1
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Hatton GB, Madla CM, Rabbie SC, Basit AW. All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. Int J Pharm 2018; 548:408-422. [PMID: 29969711 DOI: 10.1016/j.ijpharm.2018.06.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
The term "disease" conjures a plethora of graphic imagery for many, and the use of drugs to combat symptoms and treat underlying pathology is at the core of modern medicine. However, the effects of the various gastrointestinal diseases, infections, co-morbidities and the impact of gastrointestinal surgery on the pharmacokinetic and pharmacodynamic behaviour of drugs have been largely overlooked. The better elucidation of disease pathology and the role of underlying cellular and molecular mechanisms have increased our knowledge as far as diagnoses and prognoses are concerned. In addition, the recent advances in our understanding of the intestinal microbiome have linked the composition and function of gut microbiota to disease predisposition and development. This knowledge, however, applies less so in the context of drug absorption and distribution for orally administered dosage forms. Here, we revisit and re-evaluate the influence of a portfolio of gastrointestinal diseases and surgical effects on the functionality of the gastrointestinal tract, their implications for drug delivery and attempt to uncover significant links for clinical practice.
Collapse
Affiliation(s)
- Grace B Hatton
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Christine M Madla
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Sarit C Rabbie
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
3
|
Krishnaiah YSR, Khan MA. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer. Pharm Dev Technol 2012; 17:521-40. [PMID: 22681390 DOI: 10.3109/10837450.2012.696268] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Yellela S R Krishnaiah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Springs, MD 20993, USA.
| | | |
Collapse
|
5
|
Wilson CG. The transit of dosage forms through the colon. Int J Pharm 2010; 395:17-25. [PMID: 20576492 DOI: 10.1016/j.ijpharm.2010.04.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Colonic transit is a subject of great relevance when considering in vivo/in vitro relationships for oral controlled release dosage forms. Our knowledge of colonic motility has first come from the clinic, where measurement of the whole gut transit of different excreted markers was used as a method of discriminating pathologies. X-ray contrast, although widely available, was used sparing due to the accumulating dosimetry associated with each exposure. Although such methods were used for swallowing studies, gamma scintigraphy allowed physicians to measure colon function with a more moderate radiation burden. The ability to label meal and dosage form separately and to measure dispersion with more certainty, prompted the use in pharmaceutical sciences; finally, the relationship between blood concentrations and transit of different sized dosage began to be understood. This mini-review considers the development of colon transit measurements and how different designs of clinical assessment assist in elucidating size and shape influence on colon transit in man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow G4 0NR, Scotland, UK.
| |
Collapse
|
8
|
Abstract
Targeting drugs and delivery systems to the colonic region of the gastrointestinal tract has received considerable interest in recent years. Scientific endeavour in this area has been driven by the need to better treat local disorders of the colon such as inflammatory bowel disease (ulcerative colitis and Crohn's disease), irritable bowel syndrome and carcinoma. The colon is also receiving significant attention as a portal for the entry of drugs into the systemic circulation. A variety of delivery strategies and systems have been proposed for colonic targeting. These generally rely on the exploitation of one or more of the following gastrointestinal features for their functionality: pH, transit time, pressure or microflora. Coated systems that utilise the pH differential in the gastrointestinal tract and prodrugs that rely on colonic bacteria for release have been commercialised. Both approaches have their own inherent limitations. Many systems in development have progressed no further than the bench, while others are expensive or complex to manufacture, or lack the desired site-specificity. The universal polysaccharide systems appear to be the most promising because of their practicality and exploitation of the most distinctive property of the colon, abundant microflora.
Collapse
Affiliation(s)
- Abdul W Basit
- The School of Pharmacy, University of London, London, England, UK.
| |
Collapse
|