1
|
The nerve regenerative microenvironment: Early behavior and partnership of axons and Schwann cells. Exp Neurol 2010; 223:51-9. [DOI: 10.1016/j.expneurol.2009.05.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
|
2
|
Ringer C, Weihe E, Schütz B. Pre-symptomatic alterations in subcellular betaCGRP distribution in motor neurons precede astrogliosis in ALS mice. Neurobiol Dis 2009; 35:286-95. [PMID: 19465128 DOI: 10.1016/j.nbd.2009.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/07/2009] [Accepted: 05/15/2009] [Indexed: 11/29/2022] Open
Abstract
In our study we investigated the pathology-related expression patterns of the two calcitonin gene-related peptide (CGRP) isoforms in spinal cord motor neurons of SOD1(G93A) mice, an animal model of the human motor neuron disease, amyotrophic lateral sclerosis (ALS). We found that alphaCGRP and betaCGRP gene expression and alphaCGRP immunoreactivity remained unaltered throughout disease, and alphaCGRP gene deficiency had no effect on disease progression. In contrast, betaCGRP immunoreactivity appeared at atypical sites in degenerating motor neuron cell bodies, axons, and dendrites already in the early pre-symptomatic disease phase around postnatal day 40. A close association of betaCGRP-containing dysmorphic dendritic structures with processes of activated astrocytes, in combination with a selective expression of the CGRP receptor by astrocytes, suggests that betaCGRP may function as a motor neuron-derived signaling molecule for astrocyte activation in ALS.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strabetae 8, Marburg D-35032, Germany
| | | | | |
Collapse
|
3
|
Locally synthesized calcitonin gene-related Peptide has a critical role in peripheral nerve regeneration. J Neuropathol Exp Neurol 2009; 68:326-37. [PMID: 19225405 DOI: 10.1097/nen.0b013e31819ac71b] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regeneration of peripheral nerves involves complex and intimate interactions between axons and Schwann cells. Here, we show that local axon synthesis and action of the neuropeptide calcitonin gene-related peptide (CGRP) is critical for this collaboration. After peripheral sural sensory axon injury in rats, we observed an unexpectedly large proportion of axons that newly expressed CGRP during regeneration. Intense peptide expression accompanied local rises in alphaCGRP mRNA in the nerve trunk, and there was evidence of transport of alphaCGRP mRNA into regenerating axons, indicating intra-axonal peptide synthesis. Calcitonin gene-related peptide receptor and its receptor activity modifying protein were expressed onadjacent Schwann cells, where they were available for signaling. Moreover, exogenous CGRP induced proliferation in isolated adult Schwann cells. New axon outgrowth and CGRP expression depended on local peptide synthesis and were inhibited by exposure tolocal translation inhibitors. Local delivery of siRNAs to either alphaCGRP or receptor activity modifying protein 1 to sites of nerve transection was associated with severe disruption of axon outgrowth.These findings indicate that robust localized intra-axonal translation of the CGRP neuropeptide during regeneration signals Schwann cell proliferation, behavior that is critical for partnering during adult peripheral nerve regrowth.
