1
|
Hoyberghs J, Coppens A, Bars C, Van Ginneken C, Foubert K, Van Cruchten S. Assessing developmental toxicity and non-CYP mediated biotransformation of two anti-epileptics and their human metabolites in zebrafish embryos and larvae. Curr Res Toxicol 2024; 7:100186. [PMID: 39188273 PMCID: PMC11347070 DOI: 10.1016/j.crtox.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Zebrafish embryo-based assays are a promising alternative for animal testing to screen new compounds for developmental toxicity. However, recent studies in zebrafish embryos showed an immature intrinsic cytochrome P450 (CYP)-mediated biotransformation capacity, as most CYPs were only active at the end of the organogenesis period. Data on other phase I enzymes involved in the biotransformation of xenobiotics in zebrafish embryos is limited. This information is pivotal for proteratogens needing bioactivation to exert their teratogenic potential. Therefore, this study aimed to investigate whether carbamazepine (CBZ) and levetiracetam (LTC), two anti-epileptic drugs that require bioactivation to exert their teratogenic potential, are biotransformed into non-CYP mediated metabolites in the zebrafish embryo and whether one or more of these metabolites cause developmental toxicity in this species. In the first step, zebrafish embryos were exposed to LTC and CBZ and their non-CYP mediated human metabolites, etiracetam carboxylic acid (ECA) and 9-acridine carboxaldehyde (9ACA), acridine (AI), and acridone (AO), respectively, from 5.25 to 120 hpf and morphologically evaluated. Next, the uptake of all compounds and the formation of the metabolites were assessed using LC-MS methods. As LTC and ECA were, respectively, poorly or not taken up by zebrafish larvae during the exposure experiments, we could not determine if LTC and ECA are teratogenic. However, biotransformation of LTC into ECA was observed at 24 hpf and 120 hpf, which indicates that the special type of B-esterase is already active at 24 hpf. CBZ and its three metabolites were teratogenic, as a significant increase in malformed embryos was observed for all of them. All three metabolites were more potent teratogens than CBZ, with AI being the most potent, followed by 9ACA and AO. The myeloperoxidase (MPO) homologue is already active at 24 hpf, as CBZ was biotransformed into 9ACA and AO in 24 hpf zebrafish embryos, and into 9ACA in 120 hpf larvae. Moreover, 9ACA was also found to be biotransformed into AI and AO, and AI into AO. As such, one or more of these metabolites probably contribute to the teratogenic effects observed in zebrafish larvae after exposure to CBZ.
Collapse
Affiliation(s)
- Jente Hoyberghs
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Axelle Coppens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chloé Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis-Pharmaceutical Technology (NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Nolte TM. 300-fold higher neuro- and immunotoxicity from low-redox transformation of carbamazepine. Toxicol Rep 2023; 11:319-329. [PMID: 37927955 PMCID: PMC10622881 DOI: 10.1016/j.toxrep.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Current challenges in (eco)toxicology are in understanding the transformation of (reactive) substances, and how transformation affects toxic modes of action. Empirical assessment of transformation products of, practically an infinite number of substances, via experimentation, is impossible. Predicting transformation products for (benchmarking) compounds from conditions, facilitates risk analyses. This study applied calculus to predict transformation products of an important environmental and medicinal/toxicological marker, carbamazepine. As radicals are ubiquitous in humans and the environment, we looked into radical-mediated transformations of carbamazepine as a benchmark. We calculated proportions of their speciation states as function of redox conditions, which we took as pH and O2 concentration, describing transformation via covalent and ionic interactions. Formation of ring-contracted products with neuro-immunological activity is thermodynamically favored under anaerobic conditions and at low pH. Experimentally observed product distributions and toxicities reflect that pattern. Our predictive method may support toxicity predictions for other substances and conditions 'similar' to the current case study via interpolation. This paves the way for a more coherent, effective and easier risk assessment of transformation products.
Collapse
Affiliation(s)
- Tom M. Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud, University Nijmegen, 6500 GL Nijmegen, the Netherlands
- Eidgenössische Technische Hochschule (ETH) Zurich, Laboratory of Inorganic Chemistry, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Kråkström M, Saeid S, Tolvanen P, Kumar N, Salmi T, Kronberg L, Eklund P. Ozonation of carbamazepine and its main transformation products: product determination and reaction mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23258-23269. [PMID: 32333356 PMCID: PMC7293669 DOI: 10.1007/s11356-020-08795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Carbamazepine (CBZ) is a recalcitrant pharmaceutical often detected in wastewater and in the environment. CBZ can be removed from wastewater through advanced oxidation treatment methods such as ozonation. In this study, CBZ and its transformation product 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD) were ozonated, and the formation and transformation of their ozonation products were investigated using liquid chromatography coupled to ion trap mass spectrometry and high-resolution mass spectrometry as well as nuclear magnetic resonance (NMR). The main products, 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and BQD were quantified using isolated standards and LC-UV. Of the original CBZ concentration, 74% was transformed into BQM and 83% of BQM was further transformed into BQD. Both products are more stable than CBZ and could still be detected after 240 min of ozonation. Another major product, 2,2'-azanediyldibenzaldehyde (TP225) was for the first time identified using NMR. Twelve further CBZ products were identified.
