1
|
Sampaio-Dias IE, Reis-Mendes A, Costa VM, García-Mera X, Brea J, Loza MI, Pires-Lima BL, Alcoholado C, Algarra M, Rodríguez-Borges JE. Discovery of New Potent Positive Allosteric Modulators of Dopamine D 2 Receptors: Insights into the Bioisosteric Replacement of Proline to 3-Furoic Acid in the Melanostatin Neuropeptide. J Med Chem 2021; 64:6209-6220. [PMID: 33861612 DOI: 10.1021/acs.jmedchem.1c00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The control of Parkinson's disease (PD) is challenged by the motor and non-motor fluctuations as well as dyskinesias associated with levodopa long-term therapy. As such, pharmacological alternatives to reduce the reliance on this drug are needed. Melanostatin (MIF-1), a positive allosteric modulator (PAM) of D2 receptors (D2R), is being explored as a novel pharmacological approach focused on D2R potentiation. In this work, 3-furoic acid (3-Fu) was successfully employed as an l-proline (Pro) surrogate, affording two potent MIF-1 analogues, methyl 3-furoyl-l-leucylglycinate (4a) and 3-furoyl-l-leucylglycinamide (6a). In this series, the C-terminal carboxamide moiety was found crucial to enhancing the potency and toxicological profile, yet it is not considered a requisite for the PAM activity. Conformational analysis excludes 4a from adopting the claimed type II β-turn. The discovery and validation of 6a as a lead compound open a new avenue for the development of a novel class of anti-Parkinson therapeutics targeting the D2R.
Collapse
Affiliation(s)
- Ivo E Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Beatriz L Pires-Lima
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristina Alcoholado
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - José E Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Sampaio-Dias IE, Rodríguez-Borges JE, Yáñez-Pérez V, Arrasate S, Llorente J, Brea JM, Bediaga H, Viña D, Loza MI, Caamaño O, García-Mera X, González-Díaz H. Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML). ACS Chem Neurosci 2021; 12:203-215. [PMID: 33347281 DOI: 10.1021/acschemneuro.0c00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This work describes the synthesis and pharmacological evaluation of 2-furoyl-based Melanostatin (MIF-1) peptidomimetics as dopamine D2 modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated N-propylapomorphine ([3H]-NPA) at D2 receptors (D2R). In this series, 2-furoyl-l-leucylglycinamide (6a) produced a statistically significant increase in the maximal [3H]-NPA response at 10 pM (11 ± 1%), comparable to the effect of MIF-1 (18 ± 9%) at the same concentration. This result supports previous evidence that the replacement of proline residue by heteroaromatic scaffolds are tolerated at the allosteric binding site of MIF-1. Biological assays performed for peptidomimetic 6a using cortex neurons from 19-day-old Wistar-Kyoto rat embryos suggest that 6a displays no neurotoxicity up to 100 μM. Overall, the pharmacological and toxicological profile and the structural simplicity of 6a makes this peptidomimetic a potential lead compound for further development and optimization, paving the way for the development of novel modulating agents of D2R suitable for the treatment of CNS-related diseases. Additionally, the pharmacological and biological data herein reported, along with >20 000 outcomes of preclinical assays, was used to seek a general model to predict the allosteric modulatory potential of molecular candidates for a myriad of target receptors, organisms, cell lines, and biological activity parameters based on perturbation theory (PT) ideas and machine learning (ML) techniques, abbreviated as ALLOPTML. By doing so, ALLOPTML shows high specificity Sp = 89.2/89.4%, sensitivity Sn = 71.3/72.2%, and accuracy Ac = 86.1%/86.4% in training/validation series, respectively. To the best of our knowledge, ALLOPTML is the first general-purpose chemoinformatic tool using a PTML-based model for the multioutput and multicondition prediction of allosteric compounds, which is expected to save both time and resources during the early drug discovery of allosteric modulators.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE, Dept. of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Dept. of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Víctor Yáñez-Pérez
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Sonia Arrasate
- Dept. of Pharmacology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Javier Llorente
- Dept. of Pharmacology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Dept. of Pharmacology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Brea
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Harbil Bediaga
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Dept. of Physical Chemistry, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
| | - Dolores Viña
- Dept. of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Dept. of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Dept. of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humberto González-Díaz
- Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- Basque Center for Biophysics (CSIC UPV/EHU), University of Basque Country (UPV-EHU), 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
3
|
Sampaio-Dias IE, Silva-Reis SC, García-Mera X, Brea J, Loza MI, Alves CS, Algarra M, Rodríguez-Borges JE. Synthesis, Pharmacological, and Biological Evaluation of MIF-1 Picolinoyl Peptidomimetics as Positive Allosteric Modulators of D 2R. ACS Chem Neurosci 2019; 10:3690-3702. [PMID: 31347842 DOI: 10.1021/acschemneuro.9b00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work describes the synthesis and pharmacological evaluation of picolinoyl-based peptidomimetics of melanocyte stimulating hormone release inhibiting factor 1 (MIF-1) as dopamine modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated N-propylapomorphine ([3H]-NPA) at dopamine D2 receptors (D2R). Methyl picolinoyl-l-valyl-l-alaninate (compound 6b) produced a statistically significant increase in the maximal [3H]-NPA response at 0.01 nM (11.9 ± 3.7%), which is close to the effect of MIF-1 in this assay at same concentration (18.3 ± 9.1%). Functional assays measuring cAMP mobilization in the presence of dopamine corroborate the activity of peptidomimetic 6b as a positive allosteric modulator (PAM) of D2R. In this assay, 6b produced a typical bell-shaped dose-response curve similar to that of the parent neuropeptide (18.3 ± 7.1% for 6b vs 15.4 ± 5.5% for MIF-1, both at 0.1 nM). Dose-response curves for dopamine in the presence of 6b show EC50 (0.33 ± 0.21 μM for 6b vs 0.17 ± 0.07 μM for MIF-1) and Emax (86.0 ± 5.4% for 6b vs 93.6 ± 4.4% for MIF-1) comparable to those of MIF-1, both at 0.01 nM. Furthermore, peptidomimetic 6b was tested for agonist activity at the human D2R and the results show that it displays no intrinsic agonism effect, endorsing its activity as a PAM of D2R. Cytotoxic and neurotoxic assays were performed for peptidomimetic 6b using HEK 293T cells and cortex neurons from 19 day old Wistar-Kyoto rat embryos, respectively, suggesting this analogue displays no toxicity effect in these assays up to 100 μM. Conformational energy minimization for 6b shows that this peptidomimetic cannot adopt the postulated type-II β-turn bioactive conformation, endorsing the possibility of an extended bioactive conformation as claimed by other researchers as a second bioactive conformation of MIF-1. Overall, the pharmacological and toxicological profile of peptidomimetic 6b together with its favorable druglike properties and structural simplicity makes it a potential lead compound for further development and optimization.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research Group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carla S. Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário
da Penteada, 9020-105 Funchal, Portugal
| | - Manuel Algarra
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário
da Penteada, 9020-105 Funchal, Portugal
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Pan W, Kastin AJ. From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides. Peptides 2007; 28:2411-34. [PMID: 17988762 DOI: 10.1016/j.peptides.2007.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/22/2022]
Abstract
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH(2)) was the first hypothalamic peptide shown to act "up" on the brain, not just "down" on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose-response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH(2)) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH(2)) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH(2) and endomorphin-2 is Tyr-Pro-Phe-Phe-NH(2). Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood-brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
5
|
Sharma S, Paladino P, Gabriele J, Saeedi H, Henry P, Chang M, Mishra RK, Johnson RL. Pro-Leu-glycinamide and its peptidomimetic, PAOPA, attenuate haloperidol induced vacuous chewing movements in rat: A model of human tardive dyskinesia. Peptides 2003; 24:313-9. [PMID: 12668218 DOI: 10.1016/s0196-9781(03)00045-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present experimental paradigm, we examine the effect of L-prolyl-L-leucyl-glycinamide (PLG) co-administration with haloperidol on vacuous chewing movements (VCM) in rats-a model of tardive dyskinesia (TD) in humans. We examined the dose dependent induction of VCM through both injected and orally administered PLG (MIF-1). Our results show significant levels of VCM attenuation (P<0.05) in rats treated with 10mg/kg of PLG. Doses of 1 and 100mg/kg were ineffective. Reductions were present in both orally treated and injected rats. We also examined the therapeutic effect of a peptidomimetic of PLG-PAOPA. PAOPA was able to produce similar behavioral effects to PLG at a dose, which was 100-fold lower than the effective dose of PLG. These results suggest that PLG may play a role in D2 receptor expression and function, as well as providing a therapy for neuroleptic induced TD.
