1
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
2
|
Cytotoxicity and anti-HIV evaluations of some new synthesized quinazoline and thioxopyrimidine derivatives using 4-(thiophen-2-yl)-3,4,5,6-tetrahydrobenzo[h]quinazoline-2(1H)-thione as synthon. J CHEM SCI 2012. [DOI: 10.1007/s12039-012-0242-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Galal SA, Abd El-All AS, Hegab KH, Magd-El-Din AA, Youssef NS, El-Diwani HI. Novel antiviral benzofuran-transition metal complexes. Eur J Med Chem 2010; 45:3035-46. [DOI: 10.1016/j.ejmech.2010.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/21/2010] [Accepted: 03/17/2010] [Indexed: 11/25/2022]
|
4
|
Gaglia MM, Glaunsinger BA. Viruses and the cellular RNA decay machinery. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:47-59. [PMID: 21956906 PMCID: PMC7169783 DOI: 10.1002/wrna.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to control cellular and viral gene expression, either globally or selectively, is central to a successful viral infection, and it is also crucial for the host to respond and eradicate pathogens. In eukaryotes, regulation of message stability contributes significantly to the control of gene expression and plays a prominent role in the normal physiology of a cell as well as in its response to environmental and pathogenic stresses. Not surprisingly, emerging evidence indicates that there are significant interactions between the eukaryotic RNA turnover machinery and a wide variety of viruses. Interestingly, in many cases viruses have evolved mechanisms not only to evade eradication by these pathways, but also to manipulate them for enhanced viral replication and gene expression. Given our incomplete understanding of how many of these pathways are normally regulated, viruses should be powerful tools to help deconstruct the complex networks and events governing eukaryotic RNA stability. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| |
Collapse
|
5
|
Galal SA, Abd El-All AS, Abdallah MM, El-Diwani HI. Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg Med Chem Lett 2009; 19:2420-8. [PMID: 19345581 DOI: 10.1016/j.bmcl.2009.03.069] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/18/2009] [Accepted: 03/18/2009] [Indexed: 11/16/2022]
Affiliation(s)
- Shadia A Galal
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | | | | | | |
Collapse
|
6
|
Uckun FM, Rustamova L, Vassilev AO, Tibbles HE, Petkevich AS. CNS activity of Pokeweed anti-viral protein (PAP) in mice infected with lymphocytic choriomeningitis virus (LCMV). BMC Infect Dis 2005; 5:9. [PMID: 15725345 PMCID: PMC554105 DOI: 10.1186/1471-2334-5-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 02/22/2005] [Indexed: 12/04/2022] Open
Abstract
Background Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein) against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV). Methods We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. Results PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069). Conclusion Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice.
Collapse
Affiliation(s)
- Fatih M Uckun
- Parker Hughes Center for Clinical Immunology, St. Paul, MN 55113, USA
| | - Larisa Rustamova
- Research Institute for Epidemiology and Microbiology, 220050 MINSK, Belarus
| | - Alexei O Vassilev
- Parker Hughes Center for Clinical Immunology, St. Paul, MN 55113, USA
| | - Heather E Tibbles
- Parker Hughes Center for Clinical Immunology, St. Paul, MN 55113, USA
| | | |
Collapse
|
7
|
D'Cruz OJ, Dong Y, Uckun FM. Potent dual anti-HIV and spermicidal activities of novel oxovanadium(V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem Biophys Res Commun 2003; 302:253-64. [PMID: 12604339 DOI: 10.1016/s0006-291x(03)00161-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that tetrahedral bis(cyclopentadienyl)vanadium(IV) complexes and square pyramidal oxovanadium(IV) complexes of vanadium are rapid and selective spermicidal agents at low micromolar concentrations. This study investigated the potential utility of oxovanadium in combination with thiourea non-nucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) for the development of an effective dual-function anti-HIV spermicide. Two rationally designed substituted phenyl-ring containing pyridyl thiourea NNIs, N-[2-(2-chlorophenethyl)]-N(')-[2-(5-bromopyridyl)-thiourea) [1] and N-[2-(2-methoxyphenethyl)]-N(')-[2-(pyridyl)-thiourea [2] that exhibited subnanomolar IC(50) values against the drug-sensitive, drug-resistant, and multidrug-resistant strains of HIV-1, were complexed with oxovanadium. The oxovanadium-thiourea [OVT] NNIs, C(29)H(27)Br(2)Cl(2)N(6)O(2)S(2)V [3], and C(31)H(35)N(6)O(4)S(2)V [4], were synthesized by reacting VOSO(4), a V(IV) compound, with the corresponding deprotonated thiourea NNI compounds as ligands. Elemental analysis showed that each OVT-NNI used two thiourea molecules as ligands. The existence of the Vz.dbnd6;O bond (968cm(-1)) was confirmed by IR spectroscopy. No d-d bands were observed in the visible spectra of OVT-NNIs and their EPR spectra were featureless, indicating that the vanadium centers were oxidized to V(V). The new OVT-NNIs as well as their thiourea NNI ligands were evaluated for (i) anti-HIV activity using the cell-free recombinant RT inhibition assays, (ii) cellular HIV replication assays, (iii) spermicidal activity against human sperm by computer-assisted sperm analysis (CASA), and (iv) cytotoxicity against normal human female genital tract epithelial cell using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye-reduction assays. Similar to thiourea NNIs 1 and 2, the OVT-NNIs 3 and 4, exhibited potent anti-HIV activity with submicromolar IC(50[p24]) values (0.08 and 0.128 microM, respectively) and submicromolar IC(50[RT]) values (2.1 and 0.87 microM, respectively). Notably, OVT-NNIs were spermicidal against human sperm at low micromolar concentrations (IC(50)=34 and 55 microM, respectively) and induced rapid sperm immobilization (T(1/2)=12 and 240s) when compared with their respective thiourea NNI ligands (EC(50)=>400 microM and T(1/2)=>180min). Moreover, OVT-NNIs displayed high selectivity indices against normal female genital tract epithelial cells (IC(50) values >250 microM) when compared to the detergent-type spermicide, nonoxynol-9, which was cytotoxic at spermicidal concentrations (IC(50) values 32-64 microM). This is the first report on the dual anti-HIV and spermicidal activities of a vanadium/oxovanadium complex. Our discovery of potent anti-HIV and rapid spermicidal activities of OVT-NNIs may be useful for the development of an effective and safe vaginal anti-HIV spermicide for women who are at high risk for acquiring HIV/AIDS by heterosexual transmission.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, St. Paul, MN 55113, USA.
| | | | | |
Collapse
|
8
|
D'Cruz OJ, Venkatachalam TK, Mao C, Qazi S, Uckun FM. Structural requirements for potent anti-human immunodeficiency virus (HIV) and sperm-immobilizing activities of cyclohexenyl thiourea and urea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biol Reprod 2002; 67:1959-74. [PMID: 12444075 DOI: 10.1095/biolreprod.102.006478] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The current pandemic of sexually transmitted human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) has created an urgent need for a new type of microbicide, one that is both a spermicide and a virucide. In a systematic effort to identify a non-detergent-type antiviral spermicide, we have rationally designed and synthesized a series of cyclohexenyl thiourea (CHET) nonnucleoside inhibitors (NNIs) of HIV-1 reverse transcriptase (RT) with sperm-immobilizing activity (SIA). To gain further insight into the structural requirements for the optimal activity of these dual-function NNIs, we compared the effects of thiazolyl, benzothiazolyl, and pyridyl ring substitutions and functionalization with electron-donating and electron-withdrawing groups as well as the importance of thiourea and urea moieties of 15 heterocyclic ring-substituted NNIs. RT activity and p24 antigen production in HIV-infected peripheral blood mononuclear cells were used as markers of viral replication. Computer-assisted sperm analysis was used for evaluating SIA of CHET compounds. The rabbit model was used for evaluation of in vivo mucosal toxicity and contraceptive activity of the lead NNIs. Three CHET-NNIs with a bromo, chloro, or methyl substitution at the 5 position of the pyridyl ring exhibited potent anti-HIV activity at nanomolar concentrations (IC(50) = 3-5 nM) and SIA at micromolar concentrations (EC(50) = 45-96 micro M). The dual-function CHET-NNIs were potent inhibitors of drug-resistant HIV-1 strains with genotypic and phenotypic NNI resistance. Upon substitution of the sulfur atom of the thiourea moiety with an oxygen atom, the most striking difference noted was a 38-fold reduction in time required for 50% sperm immobilization (T(1/2)). A quantitative structure-activity relationship (QSAR) analysis was used in deriving regression equations between 20 physicochemical properties and SIA of NNIs. QSAR analysis showed that the T(1/2) values positively correlated with values for molecular refractivity (r = 0.88), hydrophobicity (r = 0.72), atomic polarizability (r = 0.70), and principal moment of inertia (r = 0.63) of spermicidal NNIs. A stepwise multiple regression model to describe the relationship of T(1/2) values with these four regressors provided excellent predictability (r = 0.93). Exposure of semen to thiourea/urea NNIs either alone or in combination at the time of artificial insemination led to marked or complete inhibition of pregnancy in rabbits as assessed by the number of embryo implants versus corpora lutea on Day 8 of pregnancy. Repeated intravaginal application of a gel-microemulsion with and without 0.5%, 1%, and 2% CHET-NNI or its urea analog either alone or in combination did not induce mucosal toxicity. We hypothesize that the gain of spermicidal function by CHET-NNIs is due to their metabolic oxidation to urea analogs by sperm. Three reaction pathways are discussed. The extremely rapid SIA of the urea analog as well as the broad-spectrum anti-HIV activity of spermicidal CHET-NNIs together with their lack of mucosal toxicity and the marked ability to reduce in vivo fertility is particularly useful for the clinical development of a dual-function spermicidal microbicide. The cyclohexenyl pyridyl NNIs, especially N-[2-(1-cyclohexenyl)ethyl] N'-[2-(5-bromopyridyl)]-thiourea in combination with the urea analog, show unique clinical potential as anti-HIV spermicides aimed at curbing the sexual transmission of multidrug-resistant HIV-1 while providing effective fertility control for women.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, St. Paul, Minnesota 55113, USA.
