori S, Cao XR, Kawamoto S, Okuda K. Evidence of HIV type 1 glycoprotein 120 binding to recombinant N-methyl-D-aspartate receptor subunits expressed in a baculovirus system. AIDS Res Hum Retroviruses 1999; 15:1461-7. [PMID: 10555109 DOI: 10.1089/088922299309973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Activation of the N-methyl-D-aspartate (NMDA) receptor by HIV-1 envelope glycoprotein 120 (gp120) is thought to represent at least one of the pathways causing neuronal damage in AIDS patients. In the present study, recombinant gp120 binding to NMDA receptor subunits expressed in a baculovirus system was examined by immunocytochemistry and a binding assay, using horseradish peroxidase (HRP)-conjugated and 125I-labeled recombinant gp120, respectively. We found that recombinant gp120 binds to Sf21 cells expressing epsilon1/zeta1 or epsilon2/zeta1 combined NMDA receptor subunits, but not to Sf21 cells infected with mock virus or Sf21 cells expressing a single epsilon1, epsilon2, or zeta1 NMDA receptor subunit. The binding was strongly blocked by unlabeled recombinant gp120, monoclonal anti-HIV-1 gp160 antibody, and a mixture of anti-epsilon1/epsilon2 and anti-zeta1 antibodies. The same results were obtained by flow cytometric analysis. These data suggest that HIV-1 gp120 may directly bind to the NMDA receptor. This evidence enhances our understanding of the mechanism of HIV-1-induced neuronal damage in AIDS patients.
Collapse
Affiliation(s)
- K Q Xin
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Pajot-Augy E, Bozon V, Remy JJ, Couture L, Salesse R. Critical relationship between glycosylation of recombinant lutropin receptor ectodomain and its secretion from baculovirus-infected insect cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:635-48. [PMID: 10102991 DOI: 10.1046/j.1432-1327.1999.00241.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lutropin receptor ectodomain overexpressed under the control of the powerful polyhedrin promoter in baculovirus-infected Sf9 insect cells, is mainly found in an inactive, intracellularly-aggregated form. It is secreted in an active form under the control of the P10 promoter, a somewhat weaker and earlier promoter, at the price of a lower production. The apparent molecular masses of the two species encoded by the same cDNA are 48 kDa and 60-68 kDa, respectively. The relationship between the extent and type of glycosylation and the extracellular targeting for the recombinant lutropin receptor ectodomains was investigated precisely with endoglycosidases, lectins of various specificities, and a glycosylation inhibitor, and tested with monoclonal and polyclonal antibodies. The results indicate that the strong polyhedrin promoter probably overwhelms the processing capacity of the ER in Sf9 cells, so that only a high-mannose precursor is expressed in large amounts. Only a minute amount of protein is secreted, which has been processed by Sf9 exoglycosidases/glycosyltransferases and bears complex/hybrid oligosaccharides. The weaker P10 promoter allows secretion of a mature and active receptor ectodomain, bearing complex glycosylation. An important O-linked glycosylation is also added post-translationally on this species. In particular, beta-galactose and sialic acid residues were specifically detected in the secreted species, evidence of the induction of the corresponding glycosyltransferases or of their genes. These results suggest that Sf9 cells should eventually be engineered with chaperones and glycosyltransferases in order to improve the production of demanding glycoproteins such as the porcine lutropin ectodomain, so as to open the way to resolution of the three-dimensional structures of these receptors.
Collapse
Affiliation(s)
- E Pajot-Augy
- Unité Récepteurs et Communication Cellulaire, Biologie Cellulaire et Moléculaire, INRA-Biotechnologies, Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
11
|
Monaghan DT, Andaloro VJ, Skifter DA. Molecular determinants of NMDA receptor pharmacological diversity. PROGRESS IN BRAIN RESEARCH 1999; 116:171-90. [PMID: 9932377 DOI: 10.1016/s0079-6123(08)60437-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D T Monaghan
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260, USA.