Collapse
|
4
|
Zheng LF, Wang R, Xu YZ, Yi XN, Zhang JW, Zeng ZC. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve injuries. Brain Res 2008; 1187:20-32. [DOI: 10.1016/j.brainres.2007.10.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/02/2007] [Accepted: 10/06/2007] [Indexed: 01/17/2023]
|
5
|
Chang HM, Wei IH, Tseng CY, Lue JH, Wen CY, Shieh JY. Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats. J Chem Neuroanat 2004; 28:239-51. [PMID: 15531135 DOI: 10.1016/j.jchemneu.2004.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 07/23/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
We employed a double injury model (axotomy along with hypoxia) to determine how nerve injury and hypoxic insult would affect the expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the hypoglossal nucleus (HN) and nucleus ambiguus (NA). Adult rats were subjected to unilateral vagus and hypoglossal nerve transection, following which half of the animals were kept in an altitude chamber (PO2=380 Torr). The immunoexpression of CGRP and ChAT (CGRP-IR/ChAT-IR) were examined by quantitative immunohistochemistry at 3, 7, 14, 30 and 60 days post-axotomy. The results revealed that CGRP-IR in the HN was increased at 3 days but decreased to basal levels at 7 days following nerve injury. The decline was followed by a second rise in CGRP-IR at 30 days post-axotomy, followed again by a return to basal levels at 60 days. In the NA, CGRP-IR was up-regulated at 3 days and remained increased for up to 60 days after nerve injury. Animals treated with a double injury showed a greater CGRP-IR than normoxic group in both nuclei at all post-axtomized periods. In contrast to CGRP, ChAT-IR was markedly reduced in the HN and NA at 3 days reaching its nadir at 14 days following nerve injury. Hypoxic animals showed a stronger reduction of ChAT-IR in both nuclei at all post-axtomized periods. Results of cell counting showed that neuronal loss was somewhat obvious in hypoxic HN than that of normoxic ones. The present results suggest that up-regulation of CGRP-IR may exert its trophic effects while down-regulation of ChAT-IR may correlate with the poor neurotransmission within the injured neurons. It is speculated that the enhanced expression of CGRP-IR and the pronounced reduction of ChAT-IR in hypoxic rats may result from a drastic shift of intracellular metabolic pathways, which in turn could lead to more metabolic loading to the severely damaged neurons following the double insult.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
6
|
Anders JJ, Geuna S, Rochkind S. Phototherapy promotes regeneration and functional recovery of injured peripheral nerve. Neurol Res 2004; 26:233-9. [PMID: 15072645 DOI: 10.1179/016164104225013914] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Numerous attempts have been made to enhance and/or accelerate the recovery of injured peripheral nerves. One of the methods studied is the use of phototherapy (low power laser or light irradiation) to enhance recovery of the injured peripheral nerve. A critical analysis of the literature on the employment of phototherapy for the enhancement of the regeneration process of the rat facial and sciatic nerve (after crush injury or transection followed by surgical reconstruction) is provided, together with the description of some of the most suitable basic biological mechanisms through which laser radiation exerts its action on peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juanita J Anders
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20854, USA.
| | | | | |
Collapse
|
7
|
Fernandez HL, Chen M, Nadelhaft I, Durr JA. Calcitonin gene-related peptides: their binding sites and receptor accessory proteins in adult mammalian skeletal muscles. Neuroscience 2003; 119:335-45. [PMID: 12770550 DOI: 10.1016/s0306-4522(03)00163-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work addresses the presence, pharmacological properties, and anatomical localization of calcitonin gene-related peptide-alpha (CGRPalpha) binding sites and the receptor's accessory proteins in endplate-enriched and non-endplate muscle membrane samples from adult rat gracilis muscles. We examined the binding of (125)I-[Tyr(0)]-CGRPalpha, the competitive binding of CGRPalpha analogs, the immunohistochemical localization of the receptor's accessory proteins, and Western blots of the receptor component protein. Results show that: (a). (125)I-[Tyr(0)]-CGRPalpha binding is saturable, specific, and consistent with the presence of a homogeneous population of binding sites (Hill coefficients=1.0) in endplate and non-endplate samples exhibiting dissociation constants of 0.39 nM and 0.38 nM, respectively; (b). the density of binding sites in the endplate samples (71.0 fmoles/mg protein) is considerably higher than that in their non-endplate counterparts (34.6 fmoles/mg protein); (c). unlabeled CGRPalpha, hCGRP8-37 and calcitonin compete with the radioligand with the same order of potency in the endplate and non-endplate samples; and (d). the localization of the receptor accessory proteins, including the receptor activity-modifying protein (RAMP1) and the receptor component protein (RCP), for the most part matches that of the motor end-plates. Thus, gracilis muscles express CGRPalpha-specific binding sites which are predominantly localized in the muscle's motor endplate regions where RAMP1, RCP, CGRPalpha, acetylcholine receptors, and acetylcholinesterase are detected in high concentrations. These findings imply that the CGRPalpha binding sites reflect the presence of physiologically functional receptors with a pharmacological profile consistent with that of the CGRPalpha receptor type 1 (CGRP1). When considered together with earlier studies on the same neuromuscular preparation, the present work further suggests that the motoneuron-dependent trophic control of acetylcholine receptors and acetylcholinesterase in skeletal muscle endplates is partly mediated by nerve-derived CGRPalpha activating specific receptors which are highly sensitive to the truncated peptide hCGRP8-37.