| | | | | | | | | |
Collapse
|
9
|
Hudak KA, Hammell AB, Yasenchak J, Tumer NE, Dinman JD. A C-terminal deletion mutant of pokeweed antiviral protein inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition without depurinating the sarcin/ricin loop of rRNA. Virology 2001; 279:292-301. [PMID: 11145910 DOI: 10.1006/viro.2000.0647] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. Here, a series of PAP mutants were used to examine the relationship between depurination of the S/R loop and inhibition of +1 programmed ribosomal frameshifting (PRF) and to define PAP sequences critical for inhibition of +1 PRF and Ty1 retrotransposition in the yeast Saccharomyces cerevisiae. Using three different classes of mutants we present evidence that strong binding of a C-terminal PAP mutant (PAPc) to ribosomes is sufficient to inhibit +1 PRF and Ty1 retrotransposition in the absence of S/R loop depurination. PAPc did not affect the totivirus ScV-L-A and HIV-1-directed -1 PRF efficiencies or the ability of cells to maintain the M(1)-dependent killer phenotype, demonstrating the specificity of the effect of PAPc on +1 PRF.
Collapse
Affiliation(s)
- K A Hudak
- Biotechnology Center for Agriculture and the Environment and Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, New Jersey, 08903-0231, USA
| | | | | | | | | |
Collapse
|
10
|
Rajamohan F, Kurinov IV, Venkatachalam TK, Uckun FM. Deguanylation of human immunodeficiency virus (HIV-1) RNA by recombinant pokeweed antiviral protein. Biochem Biophys Res Commun 1999; 263:419-24. [PMID: 10491308 DOI: 10.1006/bbrc.1999.1335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modeling studies, combined with the molecular docking of the trinucleotide GGG into the active site of the deadenylating RNA N-glycosidase pokeweed antiviral protein (PAP), indicated that a guanine base can fit into the active site pocket of PAP without disturbing its unique geometry and is sandwiched between residues Tyr(72) and Tyr(123) very much like an adenine base. The guanine base can form two specific hydrogen bonds with the active site residues Ser(121) and Val(73) and the attached negatively charged phosphate groups can entertain stabilizing electrostatic interactions with two clusters of positively charged patches on the PAP surface formed by Lys(210) and Arg(179) from one side and Arg(122) and Arg(135) from the other side of the active site. These observations prompted the hypothesis that the RNA depurinating activity of PAP may not be restricted to adenine residues and PAP should be capable of deguanylating ribosomal and viral RNA as well. This hypothesis was experimentally confirmed by direct demonstration that guanine base is released from both ribosomal and HIV-1 RNA after treatment with purified recombinant PAP using quantitative high performance liquid chromatography. Recombinant PAP released adenine and guanine residues at a 1:1 ratio from HIV-1 RNA and at an approximately 3:1 (adenine:guanine) ratio from Escherichia coli ribosomal RNA. At a concentration of 5 microM, recombinant PAP released 263 +/- 10 pmol of adenine and 100 +/- 11 pmol of guanine from 1 microgram of E. coli ribosomal RNA (16S + 23S) within 4 h of treatment. By comparison, 138 +/- 12 pmol of adenine and 143 +/- 10 pmol of guanine were released from 1 microgram of HIV-1 RNA under identical treatment conditions (5 microM recombinant PAP, 4 h treatment). The deguanylation of the ribosomal and viral RNA targets by recombinant PAP was concentration-dependent and is abolished by alanine substitutions of the catalytic active site residues Tyr(72) and Tyr(123). To our knowledge, these findings provide the first evidence that PAP can deguanylate both ribosomal and viral RNA.