Collapse
Affiliation(s)
- S Sharma
- Department of Psychiatry, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Ont., L8N 3Z5, Hamilton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Costain WJ, Mishra RK. PLG regulates hnRNP-L expression in the rat striatum and pre-frontal cortex: identification by ddPCR. Peptides 2003; 24:137-46. [PMID: 12576095 DOI: 10.1016/s0196-9781(02)00286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Central dopaminergic systems are implicated in schizophrenia and Parkinson's disease, and are known to be modulated by the endogenous tripeptide Pro-Leu-Gly-NH(2) (PLG or MIF-1, melanocyte-stimulating hormone release inhibiting factor-1). Differential display polymerase chain reaction (ddPCR) was utilized to identify genes that are regulated by protracted PLG treatment (20 mg/kg, i.p. for 28 days) in male Sprague-Dawley rats. A total of 2400 genes were screened and 3 down-regulated bands were identified in the PLG-treated samples. Sequencing analysis revealed a total of six unique cDNA species. One fragment possessed a high degree of homology with Mus musculus hnRNP-L (protein L) mRNA (GenBank #AB009392) (termed PRG1: PLG regulated gene 1). Elongation of the PRG1 cDNA, by RACE-PCR, provided an 835 bp sequence with 95% homology to AB009392 over a 743 bp span. Open reading frame analysis provided a putative amino acid sequence consistent with the identity of PRG1 as rat hnRNP-L. Northern hybridization experiments with PRG1 revealed a 2.3 kb mRNA species that was decreased by 65% in the PLG-treated tissue. Western blot analysis revealed significantly decreased hnRNP-L levels in the striatum and pre-frontal cortex (but not the nucleus accumbens) by 71 and 61%, respectively of PLG-treated animals. The identification of altered expression of hnRNP-L following PLG treatment provides insight into the long-term effects of PLG and may provide insight into its molecular mechanism of action.
Collapse
Affiliation(s)
- Willard J Costain
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
7
|
Costain WJ, Buckley AT, Evans MC, Mishra RK, Johnson RL. Modulatory effects of PLG and its peptidomimetics on haloperidol-induced catalepsy in rats. Peptides 1999; 20:761-7. [PMID: 10477133 DOI: 10.1016/s0196-9781(99)00060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A behavioral model of dopaminergic function in the rat was used to examine the anticataleptic effects of L-prolyl-L-leucyl-glycinamide (PLG) and peptidomimetic analogs of PLG. Administration of 1 mg/kg PLG intraperitoneally significantly attenuated haloperidol (1 mg/kg)-induced catalepsy (as measured by the standard horizontal bar test), whereas doses of 0.1 and 10 mg/kg PLG did not. Eight synthetic PLG peptidomimetics (Calpha, alpha-dialkylated glycyl residues with lactam bridge constraint [1-4] and without [5-8]) were tested in the same manner (at a dose of 1 microg/kg) and categorized according to their activity, i.e. very active (5), moderately active (2, 3, 4, and 6), and inactive (1, 7, and 8). The catalepsy-reversal action of the diethylglycine-substituted peptidomimetic 5 was examined further and found to exhibit a U-shaped dose-response effect with an optimal dose of 1 microg/kg. The similarity between the effects of PLG and the synthetic peptidomimetics suggests a common mechanism of action. Finally, the synthetic peptidomimetics examined here, particularly peptidomimetic 5, were more effective than PLG in attenuating haloperidol-induced catalepsy.
Collapse
Affiliation(s)
- W J Costain
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Abstract
A review of research on the Tyr-MIF-1 family of peptides is presented with emphasis on Tyr-MIF-1 and its structure, passage through the blood-brain barrier, and both opiate antagonist and agonist properties. Family members MIF-1, Tyr-W-MIF-1 and Tyr-K-MIF-1 are also included.
Collapse
Affiliation(s)
- G W Reed
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|
9
|
Affiliation(s)
- A J Kastin
- VA Medical Center, New Orleans, Louisiana
| | | | | | | |
Collapse
|
10
|
Drucker GE, Ritzmann RF, Wichlinski LJ, Engh K, Gordon JH, Fields JZ. Prevention and reversal of dopamine receptor supersensitivity by cyclo(leucyl-glycyl) (CLG): biphasic dose-response curves. Pharmacol Biochem Behav 1994; 47:141-5. [PMID: 8115415 DOI: 10.1016/0091-3057(94)90123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic administration (21 days) of haloperidol (HAL) (IP, 1.0 mg/kg/day) induced a behavioral supersensitivity (stereotypic sniffing) to dopamine (DA) agonists (apomorphine) and upregulation (increased Bmax for sulpiride-inhibitable [3H]spiroperidol binding) of striatal and limbic D2 DA receptors (DAr). Coadministration of cyclo(leucyl-glycyl) (CLG; 8mg/kg, SC; every third day, every other day, but not every day) with HAL attenuated the behavioral supersensitivity. D2-DAr binding assays showed 1) that CLG-induced changes in Bmax parallel these behavioral changes and 2) that the biphasic CLG dose-response curve may involve CLG failure at high cumulative doses to lower Bmax. CLG also reversed an already established D2 DAr supersensitivity/upregulation (i.e., when CLG was injected daily for four days after the withdrawal of HAL). CLG alone did not alter behavior or binding. CLG's ability to both prevent and reverse D2 DAr upregulation/supersensitivity in animal models suggests that CLG may be useful, within a therapeutic window, in clinical disorders that are thought to involve upregulated DAr (e.g., tardive dyskinesia, L-DOPA-induced dyskinesias, and schizophrenia).
