1
|
Altered Intracellular Calcium Homeostasis Underlying Enhanced Glutamatergic Transmission in Striatal-Enriched Tyrosine Phosphatase (STEP) Knockout Mice. Mol Neurobiol 2018; 55:8084-8102. [PMID: 29508281 DOI: 10.1007/s12035-018-0980-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals. To better investigate its physiological role at the presynaptic level, we functionally investigated brain synaptosomes and autaptic hippocampal neurons from STEP knockout (KO) mice. Synaptosomes purified from mutant mice were characterized by an increased basal and evoked glutamate release compared with wild-type animals. Under resting conditions, STEP KO synaptosomes displayed increased cytosolic Ca2+ levels accompanied by an enhanced basal activity of Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and hyperphosphorylation of synapsin I at CaMKII sites. Moreover, STEP KO hippocampal neurons exhibit an increase of excitatory synaptic strength attributable to an increased size of the readily releasable pool of synaptic vesicles. These results provide new evidence that STEP plays an important role at nerve terminals in the regulation of Ca2+ homeostasis and neurotransmitter release.
Collapse
|
2
|
Nesler KR, Starke EL, Boin NG, Ritz M, Barbee SA. Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 2016; 76:33-41. [PMID: 27567686 DOI: 10.1016/j.mcn.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Spaced synaptic depolarization induces rapid axon terminal growth and the formation of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). Here, we identify a novel presynaptic function for the Calcium/Calmodulin-dependent Kinase II (CamKII) protein in the control of activity-dependent synaptic growth. Consistent with this function, we find that both total and phosphorylated CamKII (p-CamKII) are enriched in axon terminals. Interestingly, p-CamKII appears to be enriched at the presynaptic axon terminal membrane. Moreover, levels of total CamKII protein within presynaptic boutons globally increase within one hour following stimulation. These effects correlate with the activity-dependent formation of new presynaptic boutons. The increase in presynaptic CamKII levels is inhibited by treatment with cyclohexamide suggesting a protein-synthesis dependent mechanism. We have previously found that acute spaced stimulation rapidly downregulates levels of neuronal microRNAs (miRNAs) that are required for the control of activity-dependent axon terminal growth at this synapse. The rapid activity-dependent accumulation of CamKII protein within axon terminals is inhibited by overexpression of activity-regulated miR-289 in motor neurons. Experiments in vitro using a CamKII translational reporter show that miR-289 can directly repress the translation of CamKII via a sequence motif found within the CamKII 3' untranslated region (UTR). Collectively, our studies support the idea that presynaptic CamKII acts downstream of synaptic stimulation and the miRNA pathway to control rapid activity-dependent changes in synapse structure.
Collapse
Affiliation(s)
- Katherine R Nesler
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Emily L Starke
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Nathan G Boin
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Matthew Ritz
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Scott A Barbee
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA; Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
3
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
4
|
Hoppe JB, Haag M, Whalley BJ, Salbego CG, Cimarosti H. Curcumin protects organotypic hippocampal slice cultures from Aβ1-42-induced synaptic toxicity. Toxicol In Vitro 2013; 27:2325-30. [PMID: 24134851 DOI: 10.1016/j.tiv.2013.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Abstract
Increasing evidence demonstrates that beta-amyloid (Aβ) is toxic to synapses, resulting in the progressive dismantling of neuronal circuits. Counteract the synaptotoxic effects of Aβ could be particularly relevant for providing effective treatments for Alzheimer's disease (AD). Curcumin was recently reported to improve learning and memory in animal models of AD. Little is currently known about the specific mechanisms by which Aβ affects neuronal excitability and curcumin ameliorates synaptic transmission in the hippocampus. Organotypic hippocampal slice cultures exposed to Aβ1-42 were used to study the neuroprotective effects of curcumin through a spectral analysis of multi-electrode array (MEA) recordings of spontaneous neuronal activity. Curcumin counteracted both deleterious effects of Aβ; the initial synaptic dysfunction and the later neuronal death. The analysis of MEA recordings of spontaneous neuronal activity showed an attenuation of signal propagation induced by Aβ before cell death and curcumin-induced alterations to local field potential (LFP) phase coherence. Curcumin-mediated attenuation of Aβ-induced synaptic dysfunction involved regulation of synaptic proteins, namely phospho-CaMKII and phospho-synapsin I. Taken together, our results expand the neuroprotective role of curcumin to a synaptic level. The identification of these mechanisms underlying the effects of curcumin may lead to new targets for future therapies for AD.