Collapse
Affiliation(s)
- F Rajamohan
- Biotherapy Program, Hughes Institute, St. Paul, Minnesota, 55113, USA
| | | | | | | |
Collapse
|
11
|
Rajamohan F, Engstrom CR, Denton TJ, Engen LA, Kourinov I, Uckun FM. High-level expression and purification of biologically active recombinant pokeweed antiviral protein. Protein Expr Purif 1999; 16:359-68. [PMID: 10419833 DOI: 10.1006/prep.1999.1084] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pokeweed antiviral protein (PAP) from the leaves of the pokeweed plant, Phytolacca americana, is a naturally occurring single-chain ribosome-inactivating protein, which catalytically inactivates both prokaryotic and eukaryotic ribosomes. The therapeutic potential of PAP has gained considerable interest in recent years due to the clinical use of native PAP as the active moiety of immunoconjugates against cancer and AIDS. The clinical use of native PAP is limited due to inherent difficulties in obtaining sufficient quantities of a homogenously pure and active PAP preparation with minimal batch to batch variability from its natural source. Previous methods for expression of recombinant PAP in yeast, transgenic plants and Escherichia coli have resulted in either unacceptably low yields or were too toxic to the host system. Here, we report a successful strategy which allows high level expression of PAP as inclusion bodies in E. coli. Purification of refolded recombinant protein from solubilized inclusion bodies by size-exclusion chromatography yielded biologically active recombinant PAP (final yield: 10 to 12 mg/L). The ribosome depurinating in vitro N-glycosidase activity and cellular anti-HIV activity of recombinant PAP were comparable to those of the native PAP. This expression and purification system makes it possible to obtain sufficient quantities of biologically active and homogenous recombinant PAP sufficient to carry out advanced clinical trials. To our knowledge, this is the first large-scale expression and purification of biologically active recombinant PAP from E. coli.
Collapse
Affiliation(s)
- F Rajamohan
- Biotherapy Program, Hughes Institute, St. Paul, Minnesota 55113, USA
| | | | | | | | | | | |
Collapse
|
12
|
Van Oijen MG, Preijers FW. Rationale for the use of immunotoxins in the treatment of HIV-infected humans. J Drug Target 1998; 5:75-91. [PMID: 9588864 DOI: 10.3109/10611869808995861] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The first step in the replication of human immunodeficiency virus (HIV) is selective binding of the envelope glycoprotein (gp120) to CD4 receptors on T cells or macrophages. After penetration in these cells, the genome of the virus is integrated in the human genome. HIV-infection causes depletion of CD4-positive cells resulting in a severe immunosuppression. It is believed that eliminating HIV-infected cells is crucial in limiting further reduction of CD4-positive cells and thus, preventing disease progression. The most commonly used drugs, such as zidovudine (AZT), appeared to be not completely effective. Therefore many investigators are searching for alternative treatment modalities. The use of immunotoxins (ITs) to eliminate HIV-infected cells is discussed. ITs are chimeric molecules in which cell-binding ligands are coupled to toxins and can specifically eliminate undesired cells. The cell-binding carriers of anti-HIV ITs have been directed against different regions of the HIV envelope glycoprotein (gp120 and gp41) and surface antigens (e.g CD4, CD25). The ITs have been composed of different ribosome-inactivating proteins (RIPs) like pokeweed antiviral protein (PAP), Pseudomonas exotoxin (PE), Diphtheria toxin (DT), or ricin. In in vitro studies, several of these ITs have been shown to be effective and specific in killing acute and persistently HIV-infected cells. The ITs were effective at concentrations (ID50 range from 10(-9) M to 10(-12) M) that were not toxic to uninfected cells or cells without the antigen. The IT CD4(178)PE40, a fusion protein directed against the CD4 binding site of gp120, has been investigated in two in vivo trials. The results were disappointing considering the antiviral activity in vitro. This was thought to be due to the rapid clearance of the IT and the differential resistance of clinical HIV isolates. Use of a panel of ITs is likely to be more effective because multiple approaches cover the intrinsic variability of HIV and the presence of IT-resistant or latently infected cells, as well as the blocking presence of neutralizing anti-HIV antibodies and the immunogenicity of most ITs. It may be possible to control the virus completely with a panel of ITs in combination with other antiviral or immunosuppressive agents such as RT inhibitors (e.g AZT), interferon alpha, or cyclosporine. More research will be necessary to develop such a combined therapy.
Collapse
Affiliation(s)
- M G Van Oijen
- Department of Hematology, University Hospital St. Radboud, Nijmegen, The Netherlands
| | | |
Collapse
|