1
|
Nie H, Zhang R, Yu X, Zhang Y, Yan P, Li E, Wang R, Wu X. Molecular cloning, immunological characterization, and expression analysis of gonadotropin-releasing hormone (GnRH) in the brain of the Chinese alligator during different stages of reproductive cycle. Gene 2021; 789:145672. [PMID: 33882325 DOI: 10.1016/j.gene.2021.145672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
The neurohormone gonadotropin-releasing hormone (GnRH) plays an essential role in the control of reproductive functions in vertebrates. However, the full-length complementary DNA (cDNA) encoding the GnRHs precursor and it role in the reproductive cycles regulating has not been illustrated in crocodilian species. In the present study, full-length cDNAs encoding GnRH1 forms, its predominant localization within brain and peripheral tissues, and GnRH1 peptide concentrations in the hypothalamus and pituitary in relation to seasonal gonadal development of Chinese alligator were investigated. The cDNA of GnRH1 is consisted of 282 bp open reading frame encoding 93 amino acids. The deduced amino acid sequence of alligator GnRH1 contains several conserved regions and shows a closer genetic relationship to the avian species than to other reptile species. The GnRH1 immunopositive cells were not only detected widely in cerebrum, diencephalon, medulla oblongata but also observed in peripheral tissues, these widespread distribution characteristics indicated that GnRH1 possibly possess the multi-functionality in Chinese Alligator. GnRH1 peptide concentration within hypothalamus were observed be the highest in RP group (P < 0.05), in association with an peak value in GSI and emerging of late vitellogenic follicles in the ovary. Taken together, our results suggested that GnRH1 was predominantly involved in the vitellogenesis process of seasonal gonadal development of Chinese Alligator.
Collapse
Affiliation(s)
- Haitao Nie
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China; College of Life Sciences, Inner Mongolia Normal University, Hohhot, Inner Mongolia 010022, China
| | - Xiaoqin Yu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yuqian Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Peng Yan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - En Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 2015; 36:165-77. [PMID: 25306902 PMCID: PMC4703044 DOI: 10.1016/j.yfrne.2014.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Gonadotropin releasing hormone (GnRH) neurons originate the nasal placode and migrate into the brain during prenatal development. Once within the brain, these cells become integral components of the hypothalamic-pituitary-gonadal axis, essential for reproductive function. Disruption of this system causes hypogonadotropic hypogonadism (HH). HH associated with anosmia is clinically defined as Kallman syndrome (KS). Recent work examining the developing nasal region has shed new light on cellular composition, cell interactions and molecular cues responsible for the development of this system in different species. This review discusses some developmental aspects, animal models and current advancements in our understanding of pathologies affecting GnRH. In addition we discuss how development of neural crest derivatives such as the glia of the olfactory system and craniofacial structures control GnRH development and reproductive function.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
3
|
Kummrow MS, Gilman C, Mackie P, Smith DA, Mastromonaco GF. Noninvasive analysis of fecal reproductive hormone metabolites in female veiled chameleons (Chamaeleo calyptratus) by enzyme immunoassay. Zoo Biol 2010; 30:95-115. [DOI: 10.1002/zoo.20318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Yu JYL, Pon CH, Ku HC, Wang CT, Kao YH. A preprogalanin cDNA from the turtle pituitary and regulation of its gene expression. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1649-56. [PMID: 17158268 DOI: 10.1152/ajpregu.00452.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Galanin is a hormone 29 or 30 amino acids (aa) long that is widely distributed within the body and exerts numerous biological effects in vertebrates. To fully understand its physiological roles in reptiles, we analyzed preprogalanin cDNA structure and expression in the turtle pituitary. Using the Chinese soft-shell turtle ( Pelodiscus sinensis order Testudines), we obtained a 672-base pair (bp) cDNA containing a 99-bp 5′-untranslated region, a 324-bp preprogalanin coding region, and a 249-bp 3′-untranslated region. The open-reading frame encoded a 108-aa preprogalanin protein with a putative 23-aa signal sequence at the NH2 terminus. Based on the location of putative Lys-Arg dibasic cleavage sites and an amidation signal of Gly-Lys-Arg, we propose that turtle preprogalanin is processed to yield a 29-aa galanin peptide with Gly1 and Thr29 substitutions and a COOH-terminal amidation. Sequence comparison revealed that turtle preprogalanin and galanin-29 had 48–81% and 76–96% aa identities with those of other vertebrates, respectively, suggesting their conservative nature. Expression of the turtle galanin gene was detected in the pituitary, brain, hypothalamus, stomach, liver, pancreas, testes, ovaries, and intestines, but not in the adipose or muscle tissues, suggesting tissue-dependent differences. An in vitro study that used pituitary tissue culture indicated that treatment with 17β-estradiol, testosterone, or gonadotropin-releasing hormone resulted in increased galanin mRNA expression with dose- or time-dependent differences, whereas leptin and neuropeptide Y reduced galanin mRNA levels. These results suggest a hormone-dependent effect on hypophyseal galanin mRNA expression.