Collapse
Affiliation(s)
- Juliana Bender Hoppe
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6UB, UK; Laboratory of Neuroprotection and Cell Signalling, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| | | | | | | | | |
Collapse
|
5
|
Presynaptic roles of intracellular Ca(2+) stores in signalling and exocytosis. Biochem Soc Trans 2010; 38:529-35. [PMID: 20298216 DOI: 10.1042/bst0380529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signalling roles of Ca(2+)(ic) (intracellular Ca(2+)) stores are well established in non-neuronal and neuronal cells. In neurons, although Ca(2+)(ic) stores have been assigned a pivotal role in postsynaptic responses to G(q)-coupled receptors, or secondarily to extracellular Ca(2+) influx, the functions of dynamic Ca(2+)(ic) stores in presynaptic terminals remain to be fully elucidated. In the present paper, we review some of the recent evidence supporting an involvement of Ca(2+)(ic) in presynaptic function, and discuss loci at which this source of Ca(2+) may impinge. Nerve terminal preparations provide good models for functionally examining putative Ca(2+)(ic) stores under physiological and pathophysiological stimulation paradigms, using Ca(2+)-dependent activation of resident protein kinases as sensors for fine changes in intracellular Ca(2+) levels. We conclude that intraterminal Ca(2+)(ic) stores may, directly or indirectly, enhance neurotransmitter release following nerve terminal depolarization and/or G-protein-coupled receptor activation. During conditions that prevail following neuronal ischaemia, increased glutamate release instigated by Ca(2+)(ic) store activation may thereby contribute to excitotoxicity and eventual synaptopathy.
Collapse
|
6
|
Abul-Husn NS, Bushlin I, Morón JA, Jenkins SL, Dolios G, Wang R, Iyengar R, Ma'ayan A, Devi LA. Systems approach to explore components and interactions in the presynapse. Proteomics 2009; 9:3303-15. [PMID: 19562802 DOI: 10.1002/pmic.200800767] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of proteomic techniques to neuroscientific research provides an opportunity for a greater understanding of nervous system structure and function. As increasing amounts of neuroproteomic data become available, it is necessary to formulate methods to integrate these data in a meaningful way to obtain a more comprehensive picture of neuronal subcompartments. Furthermore, computational methods can be used to make biologically relevant predictions from large proteomic data sets. Here, we applied an integrated proteomics and systems biology approach to characterize the presynaptic (PRE) nerve terminal. For this, we carried out proteomic analyses of presynaptically enriched fractions, and generated a PRE literature-based protein-protein interaction network. We combined these with other proteomic analyses to generate a core list of 117 PRE proteins, and used graph theory-inspired algorithms to predict 92 additional components and a PRE complex containing 17 proteins. Some of these predictions were validated experimentally, indicating that the computational analyses can identify novel proteins and complexes in a subcellular compartment. We conclude that the combination of techniques (proteomics, data integration, and computational analyses) used in this study are useful in obtaining a comprehensive understanding of functional components, especially low-abundance entities and/or interactions in the PRE nerve terminal.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol 2008; 38:153-66. [PMID: 18759010 DOI: 10.1007/s12035-008-8039-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/14/2008] [Indexed: 12/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the BK channel are enriched at the presynaptic nerve terminal, where CaMKII associates with synaptic vesicles whereas the BK channel colocalizes with voltage-sensitive Ca(2+) channels in the plasma membrane. Mounting evidence suggests that these two proteins play important roles in controlling neurotransmitter release. Presynaptic BK channels primarily serve as a negative regulator of neurotransmitter release. In contrast, presynaptic CaMKII either enhances or inhibits neurotransmitter release and synaptic plasticity depending on experimental or physiological conditions and properties of specific synapses. The different functions of presynaptic CaMKII appear to be mediated by distinct downstream proteins, including the BK channel.
Collapse
|
8
|
Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci 2008; 28:6250-7. [PMID: 18550767 DOI: 10.1523/jneurosci.5219-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mice lacking the serotonin receptor 1A [Htr1aknock-out (Htr1a(KO))] display increased innate and conditioned anxiety-related behavior. Expression of the receptor in the mouse forebrain during development is sufficient to restore normal anxiety-related behavior to knock-out mice, demonstrating a role for serotonin in the developmental programming of anxiety circuits. However, the precise developmental period as well as the signaling pathways and neural substrates involved in this phenomenon are unknown. Here, we show that pharmacological blockade of the receptor from postnatal day 13 (P13)-P34 is sufficient to reproduce the knock-out phenotype in adulthood, thus defining a role for serotonin in the maturation and refinement of anxiety circuits during a limited postnatal period. Furthermore, we identify increases in the phosphorylation of alpha-Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII) at threonine 286 in the hippocampus of young Htr1a(KO) mice under anxiety-provoking conditions. Increases in alphaCaMKII phosphorylation were most pronounced in the CA1 region of the hippocampus and were localized to the extrasynaptic compartment, consistent with a tissue-specific effect of the receptor. No changes in alphaCaMKII phosphorylation were found in adult knock-out mice, suggesting a transient role of alphaCaMKII as a downstream target of the receptor. Finally, the anxiety phenotype was abolished when knock-out mice were crossed to mice in which alphaCaMKII phosphorylation was compromised by the heterozygous mutation of threonine 286 into alanine. These findings suggest that modulation of alphaCaMKII function by serotonin during a restricted postnatal period contributes to the developmental programming of anxiety-related behavior.