Collapse
Affiliation(s)
- G E Drucker
- Department of Medicine, Loyola University, Stritch School of Medicine, Maywood IL 60153
| | | | | | | | | | | |
Collapse
|
11
|
Gong L, Kostrzewa RM, Kalbfleisch JH. MIF-1 fails to modify agonist-induced oral activity in neonatal 6-OHDA-treated rats. Peptides 1993; 14:1159-64. [PMID: 7907787 DOI: 10.1016/0196-9781(93)90170-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-Prolyl-L-leucyl-glycinamide (MIF-1) is known to attenuate apomorphine-induced stereotypes in adult rats that are lesioned as neonates with 6-hydroxydopamine (6-OHDA). To test whether MIF-1 would affect dopamine (DA) agonist-induced and serotonin (5-HT) agonist-induced oral activity, both intact and neonatal 6-OHDA-treated rats were studied. Rats at 3 days from birth were injected with desipramine (20 mg/kg, IP), 1 h before 6-OHDA HBr (100 micrograms, salt form, in each lateral ventricle) or its vehicle, saline-ascorbic acid (0.1%). At approximately 6 months rats were treated with MIF-1 (0.1, 1.0, or 10.0 mg/kg, IP), 10 min before SKF 38393 HCl (1.0 mg/kg, IP) or m-chlorophenylpiperazine 2HCl (m-CPP 2HCl; 0.5 mg/kg, IP), DA D1 and 5-HT1C,2 receptor agonists, respectively. Although both agonists increased oral activity in control and neonatal 6-OHDA-treated rats, MIF-1 did not modify the response. In rats that received either of the three doses of MIF-1 for 21 consecutive days, there was still no observed effect of MIF-1 on the oral response of control and 6-OHDA-lesioned rats to SKF 38393 and m-CPP. These findings indicate that MIF-1 does not modify the oral activity response of supersensitized D1 and 5-HT1C receptors in adult rats that are lesioned neonatally with 6-OHDA.
Collapse
Affiliation(s)
- L Gong
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614
| | | | | |
Collapse
|
12
|
Kostrzewa RM, Kastin AJ. Tyr-MIF-1 attenuates development of tolerance to spiperone-induced catalepsy in rats. Brain Res Bull 1993; 31:707-12. [PMID: 8100182 DOI: 10.1016/0361-9230(93)90145-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Because the tripeptide MIF-1 (Pro-Leu-Gly-NH2) is known to attenuate the effects of neuroleptic-induced catalepsy as well as neuroleptic-induced proliferation of dopamine (DA) receptors, we studied the related naturally occurring peptide, Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) for similar properties. Male rats were treated SC for 11 consecutive days with either the DA D1 receptor antagonist SCH 23390 HCl (0.50 mg/kg per day), the DA D2 receptor antagonist spiperone HCl (0.30 mg/kg per day), or vehicle. Half the rats were cotreated daily with Tyr-MIF-1 (1.0 mg/kg per day). The cataleptic effects of SCH 23390 were not altered by Tyr-MIF-1. Tolerance to SCH 23390-induced catalepsy did not develop during the 11-day treatment, and Tyr-MIF-1 had no effect on SCH 23390-induced catalepsy. However, tolerance developed to spiperone-induced catalepsy, and Tyr-MIF-1 attenuated this development of tolerance (p < 0.001). Locomotor and stereotyped activities of the DA D1 and D2 agonists, SKF 39393 (3.0 mg/kg) and quinpirole (3.0 mg/kg) were not affected by Tyr-MIF-1 after treatment with the DA antagonists was discontinued. Tyr-MIF-1 did not alter the Bmax or Kd for in vitro binding of [3H]SCH 23390 and [3H]spiperone to homogenates of the striatum. These findings indicate that Tyr-MIF-1 is able to selectively affect the development of receptor tolerance to a DA D2 receptor antagonist, and that this effect is unrelated to changes in affinity or numbers of D2 receptors.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City 37614
| | | |
Collapse
|
13
|
Fields JZ, Wichlinski LJ, Ritzmann RF, Drucker GE, Gordon JH. Cyclo(leu-gly) reverses the permanent dopamine receptor up-regulation induced by ovariectomy. Drug Dev Res 1991. [DOI: 10.1002/ddr.430230308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Fields JZ, Lee JM, Gordon JH, Wichlinski LJ, Ritzmann RF. The effects of cyclo(leucyl-glycyl) on nigrostriatal dopaminergic supersensitivity--inhibition of apomorphine-induced climbing. Neuropeptides 1990; 16:207-11. [PMID: 2274115 DOI: 10.1016/0143-4179(90)90064-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous study we showed that cyclo(leu-gly) (CLG) prevents the behavioural supersensitivity induced in the mesolimbic dopamine (DA) tract (in mice) by chronic haloperidol (HAL). In the current study, we evaluated the effects of CLG on supersensitivity to DA agonists in the nigrostriatal DA tract induced by chronic HAL (1.0 mg/kg, i.p. x 21 days--Experiment 1) or by acute injection of a high dose of apomorphine (APO) (Experiment 2). In Experiment 1 CLG was given at doses of either (a) 0 mg/kg/day (b) 1 mg/kg every third day (30 minutes prior to HAL), (c) 1 mg/kg every day, or (d) 8 mg/kg every third day. In Experiment 2 the dose of CLG was 8 mg/kg, s.c., given 24h after APO. Co-administration of CLG with HAL attenuated the development of HAL-induced supersensitivity in both paradigms (b) and (c) above, although the attenuation was significantly greater in (c) compared to (b). This biphasic dose response (D-R) curve for CLG in Experiment 1 indicates that a therapeutic window exists for CLG (bell-shaped D-R curve) and is similar to previous curves for CLG effects on the mesolimbic DA tract. In Experiment 2, CLG attenuated the DA receptor supersensitivity caused by acute high dose APO. The capacity of CLG to down-regulate DA receptors and attenuate dopaminergic supersensitivity in these experiments suggests a potential therapeutic use in the prevention of tardive and/or L-dopa-induced dyskinesias.
