1
|
Noaman EA, Nayel M, Salama A, Mahmoud MA, El-Kattan AM, Dawood AS, Abd El-Hamid IS, Elsify A, Mousa W, Elkhtam A, Zaghawa A. Enteric protozoal infections in camels: Etiology, epidemiology, and future perspectives. GERMAN JOURNAL OF VETERINARY RESEARCH 2023; 3:1-17. [DOI: 10.51585/gjvr.2023.1.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Camels have great potential as a safety valve for current and future food security for pastoralists, agropastoralists, and urban populations. Enteric protozoal diseases are important causes of economic losses in camels; however, they are poorly concerned globally. The most common members of enteric protozoa are Balantidium, Eimeria, Giardia, and Cryptosporidium. Some of them threaten human health as humans can be infected by consuming food or water contaminated with camel feces, particularly in poor communities with inadequate sanitation and low-quality healthcare facilities. For these reasons, a comprehensive and careful investigation was conducted on some enteric protozoal diseases of camels to present an updated insight into the etiology, epidemiology, and future trends in diagnosing and controlling camel enteric protozoa. Future studies on the camel enteric protozoa should be carried out to develop advanced diagnostic approaches in diverse farm animal species. Moreover, the protozoan zoonotic potential should be considered to secure human health.
Collapse
|
2
|
Linearolactone Induces Necrotic-like Death in Giardia intestinalis Trophozoites: Prediction of a Likely Target. Pharmaceuticals (Basel) 2022; 15:ph15070809. [PMID: 35890108 PMCID: PMC9324340 DOI: 10.3390/ph15070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/10/2022] Open
Abstract
Linearolactone (LL) is a neo-clerodane type diterpene that has been shown to exert giardicidal effects; however, its mechanism of action is unknown. This work analyzes the cytotoxic effect of LL on Giardia intestinalis trophozoites and identifies proteins that could be targeted by this active natural product. Increasing concentrations of LL and albendazole (ABZ) were used as test and reference drugs, respectively. Cell cycle progression, determination of reactive oxygen species (ROS) and apoptosis/necrosis events were evaluated by flow cytometry (FCM). Ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Ligand–protein docking analyses were carried out using the LL structure raised from a drug library and the crystal structure of an aldose reductase homologue (GdAldRed) from G. intestinalis. LL induced partial arrest at the S phase of trophozoite cell cycle without evidence of ROS production. LL induced pronecrotic death in addition to inducing ultrastructural alterations as changes in vacuole abundances, appearance of perinuclear and periplasmic spaces, and deposition of glycogen granules. On the other hand, the in silico study predicted that GdAldRed is a likely target of LL because it showed a favored change in Gibbs free energy for this complex.
Collapse
|
3
|
Avila-Bonilla RG, López-Sandoval Á, Soto-Sánchez J, Marchat LA, Rivera G, Medina-Contreras O, Ramírez-Moreno E. Proteomic and Functional Analysis of the Effects of Quinoxaline Derivatives on Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:887647. [PMID: 35832378 PMCID: PMC9271875 DOI: 10.3389/fcimb.2022.887647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Quinoxalines are heterocyclic compounds that contain a benzene ring and a pyrazine ring. The oxidation of both nitrogen of the pyrazine ring results in quinoxaline derivatives (QdNO), which exhibit a variety of biological properties, including antiparasitic activity. However, its activity against Entamoeba histolytica, the protozoan that causes human amebiasis, is poorly understood. Recently, our group reported that various QdNOs produce morphological changes in E. histolytica trophozoites, increase reactive oxygen species, and inhibit thioredoxin reductase activity. Notably, T-001 and T-017 derivatives were among the QdNOs with the best activity. In order to contribute to the characterization of the antiamebic effect of QdNOs, in this work we analyzed the proteomic profile of E. histolytica trophozoites treated with the QdNOs T-001 and T-017, and the results were correlated with functional assays. A total number of 163 deregulated proteins were found in trophozoites treated with T-001, and 131 in those treated with T-017. A set of 21 overexpressed and 24 under-expressed proteins was identified, which were mainly related to cytoskeleton and intracellular traffic, nucleic acid transcription, translation and binding, and redox homeostasis. Furthermore, T-001 and T-017 modified the virulence of trophozoites, since they altered their erythrophagocytosis, migration, adhesion and cytolytic capacity. Our results show that in addition to alter reactive oxygen species, and thioredoxin reductase activity, T-001 and T-017 affect essential functions related to the actin cytoskeleton, which eventually affects E. histolytica virulence and survival.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Biomedicina Molecular 2, México City, Mexico
| | - Ángel López-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Biomedicina Molecular 2, México City, Mexico
| | - Jacqueline Soto-Sánchez
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Biomedicina Molecular 2, México City, Mexico
| | - Laurence A. Marchat
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Biomedicina Molecular 2, México City, Mexico
| | - Gildardo Rivera
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biotecnología Farmacéutica, Reynosa, Mexico
| | - Oscar Medina-Contreras
- Hospital Infantil de México Federico Gómez, Unidad de Investigación Epidemiológica en Endocrinología y Nutrición (UIEEN), México City, Mexico
| | - Esther Ramírez-Moreno
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Laboratorio de Biomedicina Molecular 2, México City, Mexico
- *Correspondence: Esther Ramírez-Moreno, ;
| |
Collapse
|
4
|
Krakovka S, Ranjbarian F, Luján LA, Saura A, Larsen NB, Jiménez-González A, Reggenti A, Luján HD, Svärd SG, Hofer A. Giardia intestinalis thymidine kinase is a high-affinity enzyme crucial for DNA synthesis and an exploitable target for drug discovery. J Biol Chem 2022; 298:102028. [PMID: 35568200 PMCID: PMC9190010 DOI: 10.1016/j.jbc.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
Abstract
Giardiasis is a diarrheal disease caused by the unicellular parasite Giardia intestinalis, for which metronidazole is the main treatment option. The parasite is dependent on exogenous deoxyribonucleosides for DNA replication and thus is also potentially vulnerable to deoxyribonucleoside analogs. Here, we characterized the G. intestinalis thymidine kinase, a divergent member of the thymidine kinase 1 family that consists of two weakly homologous parts within one polypeptide. We found that the recombinantly expressed enzyme is monomeric, with 100-fold higher catalytic efficiency for thymidine compared to its second-best substrate, deoxyuridine, and is furthermore subject to feedback inhibition by dTTP. This efficient substrate discrimination is in line with the lack of thymidylate synthase and dUTPase in the parasite, which makes deoxy-UMP a dead-end product that is potentially harmful if converted to deoxy-UTP. We also found that the antiretroviral drug azidothymidine (AZT) was an equally good substrate as thymidine and was active against WT as well as metronidazole-resistant G. intestinalis trophozoites. This drug inhibited DNA synthesis in the parasite and efficiently decreased cyst production in vitro, which suggests that it could reduce infectivity. AZT also showed a good effect in G. intestinalis–infected gerbils, reducing both the number of trophozoites in the small intestine and the number of viable cysts in the stool. Taken together, these results suggest that the absolute dependency of the parasite on thymidine kinase for its DNA synthesis can be exploited by AZT, which has promise as a future medication effective against metronidazole-refractory giardiasis.
Collapse
Affiliation(s)
- Sascha Krakovka
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Lucas A Luján
- Centro de Investigación y Desarrollo en Immunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Cordoba, Argentina
| | - Alicia Saura
- Centro de Investigación y Desarrollo en Immunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Cordoba, Argentina
| | | | | | - Anna Reggenti
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Hugo D Luján
- Centro de Investigación y Desarrollo en Immunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Cordoba, Argentina
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden.