Collapse
|
9
|
Barbiero VS, Giambelli R, Musazzi L, Tiraboschi E, Tardito D, Perez J, Drago F, Racagni G, Popoli M. Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments. Neuropsychopharmacology 2007; 32:2511-9. [PMID: 17356571 DOI: 10.1038/sj.npp.1301378] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in synaptic plasticity are involved in pathophysiology of depression and in the mechanism of antidepressants. Ca(2+)/calmodulin (CaM) kinase II, a protein kinase involved in synaptic plasticity, has been previously shown to be a target of antidepressants. We previously found that antidepressants activate the kinase in hippocampal neuronal cell bodies by increasing phosphorylation at Thr(286), reduce the kinase phosphorylation in synaptic membranes, and in turn its phosphorylation-dependent interaction with syntaxin-1 and the release of glutamate from hippocampal synaptosomes. Here, we investigated the chronic effect of different antidepressants (fluoxetine, desipramine, and reboxetine) on the expression and function of the kinase in distinct subcellular compartments in order to dissect the different kinase pools affected. Acute treatments did not induce any change in the kinase. In total tissue extracts chronic drug treatments induced activation of the kinase; in hippocampus (HC), but not in prefrontal/frontal cortex, this was partially accounted for by increased Thr(286) phosphorylation, suggesting the involvement of different mechanisms of activation. In synaptosomes, all drugs reduced the kinase phosphorylation, particularly in HC where, upon fractionation of the synaptosomal particulate into synaptic vesicles and membranes, we found that the drugs induced a redistribution and differential activation of the kinase between membranes and vesicles. Furthermore, a large decrease in the level and phosphorylation of synapsin I located at synaptic membranes was consistent with the observed decrease of CaM kinase II. Overall, antidepressants induce a complex pattern of modifications in distinct subcellular compartments; at presynaptic level, these changes are in line with a dampening of glutamate release.
Collapse
Affiliation(s)
- Valentina S Barbiero
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, Center of Neuropharmacology, University of Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Skibinska-Kijek A, Radwanska A, Kossut M. Alpha calcium/calmodulin dependent protein kinase II in learning-dependent plasticity of mouse somatosensory cortex. Neuroscience 2007; 151:750-7. [PMID: 18164137 DOI: 10.1016/j.neuroscience.2007.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/31/2007] [Accepted: 11/16/2007] [Indexed: 11/27/2022]
Abstract
Calcium/calmodulin dependent protein kinase II (CaMKII), and more specifically its alpha subunit, is widely believed to be fundamental for hippocampal synaptic plasticity. In the cerebral cortex, deprivation-evoked plasticity was shown to depend on alphaCaMKII autophosphorylation abilities. Here we analyzed how learning-induced functional reorganization of cortical representations affected alphaCaMKII in adult Swiss mice. Mice were subjected to short-lasting sensory training in which stimulation of whiskers was paired with tail shock. The pairing results in enlargement of functional representation of vibrissae activated during the training. alphaCaMKII protein and its autophosphorylation level were determined by Western-blotting in somatosensory cortex crude synaptosomal fraction (P2) and postsynaptic protein-enriched, Triton X-100 insoluble fraction (TIF). The first training session resulted in an increase in alphaCaMKII autophosphorylation at autonomy site observed in TIF. A similar increase was also observed after the first session of just whiskers stimulation, which alone does not induce rearrangement of cortical representations. These data indicate that increased autophosphorylation of postsynaptic alphaCaMKII is not a correlate of induction phase of plasticity related reorganization of cortical representation of vibrissae. The increase observed in both experimental groups was transient and did not persist in the maintenance phase of the plastic change. Furthermore, we found that the training caused a delayed upregulation of alphaCaMKII protein level in crude synaptosomal fraction, but not in TIF, and the upregulation was not accompanied by an increase in autophosphorylation level of the kinase. The result indicates alphaCaMKII involvement in the late phase of plastic change and suggests the participation of a presynaptic pool of kinase rather than postsynaptic at this point.