Collapse
Affiliation(s)
- J Z Fields
- Research Service (151), Hines V.A. Hospital, Illinois 60141
| | | | | | | | | |
Collapse
|
15
|
Sandyk R. MIF-induced augmentation of melatonin functions: possible relevance to mechanisms of action of MIF-1 in movement disorders. Int J Neurosci 1990; 52:59-65. [PMID: 1979968 DOI: 10.3109/00207459008994244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MIF-1, a synthetic tripeptide with MSH-release inhibitory properties, has been reported to improve symptoms of Parkinson's disease, attenuate levodopa-related dyskinesias and diminish the dyskinetic movements of Tardive dyskinesia. More recently, MIF-1 has been reported partially to protect against the nigro-striatal dopamine depleting effects of MPTP in mice, raising the possibility that it may exert protective effects against the development of Parkinson's disease. There is evidence to suggest that MIF-1 increases nigro-striatal dopaminergic activity, but its ability to improve symptoms in patients with Parkinson's disease, levodopa-related dyskinesias and Tardive dyskinesia cannot be explained solely on the basis of the drug's effect on striatal dopaminergic neurons. MIF-1 has been reported to potentiate the melanocyte-lightening effect of melatonin in rats and its effects in patients with Parkinson's disease and Tardive dyskinesia are associated with marked mood elevation. It is, therefore, possible that the effects of MIF-1 in movement disorders are associated with increased melatonin secretion. Thus, hypothalamic MIF may modulate nigro-striatal dopaminergic functions in part via pineal melatonin. Such an interaction represents a novel mechanism by which hypothalamic peptides act to modulate the expression of movement disorders.
Collapse
Affiliation(s)
- R Sandyk
- Department of Clinical Neuropsychiatry, New York State Psychiatric Institute, NY 10032
| |
Collapse
|
16
|
Abstract
The following communication concerns two schizophrenic patients with Tardive dyskinesia (TD) in whom fluctuations in the severity of the dyskinesias were accompanied by changes in the severity of the seborrheic skin lesions. Since seborrheic dermatitis may be associated with increased plasma melanocyte-stimulating hormone (MSH) level, these observations suggest an association between the severity of TD and increased pituitary MSH release. In addition, TD may be associated with hypothalamic-pituitary dysfunction of MSH autoregulation.
Collapse
Affiliation(s)
- R Sandyk
- Department of Clinical Neuropsychiatry, New York State Psychiatric Institute, NY 10032
| |
Collapse
|
17
|
Abstract
The last decade has seen rapid growth in research with neuropeptides. During this time, we have been actively developing several concepts including the highly controversial one that peptides can cross the blood-brain barrier in intact form. One of the endogenous brain peptides used as a prototype for that concept, Tyr-MIF-1, also was used for the concept of the existence of endogenous antiopiate neuropeptides. As has been true for most novel developments in science, these concepts, as well as some older ones, were met with a great deal of skepticism when first suggested. Eventually, however, amnesia concerning the difficulties initially encountered with the introduction of new concepts occurs, with their subsequent "rediscovery" made easier.
Collapse
Affiliation(s)
- A J Kastin
- Veterans Administration Medical Center, University of New Orleans, Louisiana
| | | | | |
Collapse
|
18
|
Valle G, Crisma M, Toniolo C, Yu KL, Johnson RL. Crystal-state structural analysis of two gamma-lactam-restricted analogs of Pro-Leu-Gly-NH2. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1989; 33:181-90. [PMID: 2565891 DOI: 10.1111/j.1399-3011.1989.tb00207.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.