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Loderstädt U, Frickmann H. Antimicrobial resistance of the enteric protozoon Giardia duodenalis - A narrative review. Eur J Microbiol Immunol (Bp) 2021; 11:29-43. [PMID: 34237023 PMCID: PMC8287975 DOI: 10.1556/1886.2021.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction As therapy-refractory giardiasis is an emerging health issue, this review aimed at summarizing mechanisms of reduced antimicrobial susceptibility in Giardia duodenalis and strategies to overcome this problem. Methods A narrative review on antimicrobial resistance in G. duodenalis was based upon a selective literature research. Results Failed therapeutic success has been observed for all standard therapies of giardiasis comprising nitroimidazoles like metronidazole or tinidazole as first line substances but also benznidazoles like albendazole and mebendazole, the nitrofuran furazolidone, the thiazolide nitazoxanide, and the aminoglycoside paromomycin. Multicausality of the resistance phenotypes has been described, with differentiated gene expression due to epigenetic and post-translational modifications playing a considerable bigger role than mutational base exchanges in the parasite DNA. Standardized resistance testing algorithms are not available and clinical evidence for salvage therapies is scarce in spite of research efforts targeting new giardicidal drugs. Conclusion In case of therapeutic failure of first line nitroimidazoles, salvage strategies including various options for combination therapy exist in spite of limited evidence and lacking routine diagnostic-compatible assays for antimicrobial susceptibility testing in G. duodenalis. Sufficiently powered clinical and diagnostic studies are needed to overcome both the lacking evidence regarding salvage therapy and the diagnostic neglect of antimicrobial resistance.
Collapse
Affiliation(s)
- Ulrike Loderstädt
- 1Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hagen Frickmann
- 2Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany.,3Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
7
|
pH-Dependent Molecular Gate Mesoporous Microparticles for Biological Control of Giardia intestinalis. Pharmaceutics 2021; 13:pharmaceutics13010094. [PMID: 33451061 PMCID: PMC7828499 DOI: 10.3390/pharmaceutics13010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Giardiasis is a parasitism produced by the protozoa Giardia intestinalis that lives as trophozoite in the small intestine (mainly in the duodenum) attached to the intestinal villus by means of billed discs. The first line treatment is metronidazole, a drug with high bioavailability, which is why to obtain therapeutic concentrations in duodenum, it is necessary to administer high doses of drug to patients with the consequent occurrence of side effects. It is necessary to developed new therapeutical approaches to achieve a local delivery of the drug. In this sense, we have developed gated mesoporous silica microparticles loaded with metronidazole and with a molecular gate pH dependent. In vitro assays demonstrated that the metronidazole release is practically insignificant at acidic pHs, but in duodenum conditions, the metronidazole delivery from the microparticles is effective enough to produce an important parasite destruction. In vivo assays indicate that this microparticulate system allows to increase the concentration of the drug in duodenum and reduce the concentration in plasma avoiding systemic effects. This system could be useful for other intestinal local treatments in order to reduce doses and increase drug availability in target tissues.
Collapse
|
8
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
9
|
Riches A, Hart CJS, Trenholme KR, Skinner-Adams TS. Anti- Giardia Drug Discovery: Current Status and Gut Feelings. J Med Chem 2020; 63:13330-13354. [PMID: 32869995 DOI: 10.1021/acs.jmedchem.0c00910] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Giardia parasites are ubiquitous protozoans of global importance that impact a wide range of animals including humans. They are the most common enteric pathogen of cats and dogs in developed countries and infect ∼1 billion people worldwide. While Giardia infections can be asymptomatic, they often result in severe and chronic diseases. There is also mounting evidence that they are linked to postinfection disorders. Despite growing evidence of the widespread morbidity associated with Giardia infections, current treatment options are limited to compound classes with broad antimicrobial activity. Frontline anti-Giardia drugs are also associated with increasing drug resistance and treatment failures. To improve the health and well-being of millions, new selective anti-Giardia drugs are needed alongside improved health education initiatives. Here we discuss current treatment options together with recent advances and gaps in drug discovery. We also propose criteria to guide the discovery of new anti-Giardia compounds.
Collapse
Affiliation(s)
- Andrew Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, Victoria 3168, Australia
| | - Christopher J S Hart
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4029, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
10
|
López-Velázquez G, Fernández-Lainez C, de la Mora-de la Mora JI, Caudillo de la Portilla D, Reynoso-Robles R, González-Maciel A, Ridaura C, García-Torres I, Gutiérrez-Castrellón P, Olivos-García A, Flores-López LA, Enríquez-Flores S. On the molecular and cellular effects of omeprazole to further support its effectiveness as an antigiardial drug. Sci Rep 2019; 9:8922. [PMID: 31222100 PMCID: PMC6586891 DOI: 10.1038/s41598-019-45529-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Research on Giardia lamblia has accumulated large information about its molecular cell biology and infection biology. However, giardiasis is still one of the commonest parasitic diarrheal diseases affecting humans. Additionally, an alarming increase in cases refractory to conventional treatment has been reported in low prevalence settings. Consequently, efforts directed toward supporting the efficient use of alternative drugs, and the study of their molecular targets appears promising. Repurposing of proton pump inhibitors is effective in vitro against the parasite and the toxic activity is associated with the inhibition of the G. lamblia triosephosphate isomerase (GlTIM) via the formation of covalent adducts with cysteine residue at position 222. Herein, we evaluate the effectiveness of omeprazole in vitro and in situ on GlTIM mutants lacking the most superficial cysteines. We studied the influence on the glycolysis of Giardia trophozoites treated with omeprazole and characterized, for the first time, the morphological effect caused by this drug on the parasite. Our results support the effectiveness of omeprazole against GlTIM despite of the possibility to mutate the druggable amino acid targets as an adaptive response. Also, we further characterized the effect of omeprazole on trophozoites and discuss the possible mechanism involved in its antigiardial effect.