Collapse
Affiliation(s)
- H L Fernandez
- Research and Development Service (151), Department of Veterans Affairs Medical Center, PO Box 4125, Bay Pines, FL 33744, USA.
| | | | | | | |
Collapse
|
8
|
Hou L, Li W, Wang X. Mechanism of interleukin-1 beta-induced calcitonin gene-related peptide production from dorsal root ganglion neurons of neonatal rats. J Neurosci Res 2003; 73:188-97. [PMID: 12836161 DOI: 10.1002/jnr.10651] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is synthesized in dorsal root ganglion (DRG) neurons and released from primary afferent neurons to mediate hemodynamic effects and neurogenic inflammation. The effect of the proinflammatory cytokine interleukin-1 (IL-1)-beta on CGRP release from these sensory neurons was investigated. The results showed that IL-1beta (1 ng/ml) could directly induce CGRP release following prolonged incubation (24 hr) with these neurons. Treatment with IL-1beta (0.1-1.0 ng/ml) significantly increased CGRP release in a concentration-dependent manner. In addition, pretreatment of DRG cells with actinomycin D at 1 microM or cyclohexamide at 10 microM for 30 min inhibited 1 ng/ml IL-1beta-induced CGRP release in DRG neurons of neonatal rats. The inhibitors of PKC, JNK MAPK and NF-kappaB, but not p38 or ERK1/2 MAPK, blocked IL-1beta-induced CGRP release. RNase protection assay showed that IL-1beta could cause alpha-CGRP mRNA increase in a time- and concentration-dependent manner, although the level of beta-CGRP mRNA was not affected. These results indicate that IL-1beta may activate PKC, which in turn initiates JNK MAPK and activates NF-kappaB and finally induces alpha-CGRP gene expression and release from these sensory neurons.
Collapse
Affiliation(s)
- Lingfei Hou
- Institute of Vascular Medicine, Peking University Third Hospital, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
9
|
Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ. Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med 2002; 31:216-22. [PMID: 12224097 DOI: 10.1002/lsm.10098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES A persistent increase in calcitonin gene-related peptide (CGRP) immunoreactivity in motoneurons may serve as an indicator for regeneration after peripheral nerve injury [Borke et al., J Neurocytol 1993;22:141-153]. STUDY DESIGN/MATERIALS AND METHODS We examined the effects of low power laser treatment (633 nm) on axotomy-induced changes in alpha-CGRP mRNA and long-term neuronal survival in facial motoneurons. A quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay for alpha-CGRP mRNA was used to detect changes in the response to axotomy and laser irradiation. Cell counts of neurons in injured and non-injured facial motor nuclei of laser-treated and non-treated rats were done to estimate neuronal survival. RESULTS A 10-fold increase (P < 0.0001) in mRNA for alpha-CGRP at 11 days post-transection and an almost threefold increase (P < 0.0001) in neuronal survival at 6-9 months post-transection were found in 633 nm light treated rats. DISCUSSION These findings demonstrate that 633 nm laser light upregulates CGRP mRNA and support the theory that laser irradiation increases the rate of regeneration, target reinnervation, and neuronal survival of the axotomized neuron.