Collapse
Affiliation(s)
- G Valle
- Department of Organic Chemistry, University of Padova, Italy
| | | | | | | | | |
Collapse
|
19
|
Abstract
Long-term postnatal treatment of rats with the dopamine D2 receptor antagonist, spiroperidol, results in the impaired development of striatal D2 receptors. Because the tripeptide prolyl-leucyl-glycinamide (MIF-1) attenuates haloperidol-induced up-regulation of striatal dopamine D2 receptors in adult rats, we studied the effect of MIF-1 on the spiroperidol-induced alteration of striatal D2 ontogeny. Postnatal treatment of rats with spiroperidol (1.0 mg/kg/day, IP, x32 days from birth) resulted in a 74% decrease in the Bmax for [3H]spiroperidol binding with no change in the Kd at 5 weeks. When rats were studied at 8 weeks, in the absence of additional treatment, total specific [3H]spiroperidol binding was reduced by 59%. While MIF-1 alone (1.0 mg/kg/day, IP, x32 days from birth) had no effect on [3H]spiroperidol binding, MIF-1 completely attenuated the ontogenic impairment of striatal D2 receptors that was produced by spiroperidol treatment. At 5 weeks the Bmax for [3H]spiroperidol binding was at the saline control level in the group of rats cotreated with spiroperidol and MIF-1. At 8 weeks, with no additional treatments, the specific binding of [3H]spiroperidol to striatum was also at control levels in the group cotreated with spiroperidol and MIF-1. These findings demonstrate that MIF-1 attenuates spiroperidol-induced impairment of development of striatal dopamine D2 receptors in rats.
Collapse
Affiliation(s)
- M I Saleh
- Department of Pharmacology, Quillen-Dishner College of Medicine, East Tennessee State University, Johnson City 37614
| | | |
Collapse
|
20
|
Pulvirenti L, Kastin AJ. Blockade of brain dopamine receptors antagonizes the anti-immobility effect of MIF-1 and Tyr-MIF-1 in rats. Eur J Pharmacol 1988; 151:289-92. [PMID: 2901971 DOI: 10.1016/0014-2999(88)90810-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies have shown effects of MIF-1 (prolyl-leucyl-glycinamide) and Tyr-MIF-1 (tyrosyl-prolyl-leucyl-glycinamide) in animal models of depression and also effects on dopaminergic function. These observations prompted us to examine whether the effects of the two peptides in the behavioral 'despair' test were modulated by dopamine antagonists. MIF-1 and Tyr-MIF-1, at the small dose of 0.01 mg/kg i.p. (24, 5 and 1 h before the test), produced a significant anti-immobility effect. This effect was antagonized by a single injection of either haloperidol or sulpiride, two dopamine receptor blockers. The same low dose of the tricyclic antidepressant desipramine was without significant effect in this test. The results indicate that Tyr-MIF-1, like MIF-1, is active in the behavioral despair test for antidepressants and that at least some of the CNS actions of these peptides are mediated by dopamine receptors.
Collapse
|
21
|
Srivastava LK, Bajwa SB, Johnson RL, Mishra RK. Interaction of L-prolyl-L-leucyl glycinamide with dopamine D2 receptor: evidence for modulation of agonist affinity states in bovine striatal membranes. J Neurochem 1988; 50:960-8. [PMID: 2892892 DOI: 10.1111/j.1471-4159.1988.tb03005.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) in modulating the agonist binding to bovine striatal dopamine D2 receptor was investigated using a selective high-affinity agonist, n-propylnorapomorphine (NPA). PLG caused an enhancement in [3H]NPA binding in striatal membranes in a dose-dependent manner, the maximum effect being observed at 10(-7)-10(-6) M concentration of the tripeptide. The Scatchard analysis of [3H]NPA binding to membranes preincubated with 10(-6) M PLG revealed a significant increase in the affinity of the agonist binding sites. In contrast, there was no effect of PLG on the binding pattern of the antagonist [3H]spiroperidol. The antagonist versus agonist competition curves analyzed for agonist high- and low-affinity states of the receptor displayed an increase in the population and affinity of the high-affinity form of the receptor with PLG treatment. The low-affinity sites concomitantly decreased with relatively small change in the affinity for the agonists. Almost similar results were obtained when either NPA or apomorphine was used in the competition experiments. A partial antagonistic effect of PLG on 5'-guanylylimidodiphosphate [Gpp(NH)p]-induced inhibition of high-affinity agonist binding was also observed, as the ratio of high- to low-affinity forms of the receptor was significantly higher in the PLG-treated membranes compared to the controls. Direct [3H]NPA binding experiments demonstrated that PLG attenuated the Gpp(NH)p-induced inhibition of agonist binding by increasing the EC50 of the nucleotide (concentration that inhibits 50% of the specific binding). No effect of PLG on high-affinity [3H]NPA binding, however, could be observed when the striatal membranes were preincubated with Gpp(NH)p.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L K Srivastava
- Department of Psychiatry, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Rajakumar G, Chiu P, Chiu S, Johnson RL, Mishra RK. 17 beta Estradiol-induced increase in brain dopamine D-2 receptor: antagonism by MIF-1. Peptides 1987; 8:997-1002. [PMID: 2894650 DOI: 10.1016/0196-9781(87)90127-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Animal behavioral and neurochemical studies implicate dopaminergic systems in the neurological sequelae induced by estrogen. In the present study, we demonstrated for the first time that MIF-1, a neuropeptide unrelated to classical dopamine agonists, when given prior to, concurrently with, and after 17 beta-estradiol, antagonized significantly the estrogen-induced increase in the density of dopamine D-2 receptor both in the striatum and the mesolimbic area of male rat brain. The current findings have implications for the prophylactic and therapeutic potential for MIF-1 in extrapyramidal motor disorders caused by estrogen imbalance in humans.