Collapse
Affiliation(s)
- Gabriel López-Velázquez
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - José Ignacio de la Mora-de la Mora
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Daniela Caudillo de la Portilla
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Angélica González-Maciel
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Cecilia Ridaura
- Departamento de Patología, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Itzhel García-Torres
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | | | - Alfonso Olivos-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México y Hospital General, Ciudad de México, 04510, Mexico
| | - Luis Antonio Flores-López
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.,CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, 04530, Mexico
| | - Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| |
Collapse
|
11
|
Müller J, Braga S, Heller M, Müller N. Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:112-119. [PMID: 30889439 PMCID: PMC6423486 DOI: 10.1016/j.ijpddr.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
In order to elucidate the question whether resistance to nitro drugs in G. lamblia is due to common resistance markers, trophozoites of three resistant G. lamblia strains, namely C4, 1062ID10, and 713M3 were grown in the presence of the two nitro drugs metronidazole and nitazoxanide and compared to their corresponding wild-types WBC6, 106, and 713 by mass spectometry shotgun analysis of their proteomes. Depending on the strain and the nitro drug, more than 200 to 500 differentially expressed proteins were identified, but there were no common patterns across strains and drugs. All resistant strains underwent antigenic variation with distinct surface antigens like variant surface proteins or cysteine rich proteins depending on strain and nitro compound. A closer look on enzymes involved in nitroreduction and detoxification of nitro radicals, NO or O2 suggested the existence of distinct strategies for each drug and each strain. Therefore, we conclude that resistance to nitro drugs in G. lamblia is not correlated with a specific pattern of differentially expressed proteins and therefore seems not to be the result of a directed process. Is resistance to nitro drugs in G. lamblia due to common resistance markers? Three resistant strains were grown in the presence of two nitro drugs separately and compared to wild-types by MS shotgun analysis. More than 200 to 500 differentially expressed proteins identified depending on strain and drug. No common patterns across strains and drugs. Strain specific antigenic variation and strategies linked to nitro reduction.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| | - Sophie Braga
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| |
Collapse
|
12
|
Müller J, Hemphill A, Müller N. Physiological aspects of nitro drug resistance in Giardia lamblia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:271-277. [PMID: 29738984 PMCID: PMC6039359 DOI: 10.1016/j.ijpddr.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/01/2022]
Abstract
For over 50 years, metronidazole and other nitro compounds such as nitazoxanide have been used as a therapy of choice against giardiasis and more and more frequently, resistance formation has been observed. Model systems allowing studies on biochemical aspects of resistance formation to nitro drugs are, however, scarce since resistant strains are often unstable in culture. In order to fill this gap, we have generated a stable metronidazole- and nitazoxanide-resistant Giardia lamblia WBC6 clone, the strain C4. Previous studies on strain C4 and the corresponding wild-type strain WBC6 revealed marked differences in the transcriptomes of both strains. Here, we present a physiological comparison between trophozoites of both strains with respect to their ultrastructure, whole cell activities such as oxygen consumption and resazurin reduction assays, key enzyme activities, and several metabolic key parameters such as NAD(P)+/NAD(P)H and ADP/ATP ratios and FAD contents. We show that nitro compound-resistant C4 trophozoites exhibit lower nitroreductase activities, lower oxygen consumption and resazurin reduction rates, lower ornithine-carbamyl-transferase activity, reduced FAD and NADP(H) pool sizes and higher ADP/ATP ratios than wildtype trophozoites. The present results suggest that resistance formation against nitro compounds is correlated with metabolic adaptations resulting in a reduction of the activities of FAD-dependent oxidoreductases.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
13
|
Novel giardicidal compounds bearing proton pump inhibitor scaffold proceeding through triosephosphate isomerase inactivation. Sci Rep 2017; 7:7810. [PMID: 28798383 PMCID: PMC5552691 DOI: 10.1038/s41598-017-07612-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022] Open
Abstract
Giardiasis is a worldwide parasitic disease that affects mainly children and immunosuppressed people. Side effects and the emergence of resistance over current used drugs make imperative looking for new antiparasitics through discovering of new biological targets and designing of novel drugs. Recently, it has determined that gastric proton-pump inhibitors (PPI) have anti-giardiasic activity. The glycolytic enzyme, triosephosphate isomerase (GlTIM), is one of its potential targets. Therefore, we employed the scaffold of PPI to design new compounds aimed to increase their antigiardial capacity by inactivating GlTIM. Here we demonstrated that two novel PPI-derivatives (BHO2 and BHO3), have better anti-giardiasic activity than omeprazole in concentrations around 120–130 µM, without cytotoxic effect on mammal cell cultures. The derivatives inactivated GlTIM through the chemical modification of Cys222 promoting local structural changes in the enzyme. Furthermore, derivatives forms adducts linked to Cys residues through a C-S bond. We demonstrated that PPI can be used as scaffolds to design better antiparasitic molecules; we also are proposing a molecular mechanism of reaction for these novel derivatives.
Collapse
|
14
|
A meta-analysis of the efficacy of albendazole compared with tinidazole as treatments for Giardia infections in children. Acta Trop 2016; 153:120-7. [PMID: 26476393 DOI: 10.1016/j.actatropica.2015.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 01/02/2023]
Abstract
Metronidazole is frequently used against Giardia infection; however, it has been associated with significant failure rates in clearing parasites from the gut; additionally, as it should be taken for 5 to 10 days, it is associated with poor compliance, probably due to side effects. Other drugs, including tinidazole (TNZ) and albendazole (ABZ) have been included in the antigiardial armamentarium. Our aim was to assess the efficacy of ABZ compared with TNZ in Giardia infections in children. A systematic review and a meta-analysis were carried out. PubMed, Medline, EMBASE, CENTRAL, and LILACS were searched electronically until February 2015. Also relevant journals and references of studies included therein were hand-searched for randomised controlled trials (RCTs). The meta-analysis was limited to RCTs evaluating the use of ABZ compared with TNZ in children with Giardia infection. The assessed outcome was parasitological efficacy. Prediction intervals (PI) were computed to better express uncertainties in the effect estimates. Five RCTs including 403 children were included. Overall, TNZ significantly outperformed ABZ without differences between subgroups defined by ABZ dosages [relative risk, (RR) 1.61 (95% CI): (1.40-1.85); P<0.0001]. The 95% prediction interval range is 1.28-2.02. There was no significant heterogeneity (I(2)=0%; Q-test of heterogeneity P=0.4507. The number-needed-to-treat, the average number of patients who need to be treated with TNZ to gain one additional good outcome as compared with ABZ was 4, 95% CI: 3-5. Our results show that TNZ outperforms ABZ in the treatment of Giardia infections in children from developing countries.
Collapse
|
15
|
Leboho TC, Giri S, Popova I, Cock I, Michael JP, de Koning CB. Double Sonogashira reactions on dihalogenated aminopyridines for the assembly of an array of 7-azaindoles bearing triazole and quinoxaline substituents at C-5: Inhibitory bioactivity against Giardia duodenalis trophozoites. Bioorg Med Chem 2015; 23:4943-4951. [PMID: 26043947 DOI: 10.1016/j.bmc.2015.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
The synthesis of 2,3,5-trisubstituted 7-azaindoles as well as 2,5-disubstituted 7-azaindoles from 3,5-dihalogenated 2-aminopyridines is outlined. Using a double Sonogashira coupling reaction on 2-amino-3,5-diiodopyridine followed by the Cacchi reaction the synthesis of 2,3,5-trisubstituted 7-azaindoles was accomplished. In addition, using two sequential Sonogashira coupling reactions on 2-amino-5-bromo-3-iodopyridine and a potassium t-butoxide mediated ring closure reaction resulted in the assembly of 2,5-disubstituted 7-azaindoles. The 5-alkynyl substituent of the azaindole was easily converted into both quinoxaline and triazole substituents, the latter utilizing an alkyne-azide cycloaddition reaction. Some of these azaindole derivatives showed very promising biological activity against the gastrointestinal protozoal parasite Giardia duodenalis.
Collapse
Affiliation(s)
- Tlabo C Leboho
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Somnath Giri
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Inessa Popova
- Environmental Futures Research Institute and the School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Ian Cock
- Environmental Futures Research Institute and the School of Natural Sciences, Griffith University, Nathan Campus, 170 Kessels Road, Nathan, Queensland 4111, Australia
| | - Joseph P Michael
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa.
| |
Collapse
|
16
|
Nabarro LEB, Lever RA, Armstrong M, Chiodini PL. Increased incidence of nitroimidazole-refractory giardiasis at the Hospital for Tropical Diseases, London: 2008-2013. Clin Microbiol Infect 2015; 21:791-6. [PMID: 25975511 DOI: 10.1016/j.cmi.2015.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/12/2015] [Accepted: 04/27/2015] [Indexed: 11/25/2022]
Abstract
Giardia intestinalis is the commonest gastrointestinal protozoal pathogen worldwide, and causes acute and chronic diarrhoea with malabsorption. First-line treatment is with a nitroimidazole, with a reported efficacy rate of 89%. Failure of treatment can occur in patients with hypogammaglobulinaemia or human immunodeficiency virus (HIV), or be due to nitroimidazole-resistant organisms. There is little evidence to guide the clinical management of nitroimidazole-refractory disease. We performed a retrospective audit of nitroimidazole-refractory giardiasis in returned travellers at the Hospital for Tropical Diseases, London between 2011 and 2013. Seventy-three patients with microscopy-proven or PCR-proven giardiasis in whom nitroimidazole treatment had failed were identified, and their management was investigated. In 2008, nitroimidazole treatment failed in 15.1% of patients. This increased to 20.6% in 2011 and to 40.2% in 2013. Patient demographics remained stable during this period, as did routes of referral. Of patients with giardiasis, 39.0% had travelled to India; this rose to 69.9% in patients with nitroimidazole-refractory disease. Of the patients with refractory disease, 44.6% had HIV serological investigations performed and 36.5% had immunoglobulin levels determined. Patients with refractory disease were treated with various agents, including albendazole, nitazoxanide, and mepacrine, alone or in combination. All 20 patients who received a mepacrine-containing regimen were cured. This data shows a worrying increase in refractory disease, predominantly in travellers from India, which is likely to represent increasing nitroimidazole resistance. Improved tools for the diagnosis of resistant G. intestinalis are urgently needed to establish the true prevalence of nitroimidazole-resistant giardiasis, together with clinical trials to establish the most effective second-line agent for empirical treatment regimens.