Collapse
Affiliation(s)
- A Skibinska-Kijek
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
11
|
Liu S, Fa M, Ninan I, Trinchese F, Dauer W, Arancio O. Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci 2007; 25:3583-96. [PMID: 17610578 DOI: 10.1111/j.1460-9568.2007.05569.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity involves a series of coordinate changes occurring both pre- and postsynaptically, of which alpha-synuclein is an integral part. We have investigated on mouse primary hippocampal neurons in culture whether redistribution of alpha-synuclein during plasticity involves retrograde signaling activation through nitric oxide (NO), cGMP, cGMP-dependent protein kinase (cGK) and calmodulin-dependent protein kinase II. We have found that deletion of the alpha-synuclein gene blocks both the long-lasting enhancement of evoked and miniature transmitter release and the increase in the number of functional presynaptic boutons evoked through the NO donor, DEA/NO, and the cGMP analog, 8-Br-cGMP. In agreement with these findings both DEA/NO and 8-Br-cGMP were capable of producing a long-lasting increase in number of clusters for alpha-synuclein through activation of soluble guanylyl cyclase, cGK and calcium/calmodulin-dependent protein kinase IIalpha. Thus, our results suggest that NO, cGMP, GMP-dependent protein kinase and calmodulin-dependent protein kinase II play a key role in the redistribution of alpha-synuclein during plasticity.
Collapse
Affiliation(s)
- Shumin Liu
- Department of Pathology, Taub Institute, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
12
|
Vaynman S, Ying Z, Wu A, Gomez-Pinilla F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 2006; 139:1221-34. [PMID: 16580138 DOI: 10.1016/j.neuroscience.2006.01.062] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/19/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Synaptic plasticity and behaviors are likely dependent on the capacity of neurons to meet the energy demands imposed by neuronal activity. We used physical activity, a paradigm intrinsically associated with energy consumption/expenditure and cognitive enhancement, to study how energy metabolism interacts with the substrates for neuroplasticity. We found that in an area critical for learning and memory, the hippocampus, exercise modified aspects of energy metabolism by decreasing oxidative stress and increasing the levels of cytochrome c oxidase-II, a specific component of mitochondrial machinery. We infused 1,25-dihydroxyvitamin D3, a modulator of energy metabolism, directly into the hippocampus during 3 days of voluntary wheel running and measured its effects on brain-derived neurotrophic factor-mediated synaptic plasticity. Brain-derived neurotrophic factor is a central player for the effects of exercise on synaptic and cognitive plasticity. We found that 25-dihydroxyvitamin D3 decreased exercise-induced brain-derived neurotrophic factor but had no significant effect on neurotrophin-3 levels, thereby suggesting a level of specificity for brain-derived neurotrophic factor in the hippocampus. 25-Dihydroxyvitamin D3 injection also abolished the effects of exercise on the consummate end-products of brain-derived neurotrophic factor action, i.e. cyclic AMP response element-binding protein and synapsin I, and modulated phosphorylated calmodulin protein kinase II, a signal transduction cascade downstream to brain-derived neurotrophic factor action that is important for learning and memory. We also found that exercise significantly increased the expression of the mitochondrial uncoupling protein 2, an energy-balancing factor concerned with ATP production and free radical management. Our results reveal a fundamental mechanism by which key elements of energy metabolism may modulate the substrates of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- S Vaynman
- Department of Physiological Science, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
13
|
Slonimsky JD, Mattaliano MD, Moon JI, Griffith LC, Birren SJ. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proc Natl Acad Sci U S A 2006; 103:2915-9. [PMID: 16476997 PMCID: PMC1413855 DOI: 10.1073/pnas.0511276103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins regulate sympathetic neuron cotransmission by modulating the activity-dependent release of norepinephrine and acetylcholine. Nerve growth factor promotes excitatory noradrenergic transmission, whereas brain-derived neurotrophic factor (BDNF), acting through the p75 receptor, increases inhibitory cholinergic transmission. This regulation of corelease by target-derived factors leads to the functional modulation of myocyte beat rate in neuron-myocyte cocultures. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the control of both pre- and postsynaptic mechanisms of synaptic plasticity. We demonstrate that CaMKII acts in conjunction with p75 signaling to regulate cholinergic transmission between sympathetic neurons and heart cells. Inhibition of presynaptic CaMKII prevents the BDNF-dependent shift to inhibitory neurotransmission, whereas presynaptic expression of a constitutively active CaMKII results in inhibitory neurotransmission in the absence of added BDNF, suggesting that activation of presynaptic CaMKII is both necessary and sufficient for a shift from excitatory to inhibitory transmission. Several isozymes of CaMKII are expressed in sympathetic neurons, with the delta-CaMKII being activated by BDNF and nerve growth factor. Activated CaMKII is less effective at promoting cholinergic transmission in the absence of p75 signaling, demonstrating that p75 and CaMKII act to coordinate neurotransmitter selection in sympathetic neurons.