| | | | | |
Collapse
|
12
|
García-Gallo M, Behrens MM, Renart J, Díaz-Guerra M. Expression of N-methyl-D-aspartate receptors using vaccinia virus causes excitotoxic death in human kidney cells. J Cell Biochem 1999; 72:135-44. [PMID: 10025674 DOI: 10.1002/(sici)1097-4644(19990101)72:1<135::aid-jcb14>3.0.co;2-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-Methyl-D-Aspartate (NMDA) receptors containing NR1 and NR2A subunits have been expressed with high efficiency in Human Embryonic Kidney 293 cells with the aid of a recombinant vaccinia virus. This expression system produced functional receptors that sustained calcium influxes dependent on receptor agonists and inhibited by receptor antagonists. Immunocytochemistry of the recombinant receptors demonstrated that they were properly arranged in membrane structures. The entrance of calcium through the recombinant receptors induced delayed toxicity, demonstrated by approximately a three-fold increase in the number of dead cells obtained 12 h after the antagonist 2-amino-phosphopentanoic acid (DL-AP5) was removed from the culture. This result correlated with more than 88% inhibition in the expression of a reporter gene 24 h after antagonist removal. Calcium toxicity was completely abolished by specific antagonists of the NMDA receptor. Treatment of cell extracts with N-glycosydase showed that both receptor subunits were N-glycosylated. Tunicamycin prevented calcium toxicity; gel electrophoresis studies showed that this protection was likely due to degradation of the NR1 subunit.
Collapse
Affiliation(s)
- M García-Gallo
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
McIlhinney RA, Le Bourdellès B, Molnár E, Tricaud N, Streit P, Whiting PJ. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 1998; 37:1355-67. [PMID: 9849671 DOI: 10.1016/s0028-3908(98)00121-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The intracellular trafficking, assembly, and cell surface targeting of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A has been studied using both transiently and permanently transfected mammalian cell lines. The expression of either NR1a or NR2A alone does not result in significant cell surface expression of either subunit as determined by cell surface biotinylation and immunofluorescence staining. When NR1a is expressed alone large intracellular accumulations of the subunit are formed which do not co-localize with the golgi apparatus markers protein p58 and wheat germ agglutinin, but do co-localize with the endoplasmic reticulum marker calreticulin. Co-expression of NR1a and NR2A results in a reduction of these intracellular accumulations and the appearance of both subunits on the cell surface. Immunoprecipitation of NR1a from in vitro translated subunit proteins showed that NR2A could only be immunoprecipitated with NR1a when both subunits were co-synthesized in the presence of microsomes. When cells expressing NR1a and NR2A were incubated with [35S]methionine in the presence of Brefeldin-A, a drug which prevents protein transport from the endoplasmic reticulum, NR2A could be immunoprecipitated by an antiserum specific for NR1a. Together these results suggest that the NMDA receptor subunits are assembled in the endoplasmic reticulum and that co-synthesis of the subunits is necessary for their association and their successful cell surface targeting.
Collapse
Affiliation(s)
- R A McIlhinney
- Medical Research Council, Anatomical Neuropharmacology Unit, Oxford, UK
| | | | | | | | | | | |
Collapse
|
14
|
Radford K, Buell G. Expression of ligand-gated ion channels using Semliki Forest virus and baculovirus. Methods Enzymol 1998; 293:459-83. [PMID: 9711624 DOI: 10.1016/s0076-6879(98)93029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol 1997; 52:861-73. [PMID: 9351977 DOI: 10.1124/mol.52.5.861] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All ionotropic glutamate receptor (iGluR) subunits analyzed so far are heavily N-glycosylated at multiple sites on their amino-terminal extracellular domains. Although the exact functional significance of this glycosylation remains to be determined, it has been suggested that N-glycosylation may be a precondition for the formation of functional ion channels. In particular, it has been argued that N-glycosylation is required for the formation of functional ligand binding sites. We analyzed heterologously expressed recombinant glutamate receptors (GluRs) of all three pharmacological subclasses of glutamate receptors, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and kainate receptors. By expressing the GluR subunits in tunicamycin-treated, nonglycosylating Xenopus laevis oocytes, we determined that in neither case is N-glycosylation required for ion channel function, although for NMDA receptors, functional expression in the absence of N-glycosylation is very low. Furthermore, we analyzed and compared the interaction of the desensitization-inhibiting lectin concanavalin A (ConA) with all functional GluR subunits. We show that although ConA has its most pronounced effects on kainate receptors, it potentiates currents at most other receptor subtypes as well, including certain NMDA receptor subunits, although to a much lesser extent. One notable exception is the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor GluR2, which is not affected by ConA. Furthermore, we show that ConA acts directly via binding to the carbohydrate side chains of the receptor protein.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Blotting, Western