Collapse
Affiliation(s)
- Sara K Snyder
- Laboratory for Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
10
|
González-Forero D, De La Cruz RR, Delgado-García JM, Alvarez FJ, Pastor AM. Correlation between CGRP immunoreactivity and firing activity in cat abducens motoneurons. J Comp Neurol 2002; 451:201-12. [PMID: 12210133 DOI: 10.1002/cne.10267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A relationship between motoneuron activity and calcitonin gene-related peptide (CGRP) expression was previously suggested based on indirect inferences. We show here a positive correlation between CGRP immunoreactivity and firing activity in an experimental model that used tetanus neurotoxin (TeNT) to alter basal firing levels. A low dose (0.5 ng/kg) of TeNT injected in the lateral rectus muscle raised the basal firing rate of ipsilateral abducens motoneurons, estimated as the firing rate at straight-ahead gaze (F(0)); the firing rate returned to control values after 2 weeks. In contrast, a high dose (5 ng/kg) of TeNT decreased basal firing, which recovered slowly over a 7-week period. Expression of CGRP immunoreactivity by abducens motoneurons, preferentially related to betaCGRP gene expression, was analyzed during these periods of altered firing activity. The number of CGRP-immunofluorescent abducens motoneurons increased to approximately 120% by 7 days after low-dose TeNT, to include all available motoneurons in the nucleus. In addition, the average CGRP immunofluorescence optical density inside motoneurons almost doubled after 4 days and returned toward control values in the following 2 weeks. In contrast, a high-dose injection of TeNT reduced the number of CGRP-immunofluorescent motoneurons to 5.4% of control 7 days post injection, and the number returned to 77.6% after 42 days. CGRP immunofluorescence intensity inside motoneurons was also reduced. Regression analysis of F(0) values with either the number of CGRP-immunolabeled motoneurons, their average immunofluorescence intensity, or both factors combined resulted in positive correlations with regression coefficients of 0.87 or higher. Therefore, CGRP expression and firing activity in abducens motoneurons are positively correlated.
Collapse
Affiliation(s)
- David González-Forero
- Departamento de Fisiología y Biología Animal, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
11
|
Doi Y, Peng H, Kudo H, Hamasaki K, Fujimoto S. Expression of alpha-calcitonin gene-related peptide in the enteric nervous system of rat small intestine. Neurosci Lett 2000; 285:33-6. [PMID: 10788701 DOI: 10.1016/s0304-3940(00)01018-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We first detected alpha-calcitonin gene-related peptide (alpha-CGRP) precursor mRNA in the enteric nervous system (ENS) of rat small intestine by reverse transcriptase polymerase chain reaction (RT-PCR). The nucleotide sequence of the RT-PCR product was completely identical to that found in other organs. By in situ hybridization using digoxygenin-labeled alpha-CGRP precursor cRNA probe, we found that antisense probes detected a signal on nerve cell bodies of both submucosal and myenteric plexuses. Our findings indicate that the rat ENS participates in synthesis of alpha-CGRP precursor.
Collapse
Affiliation(s)
- Y Doi
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
12
|
Lu JT, Son YJ, Lee J, Jetton TL, Shiota M, Moscoso L, Niswender KD, Loewy AD, Magnuson MA, Sanes JR, Emeson RB. Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci 1999; 14:99-120. [PMID: 10532808 DOI: 10.1006/mcne.1999.0767] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
alpha-Calcitonin gene-related peptide (alphaCGRP) is a pleiotropic peptide neuromodulator that is widely expressed throughout the Central and peripheral nervous systems. CGRP has been implicated in a variety of physiological processes including peripheral vasodilation, cardiac acceleration nicotinic acetylcholine receptor (AChR) synthesis and function, testicular descent, nociception, carbohydrate metabolism, gastrointestinal motility, neurogenic inflammation, and gastric acid secretion. To provide a better understanding of the physiological role(s) mediated by this peptide neurotransmitter, we have generated alphaCGRP-null mice by targeted modification in embryonic stem cells. Mice lacking alpha CGRP expression demonstrate no obvious phenotypic differences from their wild-type littermates. Detailed analysis of systemic cardiovascular function revealed no differences between control and mutant mice regarding heart rate and blood pressure under basal or exercise-induced conditions and subsequent to pharmacological manipulation. Characterization of neuromuscular junction in morphology including nicotinic receptor localization, terminal sprouting in response to denervation, developmental regulation of AChR subunit expression, and synapse elimination also revealed no differences in alphaCGRP-deficient animals. These results suggest that alphaCGRP is not required for the systemic regulation of cardiovascular hemodynamics or development of the neuromuscular junction.