Collapse
Affiliation(s)
- John D. Slonimsky
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Mark D. Mattaliano
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Jung-il Moon
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Susan J. Birren
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Leenders AM, Sheng ZH. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 2005; 105:69-84. [PMID: 15626456 PMCID: PMC1804289 DOI: 10.1016/j.pharmthera.2004.10.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activity-dependent modulation of synaptic function and structure is emerging as one of the key mechanisms underlying synaptic plasticity. Whereas over the past decade considerable progress has been made in identifying postsynaptic mechanisms for synaptic plasticity, the presynaptic mechanisms involved have remained largely elusive. Recent evidence implicates that second messenger regulation of the protein interactions in synaptic vesicle release machinery is one mechanism by which cellular events modulate synaptic transmission. Thus, identifying protein kinases and their targets in nerve terminals, particularly those functionally regulated by synaptic activity or intracellular [Ca2+], is critical to the elucidation of the molecular mechanisms underlying modulation of neurotransmitter release and presynaptic plasticity. The phosphorylation and dephosphorylation states of synaptic proteins that mediate vesicle exocytosis could regulate the biochemical pathways leading from synaptic vesicle docking to fusion. However, functional evaluation of the activity-dependent phosphorylation events for modulating presynaptic functions still represents a considerable challenge. Here, we present a brief overview of the data on the newly identified candidate targets of the second messenger-activated protein kinases in the presynaptic release machinery and discuss the potential impact of these phosphorylation events in synaptic strength and presynaptic plasticity.
Collapse
Affiliation(s)
| | - Zu-Hang Sheng
- * Corresponding author. Tel.: 301 435 4596; fax: 301 480 5763. E-mail address: (Z.-H. Sheng)
| |
Collapse
|
15
|
Singh P, Salih M, Leddy JJ, Tuana BS. The Muscle-specific Calmodulin-dependent Protein Kinase Assembles with the Glycolytic Enzyme Complex at the Sarcoplasmic Reticulum and Modulates the Activity of Glyceraldehyde-3-phosphate Dehydrogenase in a Ca2+/Calmodulin-dependent Manner. J Biol Chem 2004; 279:35176-82. [PMID: 15199064 DOI: 10.1074/jbc.m402282200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skeletal muscle specific Ca(2)+/calmodulin-dependent protein kinase (CaMKIIbeta(M)) is localized to the sarcoplasmic reticulum (SR) by an anchoring protein, alphaKAP, but its function remains to be defined. Protein interactions of CaMKIIbeta(M) indicated that it exists in complex with enzymes involved in glycolysis at the SR membrane. The kinase was found to complex with glycogen phosphorylase, glycogen debranching enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and creatine kinase in the SR membrane. CaMKIIbeta(M) was also found to assemble with aldolase A, GAPDH, enolase, lactate dehydrogenase, creatine kinase, pyruvate kinase, and phosphorylase b kinase from the cytosolic fraction. The interacting proteins were substrates of CaMKIIbeta(M), and their phosphorylation was enhanced in a Ca(2+)- and calmodulin (CaM)-dependent manner. The CaMKIIbeta(M) could directly phosphorylate GAPDH and markedly increase ( approximately 3.4-fold) its activity in a Ca(2+)/CaM-dependent manner. These data suggest that the muscle CaMKIIbeta(M) isoform may serve to assemble the glycogen-mobilizing and glycolytic enzymes at the SR membrane and specifically modulate the activity of GAPDH in response to calcium signaling. Thus, the activation of CaMKIIbeta(M) in response to calcium signaling would serve to modulate GAPDH and thereby ATP and NADH levels at the SR membrane, which in turn will regulate calcium transport processes.