Collapse
Affiliation(s)
- L E B Nabarro
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - R A Lever
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Armstrong
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - P L Chiodini
- The Hospital for Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Penuliar GM, Nakada-Tsukui K, Nozaki T. Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance. Front Microbiol 2015; 6:354. [PMID: 25999919 PMCID: PMC4419850 DOI: 10.3389/fmicb.2015.00354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial chemotherapy is critical in the fight against infectious diseases caused by Entamoeba histolytica. Among the drugs available for the treatment of amebiasis, metronidazole (MTZ) is considered the drug of choice. Recently, in vitro studies have described MTZ resistance and the potential mechanisms involved. Costs to fitness and adaptive responses associated with resistance, however, have not been investigated. In this study we generated an HM-1 derived strain resistant to 12 μM MTZ (MTZR). We examined its phenotypic and transcriptional profile to determine the consequences and mRNA level changes associated with MTZ resistance. Our results indicated increased cell size and granularity, and decreased rates in cell division, adhesion, phagocytosis, cytopathogenicity, and glucose consumption. Transcriptome analysis revealed 142 differentially expressed genes in MTZR. In contrast to other MTZ resistant parasites, MTZR did not down-regulate pyruvate:ferredoxin oxidoreductase, but showed increased expression of genes for a hypothetical protein (HP1) and several iron-sulfur flavoproteins, and downregulation of genes for leucine-rich proteins. Fisher's exact test showed 24 significantly enriched GO terms in MTZR, and a 3-way comparison of modulated genes in MTZR against those of MTZR cultured without MTZ and HM-1 cultured with MTZ, showed that 88 genes were specific to MTZR. Overall, our findings suggested that MTZ resistance is associated with specific transcriptional changes and decreased parasite virulence.
Collapse
Affiliation(s)
- Gil M Penuliar
- Department of Parasitology, National Institute of Infectious Diseases Tokyo, Japan ; Department of Parasitology, Gunma University Graduate School of Medicine Maebashi, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases Tokyo, Japan ; Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
18
|
Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia. Antimicrob Agents Chemother 2014; 58:7072-82. [PMID: 25223993 DOI: 10.1128/aac.02900-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.
Collapse
|
19
|
Negi B, Raj KK, Siddiqui SM, Ramachandran D, Azam A, Rawat DS. In vitro antiamoebic activity evaluation and docking studies of metronidazole-triazole hybrids. ChemMedChem 2014; 9:2439-44. [PMID: 25146853 DOI: 10.1002/cmdc.201402240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/07/2022]
Abstract
An in-house database of 520 compounds was docked against Entamoeba histolytica thioredoxin reductase (EhTrR), a promising target for the treatment of amoebiasis. Amongst these, some metronidazole (MTZ)-triazole hybrids were ranked high, with docking scores from -10.23 to -7.56. Studies of the binding orientations and conformations show that the head groups of MTZ-triazole hybrids interact with the arginine residues within the binding pocket of EhTrR, making it clear that such is the optimal and most reliable orientation for this class of compounds. The top-ten MTZ-triazole hybrids were then selected for evaluation of their activity against the HM1:IMSS strain of amoeba. The most active compound, 2-pyridyl-(1,2,3-triazolyl)metronidazole 10, with an IC50 value of 8.4 nM, was significantly more active than the standard drug MTZ alone. Docking studies revealed that compound 10 may act as an EhTrR inhibitor with activity in the nanomolar range and satisfactory ADME properties; it is a suitable candidate to be carried forward as a potential lead in the discovery of drugs to combat amoebiasis.
Collapse
Affiliation(s)
- Beena Negi
- Department of Chemistry, University of Delhi, Delhi 110007 (India)
| | | | | | | | | | | |
Collapse
|
20
|
Escobedo AA, Hanevik K, Almirall P, Cimerman S, Alfonso M. Management of chronic Giardia infection. Expert Rev Anti Infect Ther 2014; 12:1143-57. [PMID: 25059638 DOI: 10.1586/14787210.2014.942283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in our understanding of chronic giardiasis (CG) may improve our care of patients in this stage of the disease. This review proposes a new concept of CG and highlights the recent advances in our understanding and management of this condition. According to this review, management requires, initially, an accurate diagnosis, which may exclude several conditions that can mimic CG. Optimal treatment requires a tailored approach which includes the recognition of the known modifiable causes of this health condition, assessment of symptoms and potential complications, their treatment utilizing, if necessary, a multidisciplinary team, and an ongoing monitoring for the effect of therapy - weighing the efficacy of individual drugs - all of these together may lead to a successful treatment of CG.
Collapse
Affiliation(s)
- Angel A Escobedo
- Academic Paediatric Hospital "Pedro Borrás", Calle F No. 616 esquina 27, Plaza, La Habana, CP 10400, Cuba
| | | | | | | | | |
Collapse
|
21
|
Showler AJ, Wilson ME, Kain KC, Boggild AK. Parasitic diseases in travelers: a focus on therapy. Expert Rev Anti Infect Ther 2014; 12:497-521. [DOI: 10.1586/14787210.2014.892827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Nolan MJ, Jex AR, Upcroft JA, Upcroft P, Gasser RB. Barcoding of Giardia duodenalis isolates and derived lines from an established cryobank by a mutation scanning-based approach. Electrophoresis 2013; 32:2075-90. [PMID: 23479788 DOI: 10.1002/elps.201100283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We barcoded 25 in vitro isolates (representing 92 samples) of Giardia duodenalis from humans and other animals, which have been assembled by the Upcroft team at the Queensland Institute of Medical Research over a period of almost three decades. We used mutation scanning-coupled sequencing of loci in the triosephosphate isomerase, glutamate dehydrogenase and β-giardin genes, combined with phylogenetic analysis, to genetically characterise them. Specifically, the isolates (n514) of G. duodenalis from humans from Australia (AD113; BRIS/83/HEPU/106; BRIS/87/HEPU/713; BRIS/89/HEPU/1003; BRIS/92/HEPU/1541; BRIS/92/HEPU/1590; BRIS/92/HEPU/2443; BRIS/93/HEPU/1706), Malaysia (KL/92/IMR/1106) and Afghanistan (WB), a cat from Australia (BAC2), a sheep from Canada (OAS1) and a sulphur-crested cockatoo from Australia (BRIS/95/HEPU/2041) represented assemblage A (sub-assemblage AI-1, AI-2 or AII-2); isolates (n510) from humans from Australia (BRIS/91/HEPU/1279; BRIS/92/HEPU/2342; BRIS/92/HEPU/2348; BRIS/93/HEPU/1638; BRIS/93/HEPU/1653; BRIS/93/HEPU/1705; BRIS/93/HEPU/1718; BRIS/93/HEPU/1727), Papua New Guinea (BRIS/92/HEPU/1487) and Canada (H7) represented assemblage B (sub-assemblage BIV) and an isolate from cattle from Australia (BRIS/92/HEPU/1709) had a match to assemblage E. Isolate BRIS/90/HEPU/1229 from a human from Australia was shown to represent a mixed population of assemblages A and B. These barcoded isolates (including stocks and derived lines) now allow direct comparisons of experimental data among laboratories and represent a massive resource for transcriptomic, proteomic, metabolic and functional genomic studies using advanced molecular technologies.