Collapse
Affiliation(s)
- G Rajakumar
- Department of Psychiatry, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Mycroft FJ, Bhargava HN, Wei ET. Pharmacological activities of the MIF-1 analogues Pro-Leu-Gly, Tyr-Pro-Leu-Gly and pareptide. Peptides 1987; 8:1051-5. [PMID: 2894644 DOI: 10.1016/0196-9781(87)90135-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pharmacological activities of the related free acid analogues of MIF-1, Pro-Leu-Gly (PLG) and Tyr-Pro-Leu-Gly (YPLG), were investigated because of the possibility that they may be formed during the digestion of milk and wheat proteins in vivo. The amino acid sequences -Tyr-Pro-Leu-Gly- and -Pro-Leu-Gly- are present in proteins from these foods. Chronic administration of either PLG (0.25 mg/kg, SC, BID) or the control substance, pareptide (0.25 mg/kg, SC, BID), antagonized the development of tolerance to the cataleptic effects of haloperidol in mice. The effect of YPLG (0.25 mg/kg, SC, BID) on the development of this tolerance was borderline and not statistically significant. Nanomolar concentrations of PLG, YPLG, and pareptide each increased the in vitro binding of 3H-apomorphine to rat striatal receptors. In this in vitro system, bell-shaped dose response curves were observed for each peptide. The effects of these peptides on tolerance development and apomorphine binding are similar to those previously reported for MIF-1 and demonstrate that amidation at the carboxyl terminus is not required for biological activity.
Collapse
Affiliation(s)
- F J Mycroft
- School of Public Health, University of California, Berkeley 94720
| | | | | |
Collapse
|
24
|
Rajakumar G, Naas F, Johnson RL, Chiu S, Yu KL, Mishra RK. Down-regulation of haloperidol-induced striatal dopamine receptor supersensitivity by active analogues of L-prolyl-L-leucyl-glycinamide (PLG). Peptides 1987; 8:855-61. [PMID: 2893360 DOI: 10.1016/0196-9781(87)90072-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tardive dyskinesia, a clinical syndrome, is one of the major side effects of protracted treatment with neuroleptics in schizophrenic patients. Functional supersensitivity of striatal dopamine receptors is believed to contribute to the pathogenesis of schizophrenia and tardive dyskinesia. In a rodent model of neuroleptic-induced dopamine receptor supersensitivity, we investigated the efficacy of structurally modified analogues of PLG to down-regulate the striatal dopamine receptor supersensitivity as determined by alterations in [3H]spiroperidol binding to striatal membranes in vitro. The PLG analogue, L-prolyl-L-leucyl-(+)-thiazolidine-2-carboxamide-HCl, when given at the dose of 10 mg/kg IP for 5 days prior to haloperidol (3 mg/kg IP 21 days) significantly prevented the up-regulation of striatal dopamine receptor supersensitivity, thus demonstrating a prophylactic effect. Two other analogues, L-prolyl-L-leucyl-5-aminomethyltetrazole and L-prolyl-L-leucyl-glycine-dimethylamide at a dose of 10 mg/kg IP when given concurrently with haloperidol for 21 days, suppressed the development of dopamine receptor supersensitivity. None of the analogues tested in the post-haloperidol session reversed the haloperidol-induced increase in the density of striatal dopamine receptors. Active PLG analogues hold promise as potential therapeutic agents for the amelioration of tardive dyskinesia.