Collapse
Affiliation(s)
- John Yuh-Lin Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Ikemoto T, Enomoto M, Park MK. Identification and characterization of a reptilian GnRH receptor from the leopard gecko. Mol Cell Endocrinol 2004; 214:137-47. [PMID: 15062552 DOI: 10.1016/j.mce.2003.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a pivotal role in the regulation of reproductive functions through interactions with its specific receptor. We describe the first molecular cloning and characterization of a full-length GnRH receptor (GnRHR) from the leopard gecko Eublepharis macularius. It has a distinct genomic structure consisting of five exons and four introns, compared with all the other reported GnRHR genes. A native GnRH form, cGnRH-II, stimulated inositol phosphate (IP) production in COS-7 cells transiently transfected with the GnRHR, in a dose dependent manner. The mRNA was expressed in all the tissues and organs examined. Molecular phylogenetic analysis revealed that the cloned GnRHR belongs to the type 2/nonmammalian I GnRHR. Low-expression levels were observed from the pituitary glands of reproductively active leopard geckos, indicating the possibility that there is at least one more type of GnRHR highly expressed in the pituitary gland for the gonadotropin secretion in this reptile.
Collapse
Affiliation(s)
- T Ikemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
6
|
Ikemoto T, Park MK. Identification and characterization of the reptilian GnRH-II gene in the leopard gecko, Eublepharis macularius, and its evolutionary considerations. Gene 2003; 316:157-65. [PMID: 14563562 DOI: 10.1016/s0378-1119(03)00758-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To elucidate the molecular phylogeny and evolution of a particular peptide, one must analyze not the limited primary amino acid sequences of the low molecular weight mature polypeptide, but rather the sequences of the corresponding precursors from various species. Of all the structural variants of gonadotropin-releasing hormone (GnRH), GnRH-II (chicken GnRH-II, or cGnRH-II) is remarkably conserved without any sequence substitutions among vertebrates, but its precursor sequences vary considerably. We have identified and characterized the full-length complementary DNA (cDNA) encoding the GnRH-II precursor and determined its genomic structure, consisting of four exons and three introns, in a reptilian species, the leopard gecko Eublepharis macularius. This is the first report about the GnRH-II precursor cDNA/gene from reptiles. The deduced leopard gecko prepro-GnRH-II polypeptide had the highest identities with the corresponding polypeptides of amphibians. The GnRH-II precursor mRNA was detected in more than half of the tissues and organs examined. This widespread expression is consistent with the previous findings in several species, though the roles of GnRH outside the hypothalamus-pituitary-gonadal axis remain largely unknown. Molecular phylogenetic analysis combined with sequence comparison showed that the leopard gecko is more similar to fishes and amphibians than to eutherian mammals with respect to the GnRH-II precursor sequence. These results strongly suggest that the divergence of the GnRH-II precursor sequences seen in eutherian mammals may have occurred along with amniote evolution.
Collapse
Affiliation(s)
- Tadahiro Ikemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, Japan.
| | | |
Collapse
|
7
|
Pierantoni R, Cobellis G, Meccariello R, Fasano S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:69-141. [PMID: 12199520 DOI: 10.1016/s0074-7696(02)18012-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review emphasizes the comparative approach for developing insight into knowledge related to cellular communications occurring in the hypothalamus-pituitary-gonadal axis. Indeed, research on adaptive phenomena leads to evolutionary tracks. Thus, going through recent results, we suggest that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream. Furthermore, the use of different routes of communication by a certain mediator leads to a conceptual change related to what hormones are. Nevertheless, endocrine communication should leave out of consideration the source (glandular or not) of mediator. Finally, we point out that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms. In fact, different anatomical organization permits access to tissues not readily approachable in mammals.
Collapse
|
8
|
Somoza GM, Miranda LA, Strobl-Mazzulla P, Guilgur LG. Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol 2002; 22:589-609. [PMID: 12838906 DOI: 10.1023/a:1021888420271] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work deals with a family of neuropeptides, gonadotropin-releasing hormone (GnRH), that play a key role in the development and maintenance of reproductive function in vertebrates. 2. Until now, a total of 16 GnRH structural variants have been isolated and characterized from vertebrate and protochordate nervous tissue. All vertebrate species already investigated have at least two GnRH forms coexisting in the central nervous system. However, it is now well accepted that three forms of GnRH in early and late evolved bony fishes are present. 3. In these cases, cGnRH-II is expressed by midbrain neurons, a species-specific GnRH is present mainly in the preoptic area and the hypothalamus, and sGnRH is localized in the terminal nerve ganglion (TNG). In this context it is possible to think that three GnRH forms and three GnRH receptor (GnRH-R) subtypes are expressed in the central nervous system of a given species. 4. Then it is possible to propose three different GnRH lineages expressed by distinct brain areas in vertebrates: (1) the conserved cGnRH-II or mesencephalic lineage; or (2) the hypothalamic or "releasing" lineage whose primary structure has diverged by point mutations (mGnRH and its orthologous forms: hrGnRH, wfGnRH, cfGnRH, sbGnRH, and pjGnRH); and (3) the telencephalic sGnRH form. Also different GnRH nomenclatures are discussed.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Laboratorio de Ictiofisiología, Instituto Tecnológico, Universidad Nacional de General San Martín, Chascomús, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