Collapse
Affiliation(s)
- Matilda Kråkström
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland.
| | - Soudabeh Saeid
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Narendra Kumar
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Leif Kronberg
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| | - Patrik Eklund
- Laboratory of Organic Chemistry, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500, Åbo/Turku, Finland
| |
Collapse
|
4
|
Zheng M, Bao Y, Huang Z, Qiu W, Xu G, Wang Z. Radiolysis of carbamazepine by electron beam: Roles of transient reactive species and biotoxicity of final reaction solutions on rotifer Philodina sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135013. [PMID: 31757543 DOI: 10.1016/j.scitotenv.2019.135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Electron beam (EB) has proven to be an effective advanced oxidation reduction process (AORP) to degrade the psychiatric drug carbamazepine (CBZ); however, the degradation mechanism and the toxicity of the final reaction solutions to aquatic microorganisms needed further investigation. In this study, CBZ was eventually degraded and even mineralized by EB treatment, where the degradation of CBZ followed the pseudo-first-order kinetics with R2 > 0.98. Acidic conditions, presence of an additional oxidant (2.5 mmol L-1 H2O2), and O2/air-saturated conditions improved the degradation efficiency of CBZ, as well as the radiation chemical yield (G-value defined as the efficiency of the irradiation process). Concentrations of transient reactive species (TRS) caused by EB were quantified under different conditions at doses of 0.956 and 3.17 kGy, and the apparent quantum yield of CBZ degradation was in the order of OH > H > eaq-. However, the contribution of these species to CBZ degradation was in the order of OH > eaq- >H due to the generation of only a small amount of H. Findings regarding the changes of in CBZ degradation intermediates, short-chain fatty acids (SCFAs), and total organic carbon showed that CBZ can gradually be mineralized into CO2/CO32-, H2O, and NH3/NH4+ by the EB process. Additionally, an excellent rotifer survival rate after 5-day culturing in the reaction solutions resulting from 5-kGy treatment indicated that EB can be a safe AORP to mineralize CBZ in solution. These findings provide scientific proof for the EB being an effective AORP for removal of psychiatric drugs from aqueous solutions, laying the foundation for future remediation research.
Collapse
Affiliation(s)
- Ming Zheng
- School of Environmental and Chemical Engineering, Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yangyang Bao
- Pudong New Area Environmental Monitoring Station, No. 51 Lingshan Road, Pudong New Area, Shanghai, China
| | - Zhonglian Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.
| | - Zhongying Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Jiang W, Xia T, Yun Y, Li M, Zhang F, Gao S, Chen W. UHPLC-MS/MS method for simultaneous determination of carbamazepine and its seven major metabolites in serum of epileptic patients. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108:17-24. [DOI: 10.1016/j.jchromb.2018.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/09/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023]
|
6
|
Palm WU. Photochemistry of 9-acridinecarboxaldehyde in aqueous media. Photochem Photobiol Sci 2018; 17:964-974. [PMID: 29915836 DOI: 10.1039/c8pp00185e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dark and photolysis reactions in solution were investigated for 9-acridinecarboxaldehyde (ACL). ACL reacts in the dark at T = 20 °C and pH = 7.0 in an air saturated solution to the main product 9-acridinecarboxylic acid (ACA) and to the minor product 9-acridinemethanol (ACM) with a lifetime of τ = 4.3 days. The dissociation constant of the base ACLH+ was determined to be pKa ± σ = 4.38 ± 0.04. The photolysis of ACL was investigated using a polychromatic Xe-light source. The quantum yield in aqueous solution at T = 20 °C in a concentration range of c0(ACL) = 0.18-16.6 μM for pH > pKa and for nitrogen, air and oxygen aerated solutions was found to be Φ ± σ = (0.015 ± 0.003) mol/mol, independent from concentration. The quantum yield of ACLH+, i.e. for pH ≪ pKa, is by a factor of 2 higher (Φ = 0.029 mol/mol). Quantum yields in methanol and isopropanol are slightly lower compared to water and in acetone lower by about a factor of 20. In acetonitrile ACL was found to be practically photostable. Minimum lifetimes in sunlight for a measurement on September 5, 2017 were in the range of τ = 5-10 minutes. The diurnal photolysis of ACL in sunlight was satisfactory explained using the mean quantum yield, the absorption spectrum and photon fluxes with suitable corrections for cloudiness and the dimensions of the setup. For low concentrations ACR is formed with a yield of practically 100% in the photolysis reaction. However, with increasing concentration of ACL yields of ACR decrease and yields of ACA increase. 9(10H)-Acridinone and ACM were always detected as minor products with yields below 2%. 9-Methylacridine was never detected in any reaction of ACL. Strong indications are presented of a photolysis reaction of ACL in a river located in Lower Saxony (Germany) with a corresponding equimolar formation of ACR. ACL is therefore a direct precursor of ACR in natural surface water.