Collapse
Affiliation(s)
- Puneet Singh
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
16
|
Ninan I, Arancio O. Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 2004; 42:129-41. [PMID: 15066270 DOI: 10.1016/s0896-6273(04)00143-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/24/2003] [Accepted: 02/25/2004] [Indexed: 11/23/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is very critical for synaptic plasticity and memory formation. Although significant progress has been made in understanding the role of postsynaptic CaMKII in synaptic plasticity, very little is known about its presynaptic function during plasticity changes. Here we report that KN-93, a membrane-permeable CaMKII inhibitor, blocked glutamate-induced increases in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the number of presynaptic functional boutons in cultured hippocampal pyramidal neurons. In addition, presynaptic injection of the membrane-impermeable CaMKII inhibitor peptide 281-309 blocked synaptic plasticity induced by tetanus, glutamate, or NO/cGMP pathway activation as expressed by long-lasting increases in EPSC amplitude and functional presynaptic boutons. Presynaptic injection of CaMKII itself coupled with weak tetanus produced an immediate and long-lasting enhancement of EPSC amplitude. Thus, the present results conclusively prove that presynaptic CaMKII is essential for synaptic plasticity in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Ipe Ninan
- Department of Psychiatry, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
17
|
Colbran RJ. Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J 2004; 378:1-16. [PMID: 14653781 PMCID: PMC1223945 DOI: 10.1042/bj20031547] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/03/2003] [Accepted: 12/04/2003] [Indexed: 01/10/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has diverse roles in virtually all cell types and it is regulated by a plethora of mechanisms. Local changes in Ca2+ concentration drive calmodulin binding and CaMKII activation. Activity is controlled further by autophosphorylation at multiple sites, which can generate an autonomously active form of the kinase (Thr286) or can block Ca2+/calmodulin binding (Thr305/306). The regulated actions of protein phosphatases at these sites also modulate downstream signalling from CaMKII. In addition, CaMKII targeting to specific subcellular microdomains appears to be necessary to account for the known signalling specificity, and targeting is regulated by Ca2+/calmodulin and autophosphorylation. The present review focuses on recent studies revealing the diversity of CaMKII interactions with proteins localized to neuronal dendrites. Interactions with various subunits of the NMDA (N-methyl-D-aspartate) subtype of glutamate receptor have attracted the most attention, but binding of CaMKII to cytoskeletal and several other regulatory proteins has also been reported. Recent reports describing the molecular basis of each interaction and their potential role in the normal regulation of synaptic transmission and in pathological situations are discussed. These studies have revealed fundamental regulatory mechanisms that are probably important for controlling CaMKII functions in many cell types.
Collapse
Affiliation(s)
- Roger J Colbran
- Department of Molecular Physiology and Biophysics, The Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Celano E, Tiraboschi E, Consogno E, D'Urso G, Mbakop MP, Gennarelli M, de Bartolomeis A, Racagni G, Popoli M. Selective regulation of presynaptic calcium/calmodulin-dependent protein kinase II by psychotropic drugs. Biol Psychiatry 2003; 53:442-9. [PMID: 12614997 DOI: 10.1016/s0006-3223(02)01491-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Changes in neuroplasticity have been involved in the pathogenesis of psychiatric disorders as well as in psychotropic drug action. Calcium/calmodulin-dependent protein kinase II (CaM kinase II), an enzyme with a pivotal role in synaptic plasticity and cognitive functions, has been implicated in the action of anticonvulsants, benzodiazepines, and antidepressants, but little is known as to its role in the action of different drugs employed for treatment of psychiatric disorders. METHODS We studied the function and expression of CaM kinase II following chronic treatment of rats with two antidepressants, fluvoxamine and desipramine, a typical antipsychotic drug, haloperidol, and the typical medication for manic-depressive disorder, lithium. RESULTS Antidepressants significantly increased the kinase activity in presynaptic vesicles of frontal/prefrontal cortex. Haloperidol induced no change, whereas lithium significantly decreased the activity. Kinase activation by antidepressants was further demonstrated by increased phosphorylation of exogenously added recombinant synaptotagmin. Immunoreactivity of vesicular kinase (alpha-isoform) was significantly increased by reuptake blockers but not by the two other drugs. Kinetic analysis showed that limiting value of enzymatic velocity (Vmax) of the kinase for substrate was also increased by reuptake blockers and decreased by lithium; however, neither messenger ribonucleic acid nor protein expression level of the kinase was increased in frontal/prefrontal cortex homogenates of antidepressant-treated rats, suggesting the involvement of local synaptic mechanisms. CONCLUSIONS These findings show that functional regulation of presynaptic CaM kinase II is selectively affected by different psychotropic drugs, and suggest local synaptic mechanisms for pharmacological regulation of the kinase.
