1
|
Gatti S, Lonati C, Sordi A, Catania A. Protective Effects of Melanocortins in Systemic Host Reactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:117-25. [DOI: 10.1007/978-1-4419-6354-3_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Taylor AW, Kitaichi N. The diminishment of experimental autoimmune encephalomyelitis (EAE) by neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) therapy. Brain Behav Immun 2008; 22:639-46. [PMID: 18171609 PMCID: PMC3337335 DOI: 10.1016/j.bbi.2007.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/28/2007] [Accepted: 11/02/2007] [Indexed: 11/28/2022] Open
Abstract
The neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) plays an important role in immune privilege by its suppression of inflammation, and its induction of regulatory T cells. This finding led us to test the possibility that we can use alpha-MSH to suppress autoimmune diseases, and promote re-establishment of immune tolerance to autoantigens. To test this possibility, SJL mice with experimental autoimmune encephalomyelitis (EAE) were injected with alpha-MSH at the first signs of paralysis. The alpha-MSH-treated mice in comparison with untreated EAE mice had a profound diminishment in the severity and tempo of EAE. The spleen cells in alpha-MSH-treated EAE produced TGF-beta in response to PLP-antigen stimulation in contrast to untreated mice spleen cells that produced IFN-gamma. When the alpha-MSH-treated EAE mice were reimmunized there was a delay of a week before the second episode of EAE. Although this delay maybe because of the induction of TGF-beta-producing spleen cells by the alpha-MSH-treatment, it was not adequate to suppress IFN-gamma-production by PLP-antigen stimulated spleen cells from untreated mice, nor able to suppress the eventual second episode of EAE. Therefore, the injection of alpha-MSH at the onset of paralysis is extremely effective in diminishing the severity and tempo of EAE, and the subsequent induction of potential PLP-specific Treg cells suggests that an alpha-MSH therapy could be attempted as part of a therapeutic regiment to impose immunoregulation and immunosuppression on an autoimmune disease of the central nervous system.
Collapse
|
3
|
Berberian V, Sánchez S, Sánchez-Borzone M, Attademo AM, Lasaga M, Celis ME. Effect of alpha-melanotropin hormone on serum levels of luteinizing hormone and progesterone in experimental rat autoimmune oophoritis. Peptides 2006; 27:2295-9. [PMID: 16716456 DOI: 10.1016/j.peptides.2006.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/08/2006] [Indexed: 11/25/2022]
Abstract
We studied the effect of alpha-melanotropin hormone (alpha-MSH) on experimental autoimmune oophoritis (EAO), an inflammatory process induced in female rats. During proestrus, serum levels of LH and progesterone in rats with EAO were higher than those of control rats. However, administration of alpha-MSH to these rats decreased the levels of LH. Similarly, in the following diestrus, rats with EAO had high levels of LH but treatment with alpha-MSH decreased the levels to diestrus 2 control values. Treatment with alpha-MSH also reduced the LH levels of control rats in diestrus 2 compared to untreated controls. However, alpha-MSH treatment had no effect on progesterone levels of either control or rats with EAO. Thus, although alpha-MSH induced notable changes in levels of LH, this decrease was unable to block the illness.
Collapse
Affiliation(s)
- Victoria Berberian
- Laboratorio de Ciencias Fisiológicas, Departamento de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
4
|
Catania A, Gatti S, Colombo G, Lipton JM. Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation. Pharmacol Rev 2004; 56:1-29. [PMID: 15001661 DOI: 10.1124/pr.56.1.1] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adrenocorticotropic hormone and alpha-, beta-, and gamma-melanocyte-stimulating hormones, collectively called melanocortin peptides, exert multiple effects upon the host. These effects range from modulation of fever and inflammation to control of food intake, autonomic functions, and exocrine secretions. Recognition and cloning of five melanocortin receptors (MCRs) has greatly improved understanding of peptide-target cell interactions. Preclinical investigations indicate that activation of certain MCR subtypes, primarily MC1R and MC3R, could be a novel strategy to control inflammatory disorders. As a consequence of reduced translocation of the nuclear factor kappaB to the nucleus, MCR activation causes a collective reduction of the major molecules involved in the inflammatory process. Therefore, anti-inflammatory influences are broad and are not restricted to a specific mediator. Short half-life and lack of selectivity could be an obstacle to the use of the natural melanocortins. However, design and synthesis of new MCR ligands with selective chemical properties are already in progress. This review examines how marshaling MCR could control inflammation.
Collapse
Affiliation(s)
- Anna Catania
- Division of Internal Medicine, Ospedale Maggiore di Milano, Instituto di Ricovero e Cura a Caraterre Scientifico, Milano, Italy.
| | | | | | | |
Collapse
|
5
|
Casalino-Matsuda SM, Durando PE, Celis ME. Effects of alpha-MSH on progesterone and nitric oxide release by cultured ovarian granulosa cells in experimental rat autoimmune oophoritis. J Physiol Biochem 2002; 58:25-31. [PMID: 12222744 DOI: 10.1007/bf03179835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The peptide alpha-melanocyte-stimulating hormone (alpha-MSH) occurs within the pituitary, brain, skin, ovary and other tissues, and has potent anti-inflammatory activity. For this reason, we examined its effects on an autoimmune disease: the experimental autoimmune-oophoritis (EAO). We analyzed the effect of the peptide on the release of nitric oxide (NO) and progesterone from cultured ovarian granulosa (GL) cells at 0, 7, 14, 21 and 28 days after sensitization of the rats. On day 0 the progesterone levels were higher in estrous rats than those in proestrus and diestrus. The NO amount did not differ among the diverse days of the cycles. The administration of alpha-MSH induced a decrease of NO in estrus and diestrus, but did not affect progesterone release. The EAO rats showed a period of constant diestrus ranging from about 7 to 14 days after immunization. At the onset (day 7) and the end of this period (day 14), the NO significantly increased in estrous rats which was correlated with a reduction in progesterone concentration. This effect was reverted by alpha-MSH. At 21 and 28 days, progesterone release increased only when the rats were in proestrus, while NO production was similar to that on day 0. Administration of alpha-MSH reduced progesterone release when the rats were in proestrus and these results were correlated with an increase in NO only at day 14. The results obtained suggest that alpha-MSH could act as a modulator of EAO, specially when the rats are in estrus.