Collapse
Affiliation(s)
- J T Lu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Terrado J, Gerrikagoitia I, Domínguez L, Raldúa D, Martínez-Millán L, Sarasa M. Expression of the genes for alpha-type and beta-type calcitonin gene-related peptide during rat embryogenesis. Neuroscience 1999; 92:713-27. [PMID: 10408620 DOI: 10.1016/s0306-4522(98)00730-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Throughout rat embryogenesis we analysed the expression patterns of the three mature transcripts generated from the two calcitonin gene-related peptide genes: calcitonin, alpha-calcitonin gene-related peptide, and beta-calcitonin gene-related peptide messenger RNAs. In addition, we examined in parallel the distribution of calcitonin gene-related peptide and calcitonin immunoreactivity. Of the three transcripts, beta-calcitonin gene-related peptide messenger RNA was first detected in sensory ganglia on embryonic day 14, and by embryonic day 15 was seen to a lesser degree in motor neurons and autonomic ganglia. Starting at embryonic day 16, however, the highest levels of beta-calcitonin gene-related peptide messenger RNA were found in motor neurons rather than sensory ganglia. Alpha-calcitonin gene-related peptide messenger RNA was first detected on embryonic day 16 in both sensory ganglia and motor neurons, but at lower levels than beta-calcitonin gene-related peptide, particularly in the motor neurons of the spinal cord. By embryonic day 20, transcripts for alpha- and beta-calcitonin gene-related peptide were expressed in distinct brain regions. High levels of alpha-calcitonin gene-related peptide messenger RNA were detected in hypoglossal, facial, and parabrachial nuclei, and moderate levels in the trigeminal motor and ambiguus nuclei. By contrast, beta-calcitonin gene-related peptide messenger RNA was detected at low levels in hypoglossal, ambiguus, facial, and parabrachial nuclei, and at high levels in the trigeminal nucleus. In the oculomotor-trochlear nucleus, beta-calcitonin gene-related peptide messenger RNA was the sole isotype expressed. Low levels of messenger RNA for both calcitonin gene-related peptide transcripts were appreciated in the inferior olive. Outside the nervous system, alpha-calcitonin gene-related peptide messenger RNA was weakly expressed in the thyroid gland and beta-calcitonin gene-related peptide messenger RNA in the thymus. Throughout embryogenesis, calcitonin gene-related peptide immunoreactivity usually followed the expression of either alpha- or beta-calcitonin gene-related peptide messenger RNA. Calcitonin messenger RNA and protein were detected only in the thyroid gland from embryonic day 18 onward. This work shows that of the three mature transcripts produced by the two calcitonin gene-related peptide genes, beta-calcitonin gene-related peptide messenger RNA is the predominant transcript produced early in rat embryogenesis. However, by perinatal stages alpha-calcitonin gene-related peptide shows the highest expression in the brain and spinal cord. In autonomic ganglia, beta-calcitonin gene-related peptide is either the sole or the predominant transcript. Unlike the chick embryo in which calcitonin messenger RNA is expressed early in the CNS, in rat it was only expressed outside the nervous system in the thyroid gland during the last days of embryogenesis.
Collapse
Affiliation(s)
- J Terrado
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Röhrenbeck AM, Bette M, Hooper DC, Nyberg F, Eiden LE, Dietzschold B, Weihe E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. Neurobiol Dis 1999; 6:15-34. [PMID: 10078970 DOI: 10.1006/nbdi.1998.0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of immunocompetent adult rats with Borna disease virus (BDV) causes severe encephalitis and neural dysfunction. The expression of COX-2 and CGRP, genes previously shown to be implicated in CNS disease and peripheral inflammation, was dramatically upregulated in the cortical neurons of acutely BDV-infected rats. Neuronal COX-2 and CGRP upregulation was predominantly seen in brain areas where ED1-positive macrophages/microglia accumulated. In addition, COX-2 expression was strongly induced in brain endothelial cells and the number of COX-2 immunoreactive microglial cells was increased. In contrast, despite increased expression of viral antigens, neither COX-2 nor CGRP expression was altered in the CNS of BDV-infected rats treated with dexamethasone, or tolerant to BDV. Thus, increased CGRP and COX-2 expression in the BDV-infected brain is the result of the inflammatory response and likely to be involved in the pathogenesis of virus-induced encephalitis.