Collapse
Affiliation(s)
- Matthew J Nolan
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
23
|
Müller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:359-401. [PMID: 23317822 DOI: 10.1016/b978-0-12-407704-1.00007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
24
|
Nagata N, Marriott D, Harkness J, Ellis JT, Stark D. Current treatment options for Dientamoeba fragilis infections. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:204-15. [PMID: 24533282 DOI: 10.1016/j.ijpddr.2012.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/20/2022]
Abstract
Dientamoeba fragilis belongs to the trichomonad group of protozoan parasites and it has been implicated as a cause of gastrointestinal disease with world-wide prevalences ranging from 0.5% to 16%. The majority of patients with dientamoebiasis present with gastrointestinal complaints. Chronic symptoms are common with up to a third of patients exhibiting persistent diarrhoea. Numerous studies have successfully demonstrated parasite clearance, coupled with complete resolution of clinical symptoms following treatment with various antiparasitic compounds. Treatments reported to be successful for dientamoebiasis include carbarsone, diphetarsone, tetracyclines, paromomycin, erythromycin, hydroxyquinolines and the 5-nitroimidazoles, including metronidazole, secnidazole, tinidazole and ornidazole. It is of note that most current treatment data is based only on small number of case reports. No large scale double blind randomised placebo controlled trials testing the efficacy of antimicrobial agents against D. fragilis has been undertaken highlighting the need for further study. In addition there is very little in vitro susceptibility data available for the organism making some current treatment options questionable. The aim of this review is to critically discuss all treatment options currently available for dientamoebiasis.
Collapse
Affiliation(s)
- Noriyuki Nagata
- Division of Microbiology, SydPath, St. Vincent's Hospital, Darlinghurst, Australia ; University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Australia
| | - Deborah Marriott
- Division of Microbiology, SydPath, St. Vincent's Hospital, Darlinghurst, Australia ; University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Australia
| | - John Harkness
- Division of Microbiology, SydPath, St. Vincent's Hospital, Darlinghurst, Australia ; University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Australia
| | - John T Ellis
- University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Australia ; University of Technology Sydney, iThree Institute, Broadway, Australia
| | - Damien Stark
- Division of Microbiology, SydPath, St. Vincent's Hospital, Darlinghurst, Australia ; University of Technology Sydney, School of Medical and Molecular Biosciences, Broadway, Australia
| |
Collapse
|
25
|
Salahuddin A, Agarwal SM, Avecilla F, Azam A. Metronidazole thiosalicylate conjugates: Synthesis, crystal structure, docking studies and antiamoebic activity. Bioorg Med Chem Lett 2012; 22:5694-9. [DOI: 10.1016/j.bmcl.2012.06.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 11/29/2022]
|
26
|
Li Y, Lenaghan SC, Zhang M. A data-driven predictive approach for drug delivery using machine learning techniques. PLoS One 2012; 7:e31724. [PMID: 22384063 PMCID: PMC3285649 DOI: 10.1371/journal.pone.0031724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 01/12/2012] [Indexed: 01/08/2023] Open
Abstract
In drug delivery, there is often a trade-off between effective killing of the pathogen, and harmful side effects associated with the treatment. Due to the difficulty in testing every dosing scenario experimentally, a computational approach will be helpful to assist with the prediction of effective drug delivery methods. In this paper, we have developed a data-driven predictive system, using machine learning techniques, to determine, in silico, the effectiveness of drug dosing. The system framework is scalable, autonomous, robust, and has the ability to predict the effectiveness of the current drug treatment and the subsequent drug-pathogen dynamics. The system consists of a dynamic model incorporating both the drug concentration and pathogen population into distinct states. These states are then analyzed using a temporal model to describe the drug-cell interactions over time. The dynamic drug-cell interactions are learned in an adaptive fashion and used to make sequential predictions on the effectiveness of the dosing strategy. Incorporated into the system is the ability to adjust the sensitivity and specificity of the learned models based on a threshold level determined by the operator for the specific application. As a proof-of-concept, the system was validated experimentally using the pathogen Giardia lamblia and the drug metronidazole in vitro.
Collapse
Affiliation(s)
- Yuanyuan Li
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee, Knoxville, Tennessee, United States of America
| | | | | |
Collapse
|
27
|
Impaired parasite attachment as fitness cost of metronidazole resistance in Giardia lamblia. Antimicrob Agents Chemother 2011; 55:4643-51. [PMID: 21825286 DOI: 10.1128/aac.00384-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infections with the diarrheagenic protozoan pathogen Giardia lamblia are most commonly treated with metronidazole (Mz). Treatment failures with Mz occur in 10 to 20% of cases and Mz resistance develops in the laboratory, yet clinically, Mz-resistant (Mz(r)) G. lamblia has rarely been isolated from patients. To understand why clinical Mz(r) isolates are rare, we questioned whether Mz resistance entails fitness costs to the parasite. Our studies employed several newly generated and established isogenic Mz(r) cell lines with stable, high-level resistance to Mz and significant cross-resistance to tinidazole, nitazoxanide, and furazolidone. Oral infection of suckling mice revealed that three of five Mz(r) cell lines could not establish infection, while two Mz(r) cell lines infected pups, albeit with reduced efficiencies. Failure to colonize resulted from a diminished capacity of the parasite to attach to the intestinal mucosa in vivo and to epithelial cells and plastic surfaces in vitro. The attachment defect was related to impaired glucose metabolism, since the noninfectious Mz(r) lines consumed less glucose, and glucose promoted ATP-independent parasite attachment in the parental lines. Thus, resistance of Giardia to Mz is accompanied by a glucose metabolism-related attachment defect that can interfere with colonization of the host. Because glucose-metabolizing pathways are important for activation of the prodrug Mz, it follows that a fitness trade-off exists between diminished Mz activation and reduced infectivity, which may explain the observed paucity of clinical Mz(r) isolates of Giardia. However, the data also caution that some forms of Mz resistance do not markedly interfere with in vivo infectivity.
Collapse
|
28
|
Penuliar GM, Furukawa A, Sato D, Nozaki T. Mechanism of trifluoromethionine resistance in Entamoeba histolytica. J Antimicrob Chemother 2011; 66:2045-52. [PMID: 21676903 DOI: 10.1093/jac/dkr238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the mechanism of trifluoromethionine resistance in Entamoeba histolytica and evaluate the impact of acquired drug resistance on virulence. METHODS Trifluoromethionine-resistant amoebae were selected in vitro and examined for cross-resistance to antiamoebic drugs, stability of resistance, methionine γ-lyase (MGL) activity, cell adhesion and virulence. Targeted gene silencing was performed to confirm the role of EhMGL. RESULTS Trophozoites with a resistance index of 154 were obtained. The cells were susceptible to chloroquine, metronidazole, paromomycin and tinidazole, but remained resistant to trifluoromethionine in the absence of drug pressure. A complete lack of EhMGL activity accompanied by increased adhesion and decreased cytolysis were also observed. Silencing of the EhMGL genes resulted in trifluoromethionine resistance. CONCLUSIONS This study provides the first demonstration of trifluoromethionine resistance in a parasitic protozoon. Repression of gene expression of drug targets represents a novel mechanism of resistance in E. histolytica. The information obtained from this work should help further development of trifluoromethionine derivatives that have lower chances of inducing resistance.
Collapse
Affiliation(s)
- Gil M Penuliar
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
29
|
Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011; 24:110-40. [PMID: 21233509 DOI: 10.1128/cmr.00033-10] [Citation(s) in RCA: 814] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination.