9
|
Montaner AD, Gonzalez O, Paz DA, Affanni JM, Somoza GM. Gonadotropin-releasing hormone (GnRH) variants in a lizard brain: is mammalian GnRH being expressed? Gen Comp Endocrinol 2000; 119:121-31. [PMID: 10936032 DOI: 10.1006/gcen.2000.7488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In reptiles as in other vertebrates, multiple forms of gonadotropin-releasing hormone (GnRH) within a single brain have been identified. In this group the following GnRH molecular variants have been characterized either by direct or indirect methods: chicken GnRH I (cGnRH-I), chicken GnRH II (cGnRH-II), salmon GnRH (sGnRH) and several unidentified GnRH-like forms. In the present study GnRH variants were investigated in brain extracts of the lizard Tupinambis teguixin (= T. merinae) by combining high-performance liquid chromatography (RP-HPLC) followed by radioimmunoassays (RIA). Two peaks showing GnRH immunoreactivity with the elution position of synthetic mammalian GnRH (mGnRH) and cGnRH-II were detected. Both peaks were further analyzed with different radioimmunoassay systems specific for mGnRH, cGnRH-I, and cGnRH-II. Pooled fractions corresponding to the first eluting peak showed no crossreactivity when analyzed with a cGnRH-I specific assay and logit-log displacement curves were not significantly different from those of synthetic mGnRH with homologous RIA systems. The second peak showed immunological characteristics of cGnRH-II when analyzed with a specific antiserum. The first ir-GnRH peak was selected for further RP-HPLC purification showing similar chromatographic behavior as mGnRH synthetic standard. We demonstrated the absence of cGnRH-I in this lizard using well-characterized antisera.
Collapse
Affiliation(s)
- A D Montaner
- INEUCI-CONICET, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | | | | | | | | |
Collapse
|
10
|
Montaner AD, Somoza GM, King JA, Bianchini JJ, Bolis CG, Affanni JM. Chromatographic and immunological identification of GnRH (gonadotropin-releasing hormone) variants. Occurrence of mammalian and a salmon-like GnRH in the forebrain of an eutherian mammal: Hydrochaeris hydrochaeris (Mammalia, Rodentia). REGULATORY PEPTIDES 1998; 73:197-204. [PMID: 9556083 DOI: 10.1016/s0167-0115(98)00005-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The molecular variants of Gonadotropin releasing hormone (GnRH) in brain extracts of the eutherian mammal Hydrochaeris hydrochaeris (Mammalia, Rodentia) were characterized. An indirect method combining reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay (RIA) with different antisera was used. Two different forebrain regions (olfactory bulbs and preoptic-hypothalamic region) were analyzed. Characterization of RP-HPLC fractions from preoptic-hypothalamic extracts with three different RIA systems revealed two immunoreactive GnRH (ir-GnRH) peaks coeluting with mammalian GnRH (mGnRH) and salmon GnRH (sGnRH) synthetic standards. These results were additionally supported by serial dilution studies with specific antisera. Similar results were obtained from olfactory bulb extracts with the same methodology. However, a third ir-GnRH peak in a similar position to that of chicken GnRH II (cIIGnRH) synthetic standard was revealed. As far as we know, this is the first report showing chromatographic and immunological evidences for the presence of a second GnRH variant in the forebrain of an eutherian mammal.
Collapse
Affiliation(s)
- A D Montaner
- Instituto de Neurociencia (INEUCI-CONICET), Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Lescheid DW, Rosen GJ, Bridge AE, Jones RE, Warby CM, Sherwood NM. Immunoreactive gonadotropin-releasing hormone (GnRH) is detected only in the form of chicken GnRH-II within the brain of the green anole, Anolis carolinensis. Gen Comp Endocrinol 1997; 108:247-57. [PMID: 9356220 DOI: 10.1006/gcen.1997.6970] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of multiple forms of gonadotropin-releasing hormone (GnRH) within a single brain is common among vertebrate species. In previous studies of reptiles, two forms of GnRH were isolated from the brain of alligators and the primary structure was determined to be that of chicken (c)GnRH-I and cGnRH-II. GnRH has also been detected by indirect methods in other reptiles including turtles, lizards, and snakes. We used a combination of high-performance liquid chromatography (HPLC) and radioimmunoassay to determine the number and molecular form(s) of GnRH in the brain of a lizard, Anolis carolinensis, that was reported to lack GnRH cells in the forebrain. Immunoreactivity was detected in the same HPLC elution position in which synthetic cGnRH-II elutes, but not in any other position. Detection was based on five antisera that among them detect the 12 known forms of GnRH; these antisera include ones that are specific to cGnRH-I and cGnRH-II. We conclude that the lizard A. carolinensis contains cGnRH-II, but not cGnRH-I or another known form of GnRH. These data, coupled with our earlier immunocytochemical study, suggest that the lizard studied here lacks cGnRH-I, the form that is found in the terminal nerve, olfactory bulb, and forebrain in nonsquamate reptiles and in birds. Our hypothesis is that the presence of both cGnRH-I and cGnRH-II in the brain is ancestral in the reptilian lineage and retained in the orders that include turtles (Chelonia) or alligators (Crocodilia). However, the pattern in the order Squamata varies: in A. carolinensis, only cGnRH-II is present in the brain and cGnRH-I is absent, whereas in the snake Thamnophilis sirtalis, cGnRH-I is retained and cGnRH-II is absent in the brain, as recently reported. This raises the question of how reproduction is controlled in reptiles that lack one form of GnRH.