Collapse
Affiliation(s)
- Elisa Celano
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Spatial and temporal regulation of Ca2+/calmodulin-dependent protein kinase II activity in developing neurons. J Neurosci 2002. [PMID: 12177199 DOI: 10.1523/jneurosci.22-16-07016.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoform distribution and activity in embryonic hippocampal neurons developing in culture. We have found a strong correlation between the expression of the alpha subunit of the enzyme and the ability to undergo depolarization-dependent phosphorylation, which in young neurons is limited to the somatodendritic pool of the kinase. The lack of responsiveness of the axons of young alphaCaMKII-positive neurons is not caused by a lower Ca2+ influx but rather by a differential balance between kinase and phosphatase activities in this compartment. After the establishment of synaptic contacts, the presynaptic pool of the kinase displays an increasing level of activity and acquires the parallel ability to phosphorylate synapsin I, which represents one of the major CaMKII presynaptic targets in mature nerve terminals. In contrast, the activity of the postsynaptic pool of the kinase remains constant throughout synaptogenesis. In the presence of a nearly homogeneous subcellular distribution, this highly regionalized regulation of activity may reflect the multifunctional roles of CaMKII in both developing and mature neurons.
Collapse
|
20
|
Abstract
Recent preclinical and clinical studies have shown that mechanisms underlying neuronal plasticity and survival are involved in both the outcome of stressful experiences and the action of antidepressants. Whereas most antidepressants predominantly affect the brain levels of monoamine neurotransmitters, it is increasingly appreciated that they also modulate neurotransmission at synapses using the neurotransmitter glutamate (the most abundant in the brain). In the hippocampus, a main area of the limbic system involved in cognitive functions as well as attention and affect, specific molecules enriched at glutamatergic synapses mediate major changes in synaptic plasticity induced by stress paradigms or antidepressant treatments. We analyze here the modifications induced by stress or antidepressants in the strength of synaptic transmission in hippocampus, and the molecular modifications induced by antidepressants in two main mediators of synaptic plasticity: the N-methyl-D-aspartate (NMDA) receptor complex for glutamate and the Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Both stress and antidepressants induce alterations in long-term potentiation of hippocampal glutamatergic synapses, which may be partly accounted for by the influence of environmental or drug-induced stimulation of monoaminergic pathways projecting to the hippocampus. In the course of antidepressant treatments significant changes have been described in both the NMDA receptor and CaM kinase II, which may account for the physiological changes observed. A central role in these synaptic changes is exerted by brain-derived neurotrophic factor (BDNF), which modulates both synaptic plasticity and its molecular mediators, as well as inducing morphological synaptic changes. The role of these molecular effectors in synaptic plasticity is discussed in relation to the action of antidepressants and the search for new molecular targets of drug action in the therapy of mood disorders.
Collapse
Affiliation(s)
- Maurizio Popoli
- Center of Neuropharmacology, Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milano, Italy.
| | | | | |
Collapse
|
21
|
Bayer KU, Schulman H. Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 2001; 289:917-23. [PMID: 11741277 DOI: 10.1006/bbrc.2001.6063] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein targeting is increasingly being recognized as a mechanism to ensure speed and specificity of intracellular signal transduction in a variety of biological systems. Conceptually, this is of particular importance for second-messenger-regulated protein kinases with a broad spectrum of substrates, such as the serine/threonine protein kinases PKA, PKC, and CaMKII (cyclic-AMP-dependent protein kinase, Ca(2+)-phospholipid-dependent protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II). The activating second messengers of these enzymes can be produced or released in response to a large variety of "upstream" signals, and they can, in turn, regulate a large variety of "downstream" proteins. Targeting, e.g., via anchoring proteins, can link certain incoming stimuli with specific outgoing signals by restricting the subcellular compartment at which activation and/or action of a signaling molecule can take place. Elegant research on PKA and PKC reinforced the biological importance of such mechanisms. We will focus here on CaMKII, as recent advances in the understanding of its targeting have some significant general implications for signal transduction. The interaction of CaMKII with the NMDA receptor, for instance, shows that a targeting protein can not only specify the subcellular localization of a signaling effector, but can also directly influence its regulation.
Collapse
Affiliation(s)
- K U Bayer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | |
Collapse
|
22
|
Costa MC, Mani F, Santoro W, Espreafico EM, Larson RE. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity. J Biol Chem 1999; 274:15811-9. [PMID: 10336484 DOI: 10.1074/jbc.274.22.15811] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin-V, an unconventional myosin, has two notable structural features: (i) a regulatory neck domain having six IQ motifs that bind calmodulin and light chains, and (ii) a structurally distinct tail domain likely responsible for its specific intracellular interactions. Myosin-V copurifies with synaptic vesicles via its tail domain, which also is a substrate for calmodulin-dependent protein kinase II. We demonstrate here that myosin-V coimmunoprecipitates with CaM-kinase II from a Triton X-100-solubilized fraction of isolated nerve terminals. The purified proteins also coimmunoprecipitate from dilute solutions and bind in overlay experiments on Western blots. The binding region on myosin-V was mapped to its proximal and medial tail domains. Autophosphorylated CaM-kinase II binds to the tail domain of myosin-V with an apparent Kd of 7.7 nM. Surprisingly, myosin-V activates CaM-kinase II activity in a Ca2+-dependent manner, without the need for additional CaM. The apparent activation constants for the autophosphorylation of CaM-kinase II were 10 and 26 nM, respectively, for myosin-V versus CaM. The maximum incorporation of 32P into CaM-kinase II activated by myosin-V was twice that for CaM, suggesting that myosin-V binding to CaM-kinase II entails alterations in kinetic and/or phosphorylation site parameters. These data suggest that myosin-V, a calmodulin-carrying myosin, binds to and delivers CaM to CaM-kinase II, a calmodulin-dependent enzyme.