Collapse
Affiliation(s)
- G Rajakumar
- Department of Psychiatry, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Bean AJ, Elgin RJ, Cooper DM, Martin GE. Cyclo (Leu-Gly) + haloperidol: effects on dopamine receptors and conditioned avoidance responding. Peptides 1987; 8:39-44. [PMID: 3575153 DOI: 10.1016/0196-9781(87)90162-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Behavioral effects of cyclo (Leu-Gly) (cLG), administered either acutely or chronically, were assessed in combination with haloperidol in the rat. cLG administered chronically, produced a significant reduction in the increase in apomorphine-induced stereotypy produced by chronic haloperidol infusion. On the other hand, the same dose of cLG which reduced this induction of dopamine receptor supersensitivity due to chronic haloperidol treatment, failed to produce a change in the potency of haloperidol in blocking conditioned avoidance responding in the rat. Furthermore, degeneration-induced supersensitivity of dopamine neurons, produced by unilateral destruction of the nigrostriatal pathway, was not reduced by acute or chronic treatment with cLG as measured by apomorphine-induced rotation. These data suggest that cLG may decrease motor system side effects thought to be caused by chronic antipsychotic administration without affecting the therapeutic efficacy of the antipsychotic agent.
Collapse
|
26
|
Fields JZ, Gonzalez LP, Meyerson LR, Lieber P, Lee JM, Steece KA, DeLeon-Jones FA, Ritzmann RF. Radio-frequency analysis of the effect of haloperidol and cyclo (leucyl-glycyl) on apomorphine-induced stereotypy. Pharmacol Biochem Behav 1986; 25:1279-84. [PMID: 3809231 DOI: 10.1016/0091-3057(86)90123-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our previous studies indicated that the peptide cyclo(leucyl-glycyl) (cLG) prevents the development of supersensitivity to dopamine in several animal models at both biochemical and behavioral levels. We therefore tested cLG in a paradigm more commonly used to model tardive dyskinesia, namely chronic haloperidol administration to rats. We found that cLG administered subcutaneously at a dose of 8 mg/kg, blocked about 50% of the supersensitizing effects of of haloperidol on apomorphine-induced stereotypic behaviors. Further, we used a novel method, radio-frequency analysis, that quantifies sniffing and other stereotypic movements. Unlike methods that rely on visual observation of stereotypy and utilize an ordinal scale, these measurements are rated by an automatic motility monitor and utilize a ratio scale. Unlike other automated motility monitors, this device can distinguish between various forms of stereotypic behaviors. Since parametric statistics can be used, there is a significant improvement in the efficiency of the task of rating and comparing stereotypy scores.
Collapse
|
27
|
Abstract
The effects of several doses of MIF-1 and Tyr-MIF-1 (0.2, 0.5, 1.0 and 5.0 mg/kg, SC) on the stereotypic behavior induced by various doses (0.08, 0.2, 0.5, 1.0 and 2.0 mg/kg, SC) of apomorphine (APO) were tested in rats. MIF-1 increased the stereotypic behavior induced by 0.5 and 1.0 mg/kg of APO, but decreased the stereotypic behavior induced by 2.0 mg/kg of APO. Tyr-MIF-1 showed a biphasic effect similar to that exerted by MIF-1. The results suggest that the type of response to MIF-1 and Tyr-MIF-1 after APO is influenced by the activity of central dopaminergic neurons.
Collapse
|
28
|
Zadina JE, Banks WA, Kastin AJ. Central nervous system effects of peptides, 1980-1985: a cross-listing of peptides and their central actions from the first six years of the journal Peptides. Peptides 1986; 7:497-537. [PMID: 3534808 DOI: 10.1016/0196-9781(86)90020-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A tabular synopsis is presented for articles concerned with the effects of peptides on the central nervous system that appeared in the journal Peptides from 1980-1985. A table arranged alphabetically by peptide and one arranged by effects, both listing routes of injection, species, direction of change, and qualifying notes, provides easy cross-referencing of peptides and their effects. Over 80 peptides and over 135 effects are listed. The list of peptides includes, but is not limited to: ACTH, angiotensin, bombesin, bradykinin, calcitonin, casomorphin, CCK, ceruletide, CGRP, CRF, dermorphin, DSIP, dynorphin, endorphins, enkephalins, GRF, gastrin, LHRH, litorin, metkephamid, MIF-l, motilin, MSH, NPY, NT, oxytocin, ranatensin, sauvagine, substances P and K, somatostatin, TRH, VIP, vasopressin, and vasotocin. The list of effects includes, but is not limited to: aggression, alcohol, analgesia, attention, avoidance, behavior, cardiovascular regulation, catalepsy, conditioned behavior, convulsions, dopamine binding and metabolism, discrimination, drinking, EEG, exploration, feeding, fever, gastric secretion, GI motility, grooming, learning, locomotor behavior, mating, memory, neuronal activity, open field, operant behavior, rearing, respiration, satiety, scratching, seizure, sleep, stereotypy, temperature, thermoregulation and tolerance.
Collapse
|