Collapse
Affiliation(s)
- Wolf-Ulrich Palm
- Institute of Sustainable Chemistry and Environmental Chemistry, Leuphana University, Universitätsallee 1, 21335 Lüneburg, Germany.
| |
Collapse
|
7
|
Ghasemian S, Nasuhoglu D, Omanovic S, Yargeau V. Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn 80% -W 20% -oxide electrodes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Mangot AG. Psychiatric aspects of toxoplasmosis: an Indian perspective. J Parasit Dis 2016; 40:1636-1639. [PMID: 27877000 DOI: 10.1007/s12639-015-0684-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 03/28/2015] [Indexed: 10/23/2022] Open
Abstract
Toxoplasma gondii is one of the well-studied parasites because of its medical and veterinary importance, and its suitability as a model for cell biology and molecular studies. Latent toxoplasmosis in an immunocompetent host was considered benign until recently. The importance of this parasite has been steadily rising in the field of psychiatry and neurology as it has been implicated in numerous neuropsychiatric disorders. Researchers in India have unfortunately restricted themselves to finding the prevalence of toxoplasma antibodies in special populations and animals. On the other hand, there has been increasing research interest worldwide in T. gondii for its effects on human behaviour, manifestations of which range from psychoses and neuroses to Alzheimer's and Parkinson's disease. Toxoplasma infected organisms may be akin to living zombies. From changing the core natural defensive behaviour in mice to changing personality & leading to neuropsychiatric disorders in humans, Toxoplasma brings about subtle but significant & specific changes in its host. Surprisingly there is severe dearth of such studies from India even though prevalence rates of latent Toxoplasma infection are comparable, or in some regions, higher to those found elsewhere in the world. The potential for identifying Toxoplasma induced behavioural alterations is enormous in this part of the world which could have future treatment implications. It's high time that we move beyond researching the obvious and involve ourselves in more rigorous, novel and stimulating studies in the future.
Collapse
Affiliation(s)
- Ajish G Mangot
- Department of Psychiatry, People's College of Medical Sciences & Research Centre, OPD-7, C-Block, Bhanpur, Bhopal, 462037 Madhya Pradesh India
| |
Collapse
|
9
|
Mathieu O, Dereure O, Hillaire-Buys D. Presence andex vivoformation of acridone in blood of patients routinely treated with carbamazepine: exploration of the 9-acridinecarboxaldehyde pathway. Xenobiotica 2010; 41:91-100. [DOI: 10.3109/00498254.2010.529955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E. Fate of carbamazepine during water treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6256-61. [PMID: 19746722 DOI: 10.1021/es900070h] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seven transformation products of carbamazepine generated by at least one of three common water treatment technologies (UV-radiation, oxidation with chlorine dioxide (ClO2), and biological treatment with activated sludge) were identified by complementary use of ion trap, single quadrupole, and quadrupole-time-of-flight mass spectrometers. Acridine was formed during all of the three treatment processes, while acridine 9-carbaldehyde was identified as an intermediate during ClO2 oxidation. Further treatment of acridine with ClO2 produced 9-hydroxy-acridine. UV-treatment resulted in the formation of acridone, hydroxy-(9H,10H)-acridine-9-carbaldehyde, acridone-N-carbaldehyde, and 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione, while biological breakdown of acridine yielded acridone. In parallel, the transformation product iminostilbene was observed during sample analysis. In addition, this study compared the treatment technologies according to the removal of carbamazepine and the production and decay of its transformation products. The most successful method for the removal of carbamazepine was UV treatment while acridine and acridone were more susceptible to biological treatment. Therefore, based on the enhanced biodegradability of carbamazepine residues achieved by UV irradiation, we propose a coupled treatment technology involving an initial UV treatment step followed by biological treatment which may satisfactorily remove the parent compound and its transformation products.