Collapse
|
30
|
A rapid, high-throughput viability assay for Blastocystis spp. reveals metronidazole resistance and extensive subtype-dependent variations in drug susceptibilities. Antimicrob Agents Chemother 2010; 55:637-48. [PMID: 21098237 DOI: 10.1128/aac.00900-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blastocystis is an emerging protistan parasite of controversial pathogenesis. Although metronidazole (Mz) is standard therapy for Blastocystis infections, there have been accumulating reports of treatment failure, suggesting the existence of drug-resistant isolates. Furthermore, very little is known about Blastocystis susceptibility to standard antimicrobials. In the present study, we established resazurin and XTT viability microassays for Blastocystis spp. belonging to subtypes 4 and 7, both of which have been suggested to represent pathogenic zoonotic subtypes. The optimized resazurin assay was used to screen a total of 19 compounds against both subtypes. Interestingly, subtype 7 parasites were resistant to Mz, a 1-position-substituted 5-nitroimidazole (5-NI), while subtype 4 parasites were sensitive. Some cross-resistance was observed to tinidazole, another 1-position 5-NI. Conversely, subtype 4 parasites were resistant to emetine, while subtype 7 parasites were sensitive. Position 2 5-NIs were effective against both subtypes, as were ornidazole, nitazoxanide, furazolidone, mefloquine, quinicrine, quinine, cotrimoxazole (trimethoprim-sulfamethoxazole), and iodoacetamide. Both subtypes were resistant to chloroquine, doxycycline, paromomycin, ampicillin, and pyrimethamine. This is the first study to report extensive variations in drug sensitivities among two clinically important subtypes. Our study highlights the need to reevaluate established treatment regimens for Blastocystis infections and offers clear new treatment options for Mz treatment failures.
Collapse
|
31
|
Solaymani-Mohammadi S, Genkinger JM, Loffredo CA, Singer SM. A meta-analysis of the effectiveness of albendazole compared with metronidazole as treatments for infections with Giardia duodenalis. PLoS Negl Trop Dis 2010; 4:e682. [PMID: 20485492 PMCID: PMC2867942 DOI: 10.1371/journal.pntd.0000682] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 03/25/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Metronidazole is the most commonly used drug for the treatment of giardiasis in humans. In spite of its therapeutic efficacy for giardiasis, low patient compliance, especially in children, side effects, and the emergence of metronidazole-resistant strains may restrict its use. Albendazole has been used to treat Giardia duodenalis infections in recent years. However, efficacy studies in vivo and in vitro have produced diverse results as to its effectiveness. A moderately benign side effect profile, combined with established efficacy against many helminths, renders it promising for treatment of giardiasis in humans. METHODOLOGY AND PRINCIPAL FINDINGS We performed a search in the PubMed, Scopus, EMBASE, the ISI Web of Science, LILIACS, and Cochrane Controlled Trials Register for trials published before February 2010 as well as in references of relevant research and review articles. Eight randomized clinical trials (including 900 patients) comparing the effectiveness of albendazole with that of metronidazole were included in meta-analysis. After extracting and validating the data, the pooled risk ratio (RR) was calculated using an inverse-variance random-effects model. Albendazole was found to be equally as effective as metronidazole in the treatment of giardiasis in humans (RR 0.97; 95% CI, 0.93, 1.01). In addition, safety analysis suggested that patients treated with albendazole had a lower risk of adverse effects compared with those who received metronidazole (RR 0.36; 95% CI, 0.10, 1.34), but limitations of the sample size precluded a definite conclusion. CONCLUSIONS/SIGNIFICANCE The effectiveness of albendazole, when given as a single dose of 400 mg/day for 5 days, was comparable to that of metronidazole. Patients treated with albendazole tended to have fewer side effects compared with those who took metronidazole. Given the safety, effectiveness, and low costs of albendazole, this drug could be potentially used as an alternative and/or a replacement for the existing metronidazole therapy protocols in the treatment of giardiasis in humans.
Collapse
|
32
|
Nolan MJ, Jex AR, Pangasa A, Young ND, Campbell AJ, Stevens M, Gasser RB. Analysis of nucleotide variation within the triose-phosphate isomerase gene ofGiardia duodenalisfrom sheep and its zoonotic implications. Electrophoresis 2010; 31:287-98. [DOI: 10.1002/elps.200900480] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Synergistic Effect of Febantel and Pyrantel Embonate in Elimination of Giardia in a Gerbil Model. Parasitol Res 2009; 105 Suppl 1:S135-40. [DOI: 10.1007/s00436-009-1504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Montoya A, Dado D, Mateo M, Espinosa C, Miró G. Efficacy of Drontal® Flavour Plus (50 mg praziquantel, 144 mg pyrantel embonate, 150 mg febantel per tablet) against Giardia sp in naturally infected dogs. Parasitol Res 2008; 103:1141-4. [DOI: 10.1007/s00436-008-1107-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
|
35
|
Torres-Gómez H, Hernández-Núñez E, León-Rivera I, Guerrero-Alvarez J, Cedillo-Rivera R, Moo-Puc R, Argotte-Ramos R, Carmen Rodríguez-Gutiérrez MD, Chan-Bacab MJ, Navarrete-Vázquez G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg Med Chem Lett 2008; 18:3147-51. [DOI: 10.1016/j.bmcl.2008.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 11/25/2022]
|
36
|
Müller J, Ley S, Felger I, Hemphill A, Müller N. Identification of differentially expressed genes in a Giardia lamblia WB C6 clone resistant to nitazoxanide and metronidazole. J Antimicrob Chemother 2008; 62:72-82. [PMID: 18408240 DOI: 10.1093/jac/dkn142] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Thompson RCA, Palmer CS, O'Handley R. The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J 2007; 177:18-25. [PMID: 18032076 PMCID: PMC7128580 DOI: 10.1016/j.tvjl.2007.09.022] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/18/2007] [Accepted: 09/21/2007] [Indexed: 11/15/2022]
Abstract
Giardia and Cryptosporidium are common enteric parasites of domestic animals, particularly dogs, cats and livestock. Their occurrence is of potential significance from both clinical and public health perspectives yet, until recently, confusion over the taxonomy of these organisms prevented a clear understanding of the epidemiology of infections with both Giardia and Cryptosporidium. The recent application of molecular epidemiological tools has helped to resolve taxonomic issues, allowing cycles of transmission to be determined. In addition, advances have been made in elucidating mechanisms associated with pathogenesis, whereas only limited progress has been achieved in the areas of chemotherapy and prophylaxis.
Collapse
Affiliation(s)
- R C Andrew Thompson
- WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | |
Collapse
|
38
|
Busatti HGNO, Vieira AED, Viana JC, Silva HE, Souza-Fagundes EM, Martins-Filho OA, Alves RJ, Gomes MA. Effect of metronidazole analogues on Giardia lamblia cultures. Parasitol Res 2007; 102:145-9. [PMID: 17906962 DOI: 10.1007/s00436-007-0723-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
We comparatively evaluate the effect of metronidazole (MTZ) and its five analogues on trophozoites of Giardia lamblia axenically growing. The compounds MTZ-Ms, MTZ-I, MTZ-Br, MTZ-N(3), and MTZ-NH(3)Cl were obtained by molecular modification of the side chain of MTZ. Four of them presented higher giardicidal activity when compared with MTZ. Among them, MTZ-Br and MTZ-I were the most active, without cytotoxic effects against mitogen-activated human peripheral blood mononuclear cells (PBMC). The alteration of MTZ side chain constitutes a fruitful field to develop new drugs for the treatment not only of giardiasis but also of other diseases and signalize that metronidazole analogues are promising candidates as giardicidal and should be further evaluated.