Collapse
Affiliation(s)
- D W Lescheid
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | | | | | | | | | | |
Collapse
|
12
|
King JA, Millar RP. Evolutionary aspects of gonadotropin-releasing hormone and its receptor. Cell Mol Neurobiol 1995; 15:5-23. [PMID: 7648610 DOI: 10.1007/bf02069556] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Gonadotropin-releasing hormone (GnRH) was originally isolated as a hypothalamic peptide hormone that regulates the reproductive system by stimulating the release of gonadotropins from the anterior pituitary. However, during evolution the peptide was subject to gene duplication and structural changes, and multiple molecular forms have evolved. 2. Eight variants of GnRH are known, and at least two different forms are expressed in species from all vertebrate classes: chicken GnRH II and a second, unique, GnRH isoform. 3. The peptide has been recruited during evolution for diverse regulatory functions: as a neurotransmitter in the central and sympathetic nervous systems, as a paracrine regulator in the gonads and placenta, and as an autocrine regulator in tumor cells. 4. Evidence suggests that in most species the early-evolved and highly conserved chicken GnRH II has a neurotransmitter function, while the second form, which varies across classes, has a physiologic role in regulating gonadotropin release. 5. We review here evolutionary aspects of the family of GnRH peptides and their receptors.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | |
Collapse
|
13
|
King JA, Steneveld AA, Curlewis JD, Rissman EF, Millar RP. Identification of chicken GnRH II in brains of metatherian and early-evolved eutherian species of mammals. REGULATORY PEPTIDES 1994; 54:467-77. [PMID: 7716279 DOI: 10.1016/0167-0115(94)90544-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two molecular forms of GnRH (chicken GnRH II and a second variant) are present in the brains of species from all the major vertebrate groups. In mammals, two forms are present in metatherian species and early-evolved eutherian species, but chicken GnRH II has not been identified in more advanced eutherian species. We investigated the nature of GnRH molecular forms in several early-evolved mammalian species, using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. These chromatographic and immunological data indicate that in the brains of a metatherian species (possum, Trichosurus vulpecula) and in two early-evolved eutherian species (order Insectivora: musk shrew, Suncus murinus and mole, Chrysochloris asiatica), both mammalian and chicken II GnRHs are present, while in another relatively early-evolved eutherian species (order Chiroptera: bat, Miniopterus schreibersii) only mammalian GnRH is present. In the adult possum and mole brains the proportion of chicken GnRH II was lower than that of mammalian GnRH, while in the musk shrew brain chicken GnRH II predominated. A peptide likely to be mammalian proGnRH was detected in the brains of the three eutherian species (musk shrew, mole, and bat). These findings suggest that metatherian and primitive eutherian species of mammals continue to express chicken GnRH II as in the vast majority of nonmammalian vertebrates, while the peptide is apparently not expressed in modern placental mammalian species. The functional significance of chicken GnRH II is not yet clear, but there are indications that it has a neurotransmitter or neuromodulator role in addition to that of regulating pituitary hormone release in certain vertebrate species.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | | | | | | | |
Collapse
|
14
|
Muske LE, King JA, Moore FL, Millar RP. Gonadotropin-releasing hormones in microdissected brain regions of an amphibian: concentration and anatomical distribution of immunoreactive mammalian GnRH and chicken GnRH II. REGULATORY PEPTIDES 1994; 54:373-84. [PMID: 7716272 DOI: 10.1016/0167-0115(94)90535-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian and chicken II gonadotropin-releasing hormones (mGnRH, cGnRH II) were extracted from 350 microns diameter punches from brains of a urodele amphibian, Taricha granulosa, and measured by means of radioimmunoassay (RIA) with specific antisera. Measurable quantities of both peptides were found in the lateral pallium, the subpallium (along the course of the nervus terminalis), the preoptic area, habenula, optic tectum, infundibulum, paraventricular organ/posterior tubercle of the caudal diencephalon, medulla, and cerebrospinal fluid. Highest concentrations of both peptides were in the preoptic area and infundibulum, suggesting a role in gonadotropin release. In most extrahypothalamic regions, cGnRH II concentrations exceeded those of mGnRH, suggesting that cGnRH II may function as a neurotransmitter in many sites, perhaps to control reproductive behaviors. Results are largely consistent with immunocytochemical (ICC) analyses, except that RIA revealed small amounts of both peptides not found by ICC in some areas of the brain. Results from this microdissection/RIA study and prior ICC studies in amphibians support the conclusions that GnRH cell bodies in the terminal nerve and preoptic area, which project mainly to the median eminence and habenula, express mGnRH, and that GnRH cell bodies in the caudal diencephalon, which project widely throughout the CNS, express cGnRH II. Comparative data support the view that cGnRH II, and the neural systems in which it is expressed, evolved early in vertebrate phylogeny and have been highly conserved.