- Concanavalin A/pharmacology
- Dose-Response Relationship, Drug
- Glycosylation
- Lectins/pharmacology
- Membrane Potentials/drug effects
- Mutagenesis, Site-Directed
- Oocytes/chemistry
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/genetics
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Tunicamycin/pharmacology
- Xenopus laevis
Collapse
Affiliation(s)
- I Everts
- Glutamate Receptor Laboratory, Max-Planck-Institute for Experimental Medicine, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
16
|
Kawamoto S, Uchino S, Xin KQ, Hattori S, Hamajima K, Fukushima J, Mishina M, Okuda K. Arginine-481 mutation abolishes ligand-binding of the AMPA-selective glutamate receptor channel alpha1-subunit. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:339-44. [PMID: 9221933 DOI: 10.1016/s0169-328x(97)00103-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arginine-481 is located in the putative agonist-binding region preceding the putative transmembrane segment M1 of the alpha1-subunit of the AMPA-selective glutamate receptor (GluR) channel. This amino acid is completely conserved among GluR proteins. A site-directed mutagenesis study using a baculovirus expression system showed that substitution of glutamate, glutamine and lysine for arginine-481 of the recombinant alpha1-subunit protein abolishes binding to [3H]AMPA completely. The present study provides the first direct experimental evidence that the conserved charged arginine-481 residue is essential, directly or indirectly, for the acquisition of ligand-binding activity by the receptor protein.
Collapse
Affiliation(s)
- S Kawamoto
- Department of Bacteriology, Yokohama City University School of Medicine, Kanazawa-ku, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hamajima K, Fukushima J, Bukawa H, Kaneko T, Tsuji T, Asakura Y, Sasaki S, Xin KQ, Okuda K. Strong augment effect of IL-12 expression plasmid on the induction of HIV-specific cytotoxic T lymphocyte activity by a peptide vaccine candidate. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 83:179-84. [PMID: 9143379 DOI: 10.1006/clin.1997.4348] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously reported that repeated inoculation of VC1, a macromolecular multicomponent peptide vaccine emulsified with Freund's adjuvant (VC1-F), induced high cytotoxic T lymphocyte (CTL) levels and a substantial level of multivalent antibodies which neutralized various human immunodeficiency virus type 1 (HIV-1) isolates. In the present study, we report that inoculation of VC1-F plus interleukin (IL)-12 expression plasmid can induce a higher antigen-specific CTL response compared to that with VC1-F alone. VC1-F plus IL-12 expression plasmid or VC1-F alone were inoculated to BALB/c mice twice at interval of 2 weeks. Two weeks after the second inoculation, spleen effector cells from these mice were examined. Stronger CTL responses against target cells were observed from the inoculation of VC1-F plus IL-12 plasmid than from that with VC-1F alone, but there was no difference in antibody induction. The inoculation of VC1 plus IL-12 plasmid also produced higher CTL activity than the inoculation of VC1 alone. These augmented CTL activities were not observed using target cells pulsed with non-HIV-specific peptides and different class I haplotype cells. These data demonstrate that co-inoculation of cell-mediated immune potent antigen and IL-12 plasmids can enhance the antigen-specific CTL response. This may be a potential approach for the induction of cellular immunization against HIV-1 and other diseases.
Collapse
Affiliation(s)
- K Hamajima
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997; 18:493-503. [PMID: 9115742 DOI: 10.1016/s0896-6273(00)81249-0] [Citation(s) in RCA: 342] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NMDA receptors require both L-glutamate and the coagonist glycine for efficient channel activation. The glycine binding site of these heteromeric receptor proteins is formed by regions of the NMDAR1 (NR1) subunit that display sequence similarity to bacterial amino acid binding proteins. Here, we demonstrate that the glutamate binding site is located on the homologous regions of the NR2B subunit. Mutation of residues within the N-terminal domain and the loop region between membrane segments M3 and M4 significantly reduced the efficacy of glutamate, but not glycine, in channel gating. Some of the mutations also decreased inhibition by the glutamate antagonists, D-AP5 and R-CPP. Homology-based molecular modeling of the glutamate and glycine binding domains indicates that the NR2 and NR1 subunits use similar residues to ligate the agonists' alpha-aminocarboxylic acid groups, whereas differences in side chain interactions and size of aromatic residues determine ligand selectivity.