Collapse
Affiliation(s)
- Haendel G N O Busatti
- Departamento de Parasitologia, ICB-UFMG, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Upcroft P. Drug resistance in Giardia: clinical versus laboratory isolates. Drug Resist Updat 2007; 1:166-8. [PMID: 17092801 DOI: 10.1016/s1368-7646(98)80035-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1998] [Revised: 01/13/1998] [Accepted: 01/16/1998] [Indexed: 11/17/2022]
Abstract
The advantages and limitations of determining mechanisms of drug resistance in Giardia duodenalis laboratory isolates, which have been generated in a number of ways, is weighed against the difficulty of analysing mechanisms in clinical isolates with a large diversity of genetic and expression capabilities. Using isogenic strains to follow changes in enzyme regulation involved in drug resistance, we have been able to assess the full capability of the parasite in developing drug resistance mechanisms. The complementarity of the two approaches, clinical versus laboratory induced drug resistance, and continuing comparison with other organisms, particularly the anaerobic bacteria with which Giardia has strong affiliations, is emphasized. These considerations lead to the study of the population genetics of drug resistance, and strategies critical for rational drug usage, design and therapy.
Collapse
Affiliation(s)
- P Upcroft
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| |
Collapse
|
40
|
Müller J, Sterk M, Hemphill A, Müller N. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J Antimicrob Chemother 2007; 60:280-7. [PMID: 17561498 DOI: 10.1093/jac/dkm205] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The characterization of Giardia lamblia WB C6 strains resistant to metronidazole and to the nitro-thiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] as the parent compound of thiazolides, a novel class of anti-infective drugs with a broad spectrum of activities against a wide variety of helminths, protozoa and enteric bacteria. METHODS Issuing from G. lamblia WB C6, we have generated two strains exhibiting resistance to nitazoxanide (strain C4) and to metronidazole (strain C5) and determined their susceptibilities to both drugs. Using quantitative RT-PCR, we have analysed the expression of genes that are potentially involved in resistance formation, namely genes encoding pyruvate oxidoreductases (POR1 and POR2), nitroreductase (NR), protein disulphide isomerases (PDI2 and PDI4) and variant surface proteins (VSPs; TSA417). We have cloned and expressed PDI2 and PDI4 in Escherichia coli. Using an enzyme assay based on the polymerization of insulin, we have determined the activities of both enzymes in the presence and absence of nitazoxanide. RESULTS Whereas C4 was cross-resistant to nitazoxanide and to metronidazole, C5 was resistant only to metronidazole. Transcript levels of the potential targets for nitro-drugs POR1, POR2 and NR were only slightly modified, PDI2 transcript levels were increased in both resistant strains and PDI4 levels in C4. This correlated with the findings that the functional activities of recombinant PDI2 and PDI4 were inhibited by nitazoxanide. Moreover, drastic changes were observed in VSP gene expression. CONCLUSIONS These results suggest that resistance formation in Giardia against nitazoxanide and metronidazole is linked, and possibly mediated by, altered gene expression in drug-resistant strains compared with non-resistant strains of Giardia.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | | | |
Collapse
|
41
|
Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics. BMC Genet 2007; 8:28. [PMID: 17553170 PMCID: PMC1904233 DOI: 10.1186/1471-2156-8-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell motility is an essential feature of the pathogenesis and morbidity of amoebiasis caused by Entamoeba histolytica. As motility depends on cytoskeletal organisation and regulation, a study of the molecular components involved is key to a better understanding of amoebic pathogenesis. However, little is known about the physiological roles, interactions and regulation of the proteins of the Entamoeba cytoskeleton. RESULTS We have established a genetic strategy that uses parasexual genetics to allow essential Dictyostelium discoideum genes to be manipulated and replaced with modified or tagged homologues. Our results show that actin related protein 2 (Arp2) is essential for survival, but that the Dictyostelium protein can be complemented by E. histolytica Arp2, despite the presence of an insertion of 16 amino acids in an otherwise highly conserved protein. Replacement of endogenous Arp2 with myc-tagged Entamoeba or Dictyostelium Arp2 has no obvious effects on growth and the protein incorporates effectively into the Arp2/3 complex. CONCLUSION We have established an effective two-step method for replacing genes that are required for survival. Our protocol will allow such genes to be studied far more easily, and also allows an unambiguous demonstration that particular genes are truly essential. In addition, cells in which the Dictyostelium Arp2 has been replaced by the Entamoeba protein are potential targets for drug screens.
Collapse
|
42
|
Busatti HGNO, Gomes MA. A simple colourimetric method to determine anti-giardial activity of drugs. Parasitol Res 2007; 101:819-21. [PMID: 17387517 DOI: 10.1007/s00436-007-0525-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 03/13/2007] [Indexed: 11/28/2022]
Abstract
A new colourimetric method to be used for the screening of compounds with giardicidal activity was developed. After the end of drug incubation, the remaining viable cells were fixed with methanol and stained by methylene blue. The inclusion of methylene blue by Guardia lamblia trophozoites was measured spectrophotometrically to determine the anti-giardial activity of metronidazole. The 50% inhibitory concentration (IC(50)) was 1.96 +/- 0.13 microM. The reliability of this method was assessed by comparison with the IC(50) obtained using a haemocytometer to get the number of viable cells (1.82 +/- 0.43 microM). This method provides a feasible, cheap and reliable method to determine the anti-giardial activity of drugs.
Collapse
Affiliation(s)
- Haendel G N O Busatti
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP: 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
43
|
Ali V, Nozaki T. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites. Clin Microbiol Rev 2007; 20:164-87. [PMID: 17223627 PMCID: PMC1797636 DOI: 10.1128/cmr.00019-06] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The "amitochondriate" protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine gamma-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, L-trifluoromethionine, which is catalyzed by methionine gamma-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.
Collapse
Affiliation(s)
- Vahab Ali
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
44
|
Reyes-Vivas H, Diaz A, Peon J, Mendoza-Hernandez G, Hernandez-Alcantara G, De la Mora-De la Mora I, Enriquez-Flores S, Dominguez-Ramirez L, Lopez-Velazquez G. Disulfide bridges in the mesophilic triosephosphate isomerase from Giardia lamblia are related to oligomerization and activity. J Mol Biol 2006; 365:752-63. [PMID: 17095008 DOI: 10.1016/j.jmb.2006.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/12/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
Triosephosphate isomerase from the mesophile Giardia lamblia (GlTIM) is the only known TIM with natural disulfide bridges. We previously found that oxidized and reduced thiol states of GlTIM are involved in the interconversion between native dimers and higher oligomeric species, and in the regulation of enzymatic activity. Here, we found that trophozoites and cysts have different oligomeric species of GlTIM and complexes of GlTIM with other proteins. Our data indicate that the internal milieu of G. lamblia is favorable for the formation of disulfide bonds. Enzyme mutants of the three most solvent exposed Cys of GlTIM (C202A, C222A, and C228A) were prepared to ascertain their contribution to oligomerization and activity. The data show that the establishment of a disulfide bridge between two C202 of two dimeric GlTIMs accounts for multimerization. In addition, we found that the establishment of an intramonomeric disulfide bond between C222 and C228 abolishes catalysis. Multimerization and inactivation are both reversed by reducing conditions. The 3D structure of the C202A GlTIM was solved at 2.1 A resolution, showing that the environment of the C202 is prone to hydrophobic interactions. Molecular dynamics of an in silico model of GlTIM when the intramonomeric disulfide bond is formed, showed that S216 is displaced 4.6 A from its original position, causing loss of hydrogen bonds with residues of the active-site loop. This suggests that this change perturb the conformational state that aligns the catalytic center with the substrate, inducing enzyme inactivation.