Collapse
Affiliation(s)
- L E Muske
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | | | | | | |
Collapse
|
15
|
D'Aniello B, Pinelli C, King JA, Rastogi RK. Neuroanatomical organization of GnRH neuronal systems in the lizard (Podarcis s. sicula) brain during development. Brain Res 1994; 657:221-6. [PMID: 7820621 DOI: 10.1016/0006-8993(94)90971-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ontogenesis of the GnRH neuronal systems was studied in the brain of the lizard, Podarcis s. sicula, by immunohistochemistry. The first GnRH neurons were seen in the mesencephalon on the 45th day of incubation. One week later GnRH-ir neurons appeared in the infundibulum as well. These neurons never appeared to be contiguous with midbrain GnRH neurons. Thus, the adult pattern of distribution of GnRH neurons was reached before hatching, which occurred on the 66th day of incubation at a temperature of 28 +/- 2 degrees C. Although mesencephalic and infundibular GnRH neurons and their fiber projections appeared to be distributed in anatomically distinct brain areas, both systems showed a positive reaction to chicken-I GnRH (cGnRH-I), chicken-II GnRH (cGnRH-II) and salmon GnRH (sGnRH). From the time of hatching, GnRH-ir fibers in the mesencephalon appeared to be reaching the optic tectum, tegmentum, cerebellum and rostral dorsal rhombencephalon, whereas GnRH fibers in the infundibulum were projecting to the caudal basal telencephalon, median eminence and rostral basal rhombencephalon. In 60-day-old juvenile lizards, the central area of telencephalon contained neurons reacting only with anti-cGnRH-I and anti-sGnRH. Such neurons were absent in the adult. Neither GnRH cells nor fibers were observed in the nasal area, terminal nerve and olfactory bulbs at any stage of development and in the adult. We hypothesize that the two GnRH neuronal systems have separate embryonic origins.
Collapse
Affiliation(s)
- B D'Aniello
- Department of Zoology, University of Naples, Italy
| | | | | | | |
Collapse
|
16
|
Abstract
Chicken-I and chicken-II gonadotropin-releasing hormone (cI-GnRH and cII-GnRH) were shown to be differentially distributed in the brain of a turtle, Trachemys scripta, by HPLC and specific radioimmunoassays. The cI-GnRH was most concentrated in the median eminence (ME), while cII-GnRH was most concentrated in the caudal brain regions, especially medulla and cerebellum. The ratio of cI- to cII-GnRH in the ME of adults was 8:1. Age- and sex-related differences in GnRH concentrations were observed exclusively in the ME: adult females had significantly higher cI-GnRH than younger females and adult males; adult females also had significantly higher cII-GnRH than hatching females. Their differential distribution and sex- and age-related differences suggest that the two peptides may have distinct physiological roles; cI-GnRH is likely the form responsible for stimulating gonadotropin release.
Collapse
Affiliation(s)
- P S Tsai
- Department of Integrative Biology, University of California, Berkeley 94720
| | | |
Collapse
|
17
|
Abstract
GnRH was originally isolated as a hypothalamic peptide hormone that regulates the reproductive system by stimulating the release of gonadotropins from the anterior pituitary. However, multiple molecular forms of the peptide have evolved, which have been coopted for a variety of regulatory functions: as a neurotransmitter in the central and sympathetic nervous systems, as a paracrine regulator in the gonads and placenta, and as an autocrine regulator in tumor cells. We review here the evolution of these variant forms of GnRH and their functions.
Collapse
Affiliation(s)
- J A King
- MRC Regulatory Peptides Research Unit, Department of Chemical Pathology, University of Cape Town Medical School and Groote Schuur Hospital, Observatory 7925, Cape Town, South Africa
| | | |
Collapse
|
18
|
Bogerd J, Li KW, Janssen-Dommerholt C, Goos H. Two gonadotropin-releasing hormones from African catfish (Clarias gariepinus). Biochem Biophys Res Commun 1992; 187:127-34. [PMID: 1520292 DOI: 10.1016/s0006-291x(05)81468-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two forms of gonadotropin-releasing hormone (GnRH) have been purified from brain extracts of the African catfish, Clarias gariepinus, using reverse-phase high performance liquid chromatography (HPLC) and radioimmunoassay (RIA). The amino acid sequences of both forms of African catfish GnRH were determined using Edman degradation after digestion with pyroglutamyl aminopeptidase. In addition, both GnRHs were studied by mass spectrometry. The primary structure of African catfish GnRH I is identical to Thai catfish GnRH I, pGlu-His-Trp-Ser-His-Gly-Leu-Asn-Pro-Gly-NH2, and the primary structure of African catfish GnRH II is identical to the widely distributed and highly conserved chicken GnRH II, pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2.