Collapse
Affiliation(s)
- A M Röhrenbeck
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Fukuoka T, Tokunaga A, Kondo E, Miki K, Tachibana T, Noguchi K. Differential regulation of alpha- and beta-CGRP mRNAs within oculomotor, trochlear, abducens, and trigeminal motoneurons in response to axotomy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:304-15. [PMID: 9878800 DOI: 10.1016/s0169-328x(98)00297-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal and cranial motoneurons express alpha- and beta-calcitonin gene-related peptide (CGRP) mRNAs constitutively at variable ratios, and these two mRNAs are differentially regulated following axotomy in spinal, facial, and hypoglossal motoneurons. The purpose of this study was to investigate the change in CGRP mRNA expression following nerve injury in oculomotor, trochlear, abducens, and trigeminal motor nuclei in which beta-CGRP mRNA is predominantly expressed under normal conditions. Using male Sprague-Dawley rats, either the left eyeball and the orbital contents including the bulbar muscles were removed, or the left masseter nerve was ligated and transected. The rats were allowed to survive for 1, 3, 7, 14, 28, 56 days following these procedures. The levels of mRNAs for alpha- and beta-CGRP and growth-associated protein (GAP)-43 were analyzed by in situ hybridization histochemistry using 35S-labeled oligonucleotide probes. Following nerve injury, the expression of alpha-CGRP mRNA rapidly increased on the directly-injured side in all of these nuclei. Thereafter, it gradually decreased and returned to about the control level at postoperative day 56 within oculomotor, trochlear, and abducens motoneurons, but it sustained at a high level within trigeminal motoneurons. The expression of beta-CGRP was quite variable among these nuclei, and significant changes were also seen on the side contralateral to the directly-injured side. These data indicate that the up-regulation of alpha-CGRP mRNA may be a common response of cranial motor neurons following axotomy even if the constitutive expression of beta-CGRP mRNA exceeds that of alpha-CGRP mRNA in these neurons.
Collapse
Affiliation(s)
- T Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Terrado J, Gerrikagoitia I, Raldúa D, Sorribas V, Martínez-Millán L, Sarasa M. The two mature transcripts of the chick calcitonin gene are expressed within the central nervous system during embryogenesis. Mech Dev 1998; 77:81-4. [PMID: 9784613 DOI: 10.1016/s0925-4773(98)00129-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Calcitonin mRNA and calcitonin gene-related peptide (CGRP) mRNA both are generated from the calcitonin gene because of tissue-specific alternative splicing of the primary transcript. It is currently established that, of the two mature transcripts, calcitonin mRNA is far the predominant transcript produced in thyroid C-cells whereas only CGRP mRNA is produced in the nervous system. However, here we provide evidence that the two splicing forms of the chick calcitonin primary transcript are found within the developing central nervous system, although displaying specific patterns of expression. While CGRP mRNA is first expressed in motor neurons at rather advanced stages of embryogenesis, calcitonin mRNA is expressed in the floor plate and dorsal rhombencephalon from earliest stages.
Collapse
Affiliation(s)
- J Terrado
- Laboratory of Neurobiology, Faculty of Veterinary Sciences, University of Zaragoza, Miguel Servet 177, E-50013, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Hull KL, Fathimani K, Sharma P, Harvey S. Calcitropic peptides: neural perspectives. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:389-410. [PMID: 9827010 DOI: 10.1016/s0742-8413(98)00010-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In mammals and higher vertebrates, calcitropic peptides are produced by peripheral endocrine glands: the parathyroid gland (PTH), thyroid or ultimobranchial gland (calcitonin) and the anterior pituitary gland (growth hormone and prolactin). These hormones are, however, also found in the neural tissues of lower vertebrates and invertebrates that lack these endocrine organs, suggesting that neural tissue may be an ancestral site of calcitropic peptide synthesis. Indeed, the demonstration of CNS receptors for these calcitropic peptides and their induction of neurological actions suggest that these hormones arose as neuropeptides. Neural and neuroendocrine roles of some of these calcitropic hormones (calcitonin and parathyroid hormone) and related peptides (calcitonin gene related peptide, stanniocalcin and parathyroid hormone related peptide) are thus the focus of this review.