Collapse
Affiliation(s)
- Tina Kosjek
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
11
|
Leclercq M, Mathieu O, Gomez E, Casellas C, Fenet H, Hillaire-Buys D. Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:408-415. [PMID: 18779941 DOI: 10.1007/s00244-008-9202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
Many pharmaceuticals are excreted in wastewater as parent substances or metabolites subsequent to therapeutic or diagnostic application in medical care. This includes the antiepileptic carbamazepine, which is not removed during conventional wastewater treatment and was found to be ubiquitous in the aquatic environment. Some carbamazepine metabolites have also been found in treated wastewater, but only five of them have been studied to date. However, at least 30 carbamazepine metabolites have been identified in humans, including some pharmacologically active or genotoxic compounds. Oxcarbazepine, an antiepileptic which is increasingly used, generates metabolites common to those of carbamazepine. The present work focuses on the presence of carbamazepine, oxcarbazepine, and seven of their metabolites (carbamazepine-10,11-epoxide, 10-hydroxy-10,11-dihydrocarbamazepine, 10,11-dihydro-10,11-trans-dihydroxycarbamazepine, 2-hydroxy-carbamazepine, iminostilbene, acridine, and acridone) at three different treatment plants (conventional activated sludge, trickling filter, and stabilization ponds) selected in France. The main aim of this work was to identify selected compounds in wastewater after therapeutic use and to measure concentrations in influents and effluents at the three wastewater treatment plants. Except for iminostilbene, all of these compounds were detected in wastewater. The metabolite common to carbamazepine and oxcarbazepine, i.e., 10,11-dihydro-10,11-trans-dihydroxycarbamazepine, was detected at a higher concentration than the parent substances in wastewater. The presence of parent molecules was noted in inlet and outlet water samples. Carbamazepine, as expected, was not removed by conventional activated sludge treatment. Nevertheless, in a wastewater treatment plant with a 78-day hydraulic retention time, a 73% decrease in carbamazepine concentration was observed. For the first time, oxcarbazepine was found in environmental samples. A decrease in oxcarbazepine concentrations was observed at the three sewage treatment plants, with removal ranging from 24 to 73%. No metabolite removal was observed after activated sludge treatment. In the two other sewage treatments plants, the fate of the metabolites differed. The concentration of some metabolites, e.g., 10,11-dihydro-10,11-trans-dihydroxycarbamazepine and acridine, increased, possibly via different processes such as cleavage of glucuronide conjugates or biotic and abiotic degradation of parent compounds. The behavior of the studied substances is discussed in terms of the treatment process and hydraulic retention time.
Collapse
Affiliation(s)
- Marie Leclercq
- UMR 5569 Hydrosciences Montpellier, University of Montpellier I, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
12
|
Lu W, Uetrecht JP. Peroxidase-Mediated Bioactivation of Hydroxylated Metabolites of Carbamazepine and Phenytoin. Drug Metab Dispos 2008; 36:1624-36. [DOI: 10.1124/dmd.107.019554] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Erve JC. Chemical toxicology: reactive intermediates and their role in pharmacology and toxicology. Expert Opin Drug Metab Toxicol 2007; 2:923-46. [PMID: 17125409 DOI: 10.1517/17425255.2.6.923] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reactive intermediates formed during the metabolism of drugs have been investigated extensively over the past decades. Today, interest in reactive intermediates in drug discovery is focused on minimising bioactivation in hopes of reducing the risk of causing so-called idiosyncratic toxicity. These efforts are justified based on the 'hapten hypothesis', namely, that on binding to protein, reactive intermediates may elicit an immune response to the modified protein, leading to a cascade of events that ultimately manifests as a toxic outcome. However, the pharmacological action of certain drugs depends on reactive intermediates that modify critical amino acid residues of proteins, typically enzymes, thereby altering their activity. Thus, the notion that reactive intermediates are inherently dangerous is unjustified. When a reactive intermediate is necessary for the desired pharmacological effect of a drug, the selectivity it displays towards the target protein is crucial, as off-target binding may produce unwanted toxicities. On the other hand, reactive intermediates may play no role in toxicity. This review provides a balanced perspective, primarily focusing on the proposed role of reactive intermediates in drug toxicity, while also highlighting examples in which they are involved in causing the desired pharmacology. It is hoped that this knowledge can help scientists involved in drug discovery and development in their challenging task of producing safe and effective drugs.