Collapse
Affiliation(s)
- J Bogerd
- Department of Experimental Zoology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
19
|
Masucci M, D'Aniello B, Iela L, Ciarcia G, Rastogi RK. Immunohistochemical demonstration of the presence and localization of diverse molecular forms of gonadotropin-releasing hormone in the lizard (Podarcis s. sicula) brain. Gen Comp Endocrinol 1992; 86:81-9. [PMID: 1505732 DOI: 10.1016/0016-6480(92)90128-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The immunohistochemical presence and the distribution pattern of four different molecular forms of gonadotropin-releasing hormone (GnRH) were investigated in the brain of both sexes of the lizard, Podarcis s. sicula. Animals used in this study were collected in November and April, representing two different periods of the reproductive cycle. The antisera used were those raised against synthetic mammalian GnRH, chicken GnRH-I and II, and salmon GnRH. Strong immunoreaction was obtained for salmon, chicken-I, and chicken-II GnRHs, whereas a very weak reaction was seen for the mammalian form of GnRH. The distribution of immunoreactive-GnRH perikarya and fibers did not vary with the sex, the reproductive condition of the animals, or the antiserum used. Also, the intensity of immunoreaction with any one antiserum was quite similar in both periods of the year and in all brains examined. The immunoreactive perikarya was seen as two distinct groups, one in the mesencephalon and the other in the infundibulum. Immunoreactive fiber endings were seen in the telencephalon, the optic tectum, the anterior preoptic area, the median eminence, the central grey matter, the rhombencephalon, and the cerebellum. No immunoreactive perikarya were seen in the telencephalon or the anterior preoptic area.
Collapse
Affiliation(s)
- M Masucci
- Dipartimento di Zoologia, Universitàa di Napoli, Italy
| | | | | | | | | |
Collapse
|
20
|
Lovejoy DA, Fischer WH, Parker DB, McRory JE, Park M, Lance V, Swanson P, Rivier JE, Sherwood NM. Primary structure of two forms of gonadotropin-releasing hormone from brains of the American alligator (Alligator mississippiensis). REGULATORY PEPTIDES 1991; 33:105-16. [PMID: 1882082 DOI: 10.1016/0167-0115(91)90206-v] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two forms of gonadotropin-releasing hormone (GnRH) have been purified from brains of the American alligator, Alligator mississippiensis, using reverse-phase high-pressure liquid chromatography (HPLC). The concentration of total GnRH was 8.8 ng/g of frozen brain tissue or 21.1 ng per brain. The amino acid sequence of each form of GnRH was determined using automated Edman degradation. The presence of the N-terminal pGlu residue was established by digestion studies with bovine pyroglutamyl aminopeptidase and coelution with synthetic forms of the native peptide. The primary structure of alligator GnRH I is pGlu-His-Trp-Ser-Tyr-Gly-Leu-Gln-Pro-Gly-NH2 and alligator GnRH II is pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2.
Collapse
Affiliation(s)
- D A Lovejoy
- Biology Department, University of Victoria, B.C., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
King JA, Hinds LA, Mehl AE, Saunders NR, Millar RP. Chicken GnRH II occurs together with mammalian GnRH in a South American species of marsupial (Monodelphis domestica). Peptides 1990; 11:521-5. [PMID: 2199949 DOI: 10.1016/0196-9781(90)90053-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two molecular forms of gonadotropin-releasing hormone (GnRH) were demonstrated in hypothalamic extracts of M. domestica using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. One form eluted in the same position as synthetic mammalian GnRH and was quantified equally by two mammalian GnRH antisera, while the second form coeluted with synthetic chicken GnRH II and was quantified equally with two chicken GnRH II antisera. The finding of chicken GnRH II in a South American species of marsupial, which has previously been reported in some Australian species of marsupial and in species of Aves, Reptilia, Amphibia, Osteichthyes and Chondrichthyes, supports our hypothesis that this widespread structural variant may represent an early evolved and conserved form of GnRH.
Collapse
Affiliation(s)
- J A King
- Department of Chemical Pathology, University of Cape Town Medical School, South Africa
| | | | | | | | | |
Collapse
|
22
|
Blähser S, King JA, Kuenzel WJ. Testing of Arg-8-gonadotropin-releasing hormone-directed antisera by immunological and immunocytochemical methods for use in comparative studies. HISTOCHEMISTRY 1989; 93:39-48. [PMID: 2482275 DOI: 10.1007/bf00266845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three polyclonal antisera raised in rabbits against the mammalian molecular form of gonadotropin-releasing hormone (GnRH) were tested in enzyme-linked immunosorbent assays for crossreactivity with naturally occurring GnRHs and with GnRH analogues. Antisera were then tested immunocytochemically in order (i) to identify amino acids essential for the binding of each antiserum, and (ii) to evaluate the specificity of the immunocytochemical reaction in brain sections from various species of cyclostomes, amphibians, reptiles, and birds. Antiserum GnRH 80/1, recognizing mainly a discontinuous determinant including the NH2- and COOH-termini, crossreacts with GnRHs the molecular bending of which enables the spatial approach of both terminal amino acid residues. Antiserum GnRH 80/2, by requiring the COOH-terminus for binding and not tolerating substitutions by aromatic amino acids in the middle region of the molecule, recognizes chicken I GnRH, however, not the salmon form. The use of this antiserum is appropriate in species synthesizing the mammalian and/or the chicken I form of GnRH. GnRH antiserum 81/1 is specific mostly for mammalian GnRH. The results obtained by ELISAs are confirmed by immunocytochemical studies. A comparison between the results obtained in ELISA and in immunocytochemistry involving mammalian-, chicken I-, chicken II-, salmon-, and lamprey-directed GnRH antisera resulted in the following conclusions: (1) An antiserum recognizing the discontinuous antigen determinant including both NH2- and COOH-termini may be reactive in most vertebrate brain sections thus being appropriate for phylogenetically directed immunocytochemical studies. (2) Moreover, this discontinuous determinant seems to be immunocytochemically reactive in all parts of the neurons in the GnRH system, whereas, in some species, determinants located in the middle region of the molecule(s) tend to become reactive only during the axonal transport. (3) A crossreaction between tissue-bound antigen and antibodies recognizing the above cited discontinuous determinant indicates an appropriate bending of the molecule even in case of severe molecular differences, e.g., in lamprey form of GnRH. (4) It follows that in phylogenetic studies, an immunologically well characterized antiserum can be substituted for a species-directed antiserum.