Collapse
Affiliation(s)
- M C Costa
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | | | | | | |
Collapse
|
23
|
Bayer KU, Harbers K, Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J 1998; 17:5598-605. [PMID: 9755160 PMCID: PMC1170888 DOI: 10.1093/emboj/17.19.5598] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is present in a membrane-bound form that phosphorylates synapsin I on neuronal synaptic vesicles and the ryanodine receptor at skeletal muscle sarcoplasmic reticulum (SR), but it is unclear how this soluble enzyme is targeted to membranes. We demonstrate that alphaKAP, a non-kinase protein encoded by a gene within the gene of alpha-CaM kinase II, can target the CaM kinase II holoenzyme to the SR membrane. Our results indicate that alphaKAP (i) is anchored to the membrane via its N-terminal hydrophobic domain, (ii) can co-assemble with catalytically competent CaM kinase II isoforms and target them to the membrane regardless of their state of activation, and (iii) is co-localized and associated with rat skeletal muscle CaM kinase II in vivo. alphaKAP is therefore the first demonstrated anchoring protein for CaM kinase II. CaM kinase II assembled with alphaKAP retains normal enzymatic activity and the ability to become Ca2+-independent following autophosphorylation. A new variant of beta-CaM kinase II, termed betaM-CaM kinase II, is one of the predominant CaM kinase II isoforms associated with alphaKAP in skeletal muscle SR.
Collapse
Affiliation(s)
- K U Bayer
- Department of Neurobiology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5125, USA
| | | | | |
Collapse
|
24
|
Stefani G, Onofri F, Valtorta F, Vaccaro P, Greengard P, Benfenati F. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J Physiol 1997; 504 ( Pt 3):501-15. [PMID: 9401959 PMCID: PMC1159955 DOI: 10.1111/j.1469-7793.1997.501bd.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Synapsin I, a major synaptic vesicle (SV)-associated phosphoprotein, is involved in the regulation of neurotransmitter release and synapse formation. By binding to both phospholipid and protein components of SV with high affinity and in a phosphorylation-dependent fashion, synapsin I is believed to cluster SV and to attach them to the actin-based cytoskeleton of the nerve terminal. 2. In the present study we have investigated the kinetic aspects of synapsin I-SV interactions and the mechanisms of their modulation by ionic strength and site-specific phosphorylation, using fluorescence resonance energy transfer between suitable fluorophores linked to synapsin I and to the membrane bilayer. 3. The binding of synapsin I to the phospholipid and protein components of SV has fast kinetics: mean time constants ranged between 1 and 4 s for association and 9 and 11's for ionic strength-induced dissociation at 20 degrees C. The interaction with the phospholipid component consists predominantly of a hydrophobic binding with the core of the membrane which may account for the membrane stabilizing effect of synapsin I. 4. Phosphorylation of synapsin I by either SV-associated or purified exogenous Ca2+/calmodulin-dependent protein kinase II (CaMPKII) inhibited the association rate and the binding to SV at steady state by acting on the ionic strength-sensitive component of the binding. When dephosphorylated synapsin I was previously bound to SV, exposure of SV to Ca2+/calmodulin in the presence of ATP triggered a prompt dissociation of synapsin I with a time constant similar to that of ionic strength-induced dissociation. 5. In conclusion, the reversible interactions between synapsin I and SV are highly regulated by site-specific phosphorylation and have kinetics of the same order of magnitude as the kinetics of SV recycling determined in mammalian neurons under comparable temperature conditions. These findings are consistent with the hypothesis that synapsin I associates with, and dissociates from, SV during the exo-endocytotic cycle. The on-vesicle phosphorylation of synapsin I by the SV-associated CaMPKII, and the subsequent dissociation of the protein from the vesicle membrane, though not involved in mediating exocytosis of primed vesicles evoked by a single stimulus, may represent a prompt and efficient mechanism for the modulation of neurotransmitter release and presynaptic plasticity.
Collapse
Affiliation(s)
- G Stefani
- Department of Experimental Medicine, University of Roma Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|