Collapse
Affiliation(s)
- John Cl Erve
- Wyeth Research, Drug Safety and Metabolism, Collegeville, PA 19426, USA.
| |
Collapse
|
14
|
Fuller MA, Dostrow V, Gupta S, Gazda TD. Practical considerations for carbamazepine use in bipolar disorder. Expert Opin Drug Saf 2006; 5:501-9. [PMID: 16774489 DOI: 10.1517/14740338.5.4.501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Carbamazepine (CBZ) has a long history of successful use in epilepsy and, therefore, has a safety profile that is well characterised. Additionally, an extended-release formulation of CBZ (CBZ-ERC; Equetro, Shire US) has recently been approved for use in bipolar disorder. The most frequent adverse events associated with CBZ are somnolence, fatigue, dizziness and headache. Rash and leukopoenia may occur in approximately 10% of patients, but are benign and transient in most cases. Rare serious adverse effects include agranulocytosis, aplastic anaemia, Stevens-Johnson syndrome and toxic epidermal necrolysis. Although changes in lipid profiles have been noted, hyperglycaemia does not occur with CBZ, and clinically significant weight gain is uncommon. Proper monitoring and careful titration of the extended-release formulation should allow for successful use of CBZ in psychiatric patients.
Collapse
Affiliation(s)
- Matthew A Fuller
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10000 Brecksville Road, Brecksville, OH 44141, USA.
| | | | | | | |
Collapse
|
15
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
16
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
17
|
Zhou S. Separation and detection methods for covalent drug–protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:63-90. [PMID: 14630144 DOI: 10.1016/s1570-0232(03)00399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
18
|
Hinze-Selch D. Infection, treatment and immune response in patients with bipolar disorder versus patients with major depression, schizophrenia or healthy controls. Bipolar Disord 2003; 4 Suppl 1:81-3. [PMID: 12479687 DOI: 10.1034/j.1399-5618.4.s1.32.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bipolar disorder is the least studied among the three major psychiatric disorders of schizophrenia, major depression and bipolar disorder. Furthermore, investigations on infection and immunity in bipolar disorder make up only a small portion of the sparse research done on this disorder. However, there are reports that modulation of the immune system and certain infections might be associated with bipolar disorder and that there might be differences between bipolar and the other disorders. The purpose of this paper is to briefly review published data on these issues in bipolar versus the other disorders, and to present an ongoing clinical study on the putative involvement of infection with the parasite Toxoplasma gondii in these three major psychiatric disorders.
Collapse
Affiliation(s)
- Dunja Hinze-Selch
- Department of Psychiatry and Psychotherapy, Christian-Albrechts University, Keil, Germany
| |
Collapse
|
19
|
Voutsinas D, Foudoulaki L, Sofroniadou K, Galanakis N. Visceral leishmaniasis in a patient with acquired hypogammaglobulinemia. Eur J Intern Med 2001; 12:127-129. [PMID: 11297916 DOI: 10.1016/s0953-6205(01)00111-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A case of visceral leishmaniasis in a 26-year-old man with acquired IgA and IgG2 hypogammaglobulinemia, secondary to carbamazepine therapy given because of a previous head injury, is presented. The patient's clinical picture was otherwise typical, although hypogammaglobulinemia resulted in a delay in diagnosis, and response to therapy was excellent. This case is noteworthy because it is the first reported case of visceral leishmaniasis in a hypogammaglobulinemic patient and also because it is the fifth case of hypogammaglobulinemia due to carbamazepine reported worldwide.
Collapse
Affiliation(s)
- D Voutsinas
- 1st Medical Department and Infectious Diseases Clinic, The General Hospital of Nikaea, Piraeus, Greece
| | | | | | | |
Collapse
|
20
|
Abstract
The drug-metabolizing capacity of the liver is well known but cannot account for most idiosyncratic adverse drug reactions. Of the extrahepatic sources of reactive drug metabolites, the neutrophil has received the most attention because of its vast numbers and robust oxidizing machinery. Many drugs associated with autoimmunity are susceptible to oxidative transformation by the enzymatic action of myeloperoxidase, a protein released into the extracellular environment when neutrophils are activated. Production of the resulting drug metabolites within lymphoid organs maximizes their immune-perturbing effects. Mechanisms proposed for the initiation of drug-induced blood dyscrasias, hypersensitivity reactions, or lupus-like symptoms center around three views: (1) presentation of the implicated compound in the major histocompatibility complex of antigen-presenting cells via direct binding or after processing as a hapten bound to self-macromolecules, (2) direct cytotoxicity, or (3) interference in the development of T-cell tolerance in the thymus. How participation of reactive drug metabolites in these processes might lead to symptomatic disease is discussed.
Collapse
Affiliation(s)
- R L Rubin
- Keck Autoimmune Disease Center, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|