Collapse
Affiliation(s)
- S Blähser
- Department of Anatomy and Cell Biology, Justus-Liebig University, Giessen, Federal Republic of Germany
| | | | | |
Collapse
|
23
|
Bennis M, Dubourg P, Gamrani H, Calas A, Kah O. Existence of a GnRH immunoreactive nucleus in the dorsal midbrain tegmentum of the chameleon. Gen Comp Endocrinol 1989; 75:195-203. [PMID: 2680752 DOI: 10.1016/0016-6480(89)90071-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The GnRH system of the chameleon brain was studied at light microscopic and ultrastructural levels by use of an immunohistochemical technique with antibodies directed against salmon gonadotrophin-releasing hormone. Immunoreactive (IR) perikarya were found in the anterior midbrain tegmentum. At this level numerous IR cell bodies were detected around the fasciculus longitudinalis medialis (FLM). The more rostral neurons were observed dorsal to the FLM and progressively tended to be lateral to it along the midline. More caudally, they were found ventral to the FLM. At the electron microscope level, these cells were seen to contain large granular vesicles and to receive numerous synaptic inputs. A prominent pathway was traced from these cell bodies along the medulla oblongata to the spinal cord. A second IR pathway ascended rostrally to the habenular complex. No IR perikarya were located in the anterior brain including the olfactory bulbs.
Collapse
Affiliation(s)
- M Bennis
- Departement de Biologie, Faculté des Sciences, Université cadi ayyad, Marrakech, Morroco
| | | | | | | | | |
Collapse
|
24
|
Ciarcia G, Paolucci M, Botte V. Effects of Gonadotrophin-Releasing Hormone Variants on Reproductive Organs and Plasma Testosterone in the Male Lizard, Podarcis s. sicula. J Neuroendocrinol 1989; 1:205-8. [PMID: 19210456 DOI: 10.1111/j.1365-2826.1989.tb00104.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract The effects of various gonadotrophin-releasing hormone (GnRH) forms (mammalian GnRH (mGnRH), chicken I GnRH (cGnRH-I), chicken II GnRH (cGnRH-II) and salmon GnRH (sGnRH)) on the genital apparatus and plasma testosterone level in the male lizard, Podarcis s. sicula, have been investigated. In short duration experiments (20 min to 76 h) GnRH forms did not affect testicular and epididymal morphology. A single dose (0.05 mug) of mGnRH, cGnRH-II and sGnRH, however, induced a rise in plasma testosterone after 20 to 40 min. Variable results were obtained in the animals given GnRH variants every 12 h for 3 days since mGnRH and cGnRH-I caused a decrease of circulating hormone; cGnRH-II and sGnRH a slight increase. Daily peptide administration, for 15 to 30 days, caused severe inhibition of both testicular and epididymal activity and a significant drop of circulating testosterone. In Podarcis s. sicula, species specificity of pituitary sensitivity to GnRH variants appeared to be low. On the other hand, this gland seemed to show some desensitization after chronic peptide administration.
Collapse
Affiliation(s)
- G Ciarcia
- Dipartimento di Biologia Evolutiva e Comparata and
| | | | | |
Collapse
|
25
|
Yu KL, Sherwood NM, Peter RE. Differential distribution of two molecular forms of gonadotropin-releasing hormone in discrete brain areas of goldfish (Carassius auratus). Peptides 1988; 9:625-30. [PMID: 3047700 DOI: 10.1016/0196-9781(88)90174-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two molecular forms of gonadotropin-releasing hormone (GnRH) were identified in the extracts of various brain areas, spinal cord and pituitary in female and male goldfish and had chromatographic and immunological properties similar to [His5, Trp7, Tyr8]-GnRH (cGnRH-II) and [Trp7,Leu8]-GnRH (sGnRH). Radioimmunoassay using different GnRH antisera after high pressure liquid chromatography did not reveal significant peaks of mammalian GnRH, [Gln8]-GnRH and [Tyr3,Leu5,Glu6,Trp7,Lys8]-GnRH in the brain extracts. The proportion of cGnRH-II-like immunoactivity to sGnRH-like immunoactivity was higher in the caudal brain areas compared to the rostral areas. The differential distribution of two GnRH forms suggest that the different GnRH forms may have different physiological functions.