Collapse
Affiliation(s)
- K L Hull
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
18
|
Shadiack AM, Zigmond RE. Galanin induced in sympathetic neurons after axotomy is anterogradely transported toward regenerating nerve endings. Neuropeptides 1998; 32:257-64. [PMID: 10189060 DOI: 10.1016/s0143-4179(98)90045-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peripheral neurons begin to express galanin after axotomy. When neurons in the superior cervical ganglion were axotomized near (about 2 mm) from the ganglion, galanin-like immunoreactivity (IR) was maximal within 72 h. Axotomy of neurons in the middle and inferior cervical ganglion complex (MICG), which could be performed 2 cm from the ganglia, led to an additional galanin increase 7 and 14 days later. This second increase was not accompanied by changes in galanin mRNA or the number of galanin-immunostained neurons. Galanin-IR was detectable in a postganglionic trunk of the MICG 2 days after axotomy. At this time, immunoreactive fibers were only seen near the lesion site, while later they were found throughout the trunk. The data suggest that galanin is actively transported toward the site of nerve crush/transection and that the second increase in galanin-IR found in the MICG may be due to a saturation of the axonal transport system.
Collapse
Affiliation(s)
- A M Shadiack
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | |
Collapse
|
19
|
Terrado J, Gerrikagoitia I, Martinez-Millán L, Pascual F, Climent S, Muniesa P, Sarasa M. Expression of the genes for alpha-type and beta-type calcitonin gene-related peptide during postnatal rat brain development. Neuroscience 1997; 80:951-70. [PMID: 9276505 DOI: 10.1016/s0306-4522(97)00139-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study we have analysed the expression of the genes for both alpha-type and beta-type calcitonin gene-related peptide (CGRP) during postnatal development of the rat brain and compared it with the expression of CGRP-like immunoreactivity. At birth both alpha-type and beta-type CGRP messenger RNA were present in the parabrachial nucleus, inferior olive and motor nuclei (except for abducens nucleus), and only alpha-type CGRP messenger RNA in some posterior thalamic nuclei. As development advanced, new nuclei started to express either only alpha-CGRP gene (superior olive, parabigeminal, sagulum, and some hypothalamic and cranial thalamic nuclei) or both genes (abducens nucleus). In the inferior olive both genes were transiently expressed. Beta-CGRP messenger RNA disappeared by postnatal day 10 and alpha-CGRP messenger RNA by postnatal day 20. During the whole postnatal development beta-CGRP gene expression predominated over that of alpha-CGRP in the trigeminal and eye motor nuclei, while in the remainder nuclei alpha-CGRP messenger RNA was either the predominant isoform or the sole one. CGRP-like immunoreactivity, which does not distinguish between alpha-type and beta-type CGRP, was detected in those nuclei containing either alpha-CGRP messenger RNA or beta-CGRP messenger RNA. However, no CGRP messenger RNA was detected in areas such as superior colliculus, lateral pontine nucleus, pars reticulata of the substantia nigra, perifornical area, or zona incerta in which CGRP-like immunoreactivity was prominent. CGRP-like immunoreactivity, but not CGRP messenger RNA, was also transiently detected by postnatal day 5 in some cells of the globus pallidus. In the adult brain, the levels of alpha- and beta-CGRP messenger RNA as well as those of CGRP-like immunoreactivity were considerably reduced. This fact, similar to that of other growth- and development-associated factors, suggests a role for CGRP as a neuron-derived neurotrophic factor. The transient expression in neurons of the inferior olive, matching the period when climbing fibres and cerebellar cortex are developing, seems to support such an idea. The results of this study show that those nuclei expressing beta-CGRP gene also express alpha-CGRP gene. However, there are a number of nuclei that only express alpha-CGRP gene. On the other hand, CGRP-like immunoreactivity is detected in some nuclei which express no CGRP messenger RNA. It suggests that such nuclei express any CGRP-related protein (identified by the antibodies against CGRP) or, if they really contain CGRP protein, this is produced from undetectable amounts (using our in situ hybridization histochemistry procedure) of CGRP messenger RNA or it comes from other nuclei that connect with them in which CGRP protein is synthesized and then transferred.
Collapse
Affiliation(s)
- J Terrado
- Department of Anatomy, Embryology and Genetics, Faculty of Veterinary Sciences, University of Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|