Collapse
Affiliation(s)
- B Laube
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Recombinant baculoviruses now represent a mature technology in which vector development, particularly for the control of expression level, has reached a plateau. However, other aspects of expression, such as the production of multiple proteins, improved product purification or maximizing protein processing, remain areas for novel vector and host cell development. This year has seen these topics come to the fore in descriptions of new expression systems.
Collapse
Affiliation(s)
- I Jones
- Institute of Virology, Mansfield Road, Oxford OX1 3SR, UK.
| | | |
Collapse
|
20
|
Sydow S, Köpke AK, Blank T, Spiess J. Overexpression of a functional NMDA receptor subunit (NMDAR1) in baculovirus-infected Trichoplusia ni insect cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:228-40. [PMID: 8883956 DOI: 10.1016/0169-328x(96)00100-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For overexpression of the N-methyl-D-aspartate (NMDA) receptor subunit 1b (NMDAR1b), its corresponding cDNA was extended by codons for six histidine residues at the 3'-end, cloned into a baculovirus transfer vector and integrated into the viral genome. Infection of Trichoplusia ni insect cells (High FiveTM cells) with recombinant baculovirus resulted in the production of 126- and 105-kDa NR 1b proteins in the cell membrane fraction. Enzymatic deglycosylation with PNGase F as well as infection of the insect cells in the presence of tunicamycin revealed that the two proteins represented the N-glycosylated and non-glycosylated forms of NMDAR1b, respectively. The recombinant NR1b protein was also identified with immunocytochemical methods employing a monoclonal antibody which recognized the six histidine residues. The affinity of this histidine tag to nickel ions was used for the purification of the NR1b protein. The glycine binding site of the subunit was successfully identified and analyzed with the specific antagonist 5,7-[3-3H]dichlorokynurenate (DCKA). The observed binding characteristics were similar to those obtained for native NMDA receptors. Whereas in electrophysiological measurements a functional NMDA receptor channel could not be found in infected insect cells, its expression was demonstrated in the Xenopus oocyte system after injection of the NMDAR1b cDNA construct.
Collapse
Affiliation(s)
- S Sydow
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | | | | | | |
Collapse
|
21
|
Chazot PL, Cik M, Stephenson FA. An investigation into the role of N-glycosylation in the functional expression of a recombinant heteromeric NMDA receptor. Mol Membr Biol 1995; 12:331-7. [PMID: 8747278 DOI: 10.3109/09687689509072435] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of N-glycosylation on the assembly of N-methyl-D-aspartate (NMDA) heteromeric cloned receptors was studied. Thus human embryonic kidney (HEK) 293 cells were cotransfected with N-methyl-D-aspartate R1 (NR1) and N-methyl-D-aspartate R2A (NR2A) clones and the cells grown post-transfection in the presence of tunicamycin (TM). TM treatment resulted in a decrease of the NR1 subunit with M(r) 117 000 with a concomitant increase in a M(r) 97 000 immunoreactive species previously identified as the non-N-glycosylated NR1 subunit. In parallel, TM caused a dose-dependent inhibition of [3H]MK801 binding to the expressed receptor which was a result of an approximate four-fold reduction in the Dissociation Constant (KD) but with no change in the number of binding sites (Bmax). NMDA receptor cell surface expression was unchanged following TM treatment but it did result in a decrease in the percentage cell death post-transfection compared to control samples. The removal of TM from the cell culture media resulted in a return to the control KD value for [3H]MK801 binding and partial reglycosylation of newly synthesized NR1 subunit. These results demonstrate that N-glycosylation is requisite for the efficient expression of functional NR1/NR2A receptors. Furthermore, they suggest that N-glycosylation may be important for the correct formation of the channel domain of the NR1/NR2A receptor.
Collapse
Affiliation(s)
- P L Chazot
- Department of Pharmaceutical Chemistry, School of Pharmacy, London, UK
| | | | | |
Collapse
|