Collapse
Affiliation(s)
- K L Yu
- Department of Zoology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
26
|
Abstract
A non-mammalian lamprey-like gonadotropin-releasing hormone (lGnRH) has been detected in human hypothalami using a combination of immunocytochemistry, high performance liquid chromatography and radioimmunoassay. The hypothalamic distribution of immunopositive lGnRH neurons is similar to that observed for those containing the mammalian gonadotropin-releasing hormone (mGnRH), indicating a possible role for this newly identified peptide in the regulation of pituitary function. Our data suggest the existence of a separate gene for lamprey-like GnRH in humans. Confirmation of the exact nature and role of this newly detected form of GnRH will require future isolation and sequence analysis. The possibility that polygenic expression of a given peptide may be a common phenomenon even in higher mammals is discussed.
Collapse
Affiliation(s)
- E G Stopa
- Department of Pathology (Neuropathology Division), New England Medical Center, Boston, MA 02111
| | | | | | | |
Collapse
|
27
|
Sherwood NM, Wingfield JC, Ball GF, Dufty AM. Identity of gonadotropin-releasing hormone in passerine birds: comparison of GnRH in song sparrow (Melospiza melodia) and starling (Sturnus vulgaris) with five vertebrate GnRHs. Gen Comp Endocrinol 1988; 69:341-51. [PMID: 3282980 DOI: 10.1016/0016-6480(88)90024-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) was detected in the brains of passerine birds, a recently evolved and diverse avian group. The molecular forms of GnRH in two species of birds under breeding conditions were deduced using methods of HPLC and immunology. The brain extracts of song sparrows (Melospiza melodia) contained a form of GnRH identified as chicken I GnRH-like peptide by its HPLC elution pattern and cross-reactivity with four antisera. In contrast, starling (Sturnus vulgaris) brain extracts showed molecular heterogeneity of GnRH forms; equal amounts of chicken I and chicken II GnRH-like peptides were present. Neither bird contained GnRH that could be identified as mammalian, salmon, or lamprey GnRH. Chicken II GnRH-like peptide may not have evolved after the separation of the song sparrow and starling as both peptides are found in chicken, a more primitive bird. The possibility remains that different stages of the life cycle are associated with the expression of these GnRH-like peptides or their ratio. Only determination of the primary structure will establish whether our chromatographic and immunological evidence is correct that chicken I and II GnRH are present in passerine birds and have been conserved in representatives throughout the reptiles and birds. Starlings can be added now to the growing list of submammalian species that express multiple forms of GnRH in their brains.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
28
|
Sherwood NM, Whittier JM. Gonadotropin-releasing hormone from brains of reptiles: turtles (Pseudemys scripta) and snakes (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 1988; 69:319-27. [PMID: 3282979 DOI: 10.1016/0016-6480(88)90021-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gonadotropin-releasing hormone (GnRH)-like peptides were present in whole brain extracts of turtle (Pseudemys scripta) and snake (Thamnophis sirtalis parietalis) with higher content and concentration in the turtle brain. The peptides were identified by cross-reactivity profiles with four GnRH antisera and by retention times on reverse-phase high-pressure liquid chromatography (HPLC) compared with synthetic GnRH standards. Turtle brain extracts contained two HPLC peaks that cross-reacted with GnRH antisera; these peaks eluted from the HPLC in the same positions as chicken I and II GnRH. Snake brain extracts contained only one major HPLC peak (and two minor peaks in some brains) that cross-reacted with anti-GnRH sera; the major peak eluted with the same retention time as chicken I GnRH. Mammalian, salmon, and lamprey GnRH-like peptides were not detected. In extracts from both turtle and snake brains, the cross-reactivity profile of the HPLC peaks compared with those of synthetic chicken I and II GnRH showed a similar order of sensitivity with four antisera. It is likely that chicken I and II GnRH-like peptides were present in ancestral reptiles prior to the evolution of the three living reptilian subclasses of Anapsida (turtle), Lepidosauria (snake and lizard), and Archosauria (alligator). This assertion is based on the present demonstration and work by others showing that chicken I and II GnRH-like peptides are in turtle and alligator, chicken I is in snake, and chicken II is in lizard.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
29
|
Licht P, Porter D, Millar RP. Specificity of amphibian and reptilian pituitaries for various forms of gonadotropin-releasing hormones in vitro. Gen Comp Endocrinol 1987; 66:248-55. [PMID: 3556314 DOI: 10.1016/0016-6480(87)90274-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro perifusion was employed to compare the potencies of mammalian, avian, salmon, and lamprey gonadotropin-releasing hormones (GnRHs) on the release of luteinizing hormone (LH) from the pituitaries of an amphibian (Rana pipiens) and a reptile (Chrysemys picta). The chicken-I and salmon GnRH variants were equipotent with mammalian GnRH in both the frog and the turtle glands. By contrast, the lamprey GnRH was inactive (less than 1% as potent as the others). Lamprey GnRH also failed to stimulate LH release or to induce GnRH priming when administered chronically to the frog gland. These results support the hypothesis that the GnRH receptors on nonmammalian pituitary cells are much less specific than those of the mammal with regard to the amino acid at position 8 of the GnRH molecule. These data suggest that the native GnRH variant or the one most like that found in the brain of a species is not necessarily the most potent biologically in that species. However, the nonmammalian pituitary does show some specificity with regard to the structure of natural GnRHs in that none of the tetrapod species studied is responsive to lamprey GnRH.
Collapse
|