Collapse
Affiliation(s)
- Horacio Reyes-Vivas
- Laboratorio de Bioquimica Genetica, Instituto Nacional de Pediatria, 04530 Mexico, D.F
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
López-Vallejo F, Medina-Franco JL, Hernández-Campos A, Rodríguez-Morales S, Yépez L, Cedillo R, Castillo R. Molecular modeling of some 1H-benzimidazole derivatives with biological activity against Entamoeba histolytica: a comparative molecular field analysis study. Bioorg Med Chem 2006; 15:1117-26. [PMID: 17074492 DOI: 10.1016/j.bmc.2006.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 09/23/2006] [Accepted: 10/11/2006] [Indexed: 11/18/2022]
Abstract
Comparative molecular field analysis (CoMFA) was performed on a set of 1H-benzimidazole derivatives. Molecular modeling and 3D-QSAR were employed to determine the tautomeric form that would probably fit a target receptor in Entamoeba histolytica. CoMFA results suggest that the antiamoebic activity is favored with steric bulk at position 5 of the benzimidazole ring and low electron density on the group at position 2. To the best of our knowledge this is the first 3D-QSAR study performed for benzimidazoles as antiamoebic agents. The CoMFA models derived will be very valuable to design new and more potent compounds against E. histolytica.
Collapse
|
46
|
Meneses-Marcel A, Marrero-Ponce Y, Machado-Tugores Y, Montero-Torres A, Pereira DM, Escario JA, Nogal-Ruiz JJ, Ochoa C, Arán VJ, Martínez-Fernández AR, García Sánchez RN. A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: Outcomes of in silico studies supported by experimental results. Bioorg Med Chem Lett 2005; 15:3838-43. [PMID: 16005626 DOI: 10.1016/j.bmcl.2005.05.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/27/2005] [Accepted: 05/31/2005] [Indexed: 11/16/2022]
Abstract
A computational (virtual) screening test to identify potential trichomonacidals has been developed. Molecular structures of trichomonacidal and non-trichomonacidal drugs were represented using stochastic and non-stochastic atom-based quadratic indices and a linear discrimination analysis (LDA) was trained to classify molecules regarding their antiprotozoan activity. Validation tests revealed that our LDA-QSAR models recognize at least 88.24% of trichomonacidal lead-like compounds and suggest using this methodology in virtual screening protocols. These classification functions were then applied to find new lead antitrichomonal compounds. In this connection, the biological assays of eight compounds, selected by computational screening using the present models, give good results (87.50% of good classification). In general, most of the compounds showed high activity against Trichomonas vaginalis at the concentration of 100 microg/ml and low cytotoxicity to this concentration. In particular, two heterocyclic derivatives (VA7-67 and VA7-69) maintained their efficacy at 10 microg/ml with an important trichomonacidal activity (100.00% of reduction), but it is remarkable that the compound VA7-67 did not show cytotoxic effects in macrophage cultivations. This result opens a door to a virtual study considering a higher variability of the structural core already evaluated, as well as of other chemicals not included in this study.
Collapse
Affiliation(s)
- Alfredo Meneses-Marcel
- Department of Parasitology, Chemical Bioactive Center, Central University of Las Villas, 54830 Villa Clara, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rayan P, Stenzel D, McDonnell PA. The effects of saturated fatty acids on Giardia duodenalis trophozoites in vitro. Parasitol Res 2005; 97:191-200. [PMID: 15991042 DOI: 10.1007/s00436-005-1432-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 06/07/2005] [Indexed: 12/31/2022]
Abstract
Giardia duodenalis is a protozoal, intestinal parasite that is a common aetiological agent of infectious diarrhoea in humans worldwide. Chemotherapeutic intervention presently offers a limited range of drugs and these are usually only employed after clinical diagnosis. Moreover, these drugs are ineffective against the infectious cysts, can produce unpleasant side effects, and are expensive with limited availability in developing countries. Frequent reports of drug toxicity, treatment failure and parasite drug resistance have, in some instances, also resulted in the increasing reluctance to over-prescribe synthetic anti-microbials. Alternatively, there is now mounting evidence to suggest that some of the naturally derived, medium-chain, saturated fatty acids (MCSFAs) possess anti-microbial and anti-parasitic properties. We have therefore examined the effects of four different fatty acids on G. duodenalis trophozoites in vitro. Cytotoxicity was determined using fluorescence, scanning and transmission electron microscopic techniques and standard cytotoxicity assays. Our studies have confirmed that the MCSFA, dodecanoic acid (C: 12) (common name: lauric acid), is anti-giardial, with an LD50 concentration comparable to that of metronidazole, the drug of choice in the treatment of giardiasis. Dodecanoic acid appeared to induce trophozoite death by accumulating within the parasite cytoplasm resulting in rupture of the cell membrane. This study has opened fresh avenues for development of natural drug therapy in which food supplementation may augment, or even replace, some of the standard chemotherapeutic agents presently employed in the treatment of giardiasis and possibly other infectious intestinal diseases.
Collapse
Affiliation(s)
- Paran Rayan
- School of Biomolecular and Biomedical Sciences, Griffith University, Kessels Road, Nathan, Brisbane, Qld, 4111, Australia
| | | | | |
Collapse
|
48
|
|
49
|
Villarreal D, Barnabé C, Sereno D, Tibayrenc M. Lack of correlation between in vitro susceptibility to Benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease. Exp Parasitol 2004; 108:24-31. [PMID: 15491545 DOI: 10.1016/j.exppara.2004.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 05/15/2004] [Accepted: 07/01/2004] [Indexed: 11/18/2022]
Abstract
Chagas disease remains an important health problem in Central and South America. Nitroimidazole derivative drugs like Benznidazole are commonly used to treat Trypanosoma cruzi infection. Natural variation of drug susceptibility between various T. cruzi stocks has been proposed as a possible explanation of treatment failure. Thus, the aim of this work was to determine potential correlations between in vitro Benznidazole susceptibility of different T. cruzi stocks and their genetic diversity. For this purpose, 16 natural stocks representing the overall genetic diversity of the parasite were analysed. Genetic characterisation was assessed by both random amplified polymorphic DNA (RAPD) and multilocus enzyme electrophoresis (MLEE) analyses. Drug activity was determined by two complementary methods, the MTT-PMS micro-method and FACs analysis. The 50% inhibitory concentrations (IC(50)s) were determined. Important variation of IC(50) values (7.3-16.9 microM) among stocks belonging to different discrete typing units (DTUs) was recorded. Further, correlation analysis showed that natural susceptibility to Benznidazole in T. cruzi expressed as IC(50) level was not related with its genetic structure represented by the different DTUs. These results are discussed in relation with the proposed hypothesis establishing a link between genetic diversity and biological behaviour in T. cruzi.
Collapse
Affiliation(s)
- Diana Villarreal
- Génétique et Evolution des Maladies Infectieuses G.E.M.I (Ex-CEPM) UMR No. 2724 CNRS/IRD, UR 165 IRD, Centre de Recherche IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
50
|
Abstract
The flagellated protozoa Giardia duodenalis is the most commonly detected parasite in the intestinal tract of humans. Infections with the parasite result in diarrhoeal disease in humans and animals, with infants at risk from failure-to-thrive syndrome. The incidence of giardiasis worldwide may be as high as 1000 million cases. Current recommended treatments include the nitroheterocyclic drugs tinidazole, metronidazole and furazolidone, the substituted acridine, quinacrine, and the benzimidazole, albendazole. Paromomycin is also used in some situations, and nitazoxanide is proving to be useful. However, treatment failures have been reported with all of the common antigiardial agents, and drug resistance to all available drugs has been demonstrated in the laboratory. In addition, clinical resistance has been reported, including cases where patients failed both metronidazole and albendazole treatments. The identification of new antigiardial drugs is an important consideration for the future, but maintaining the usefulness of the existing drugs is the most cost-effective measure to ensure the continued availability of antigiardial drugs.
Collapse
Affiliation(s)
- Janelle M Wright
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Queensland 4029, Australia.
| | | | | | | |
Collapse
|