Collapse
Affiliation(s)
- S M Casalino-Matsuda
- Departamento de Farmacología, Facultad de Ciencias Médicas, Ciudad Universitaria, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
6
|
Oprica M, Forslin Aronsson A, Post C, Eriksson C, Ahlenius S, Popescu LM, Schultzberg M. Effects of alpha-MSH on kainic acid induced changes in core temperature in rats. Peptides 2002; 23:143-9. [PMID: 11814629 DOI: 10.1016/s0196-9781(01)00590-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of intraperitoneal (i.p.) administration of kainic acid (KA) and alpha-melanocyte-stimulating hormone (alpha-MSH) alone or in combination, on core temperature of freely moving rats were examined. KA or saline was administered once (10 mg/kg) and alpha-MSH or saline was given repeatedly i.e. 10 min before and 10, 30 and 60 min after the administration of saline or KA. Two doses of alpha-MSH were used: 0.5 and 2.5 mg/kg. KA alone produced a biphasic effect on core temperature, i.e. an initial short-lasting hypothermia followed by hyperthermia that lasted about 6 h. The higher dose of alpha-MSH had a potentiating effect on KA-induced hypothermia, while the lower dose of alpha-MSH increased the hyperthermia produced by KA. alpha-MSH administered alone produced a late (3 h), dose-dependent increase in core temperature. It is conceivable that repeated administration of alpha-MSH in the doses used in our study may cause a cumulative effect in raising body temperature for a limited period of time. The previously described interactions between KA and alpha-MSH, respectively, with dopaminergic and serotoninergic systems may account for the effects on core temperature in rats observed in our study.
Collapse
Affiliation(s)
- M Oprica
- Division of Geriatric Medicine, Department of NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, SE-141 86, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
7
|
Murphy B, Nunes CN, Ronan JJ, Hanaway M, Fairhurst AM, Mellin TN. Centrally administered MTII affects feeding, drinking, temperature, and activity in the Sprague-Dawley rat. J Appl Physiol (1985) 2000; 89:273-82. [PMID: 10904062 DOI: 10.1152/jappl.2000.89.1.273] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MTII, an agonist of melanocortinergic receptors, is a well-documented anorexigenic agent in rats. Many investigators have reported its effects on feeding without considering concurrent alterations in other behaviors. Accordingly, we performed studies to simultaneously measure nocturnal feeding, drinking, activity, and temperature of rats after intracerebroventricular (third ventricle) administration of a wide dose range of MTII (0.05-500 ng). We observed that MTII modulates these physiological parameters in a dose-dependent manner. Low doses of MTII (0.05 ng) caused reductions in feeding without alterations in body temperature, drinking, or activity. In contrast, hyperthermia and disrupted drinking patterns, along with food intake reductions, were evident at doses exceeding 50 ng. The fact that low doses altered only feeding, whereas higher doses affected a range of parameters, suggests that certain melanocortin-induced behavioral changes may be mediated by distinct populations of melanocortin receptors with varying affinities or that those changes seen at higher doses may be nonspecific in nature.
Collapse
Affiliation(s)
- B Murphy
- Department of Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Sanchez MS, Celis ME, Schiöth HB. Evidence that alpha-MSH induced grooming is not primarily mediated by any of the cloned melanocortin receptors. Neuropeptides 2000; 34:77-82. [PMID: 10985923 DOI: 10.1054/npep.2000.0778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well established that melanocortic peptides, such as melanocyte-stimulating hormone (MSH) and adrenocorticotropin, induce grooming behavior. The MC3 and MC4 receptors are the MC receptors which are most abundantly expressed in the brain. gamma-MSH, a peptide with preference to the MC3 receptor, however, does not induce grooming. Recent studies have shown that MC4 receptor antagonists are very effective in inhibiting alpha-MSH induced grooming. These data have indicated that grooming behavior in rodents may be mediated by the MC4 receptor. In this study we investigated if the recently developed MC1 receptor selective agonist MS05 was able to induce grooming in comparison with alpha-MSH. The results show that MS05 is effective in inducing grooming after either intracerebroventricular or ventral tegmental area administration in rats. Central administration of either MS05 or alpha-MSH besides grooming also induced stretching, yawning, rearing and locomotion. The results indicate that the earlier hypothesis that the MC4 receptor is the main mediator of grooming behavior has to be modified. Moreover, as this behaviour does not pharmacologically correlate to the profile of any of the five cloned MC receptors, we suggest that alpha-MSH induced grooming may not primarily be mediated by any of these receptors.
Collapse
Affiliation(s)
- M S Sanchez
- Laboratorio de Fisiologia, Departamento de Farmacologia, Facultad de Ciencias Químicas, Córdoba, Argentina
| | | | | |
Collapse
|
9
|
Prabhu NV, Perkyns JS, Pettitt BM. Modeling of alpha-MSH conformations with implicit solvent. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:394-407. [PMID: 10563505 DOI: 10.1034/j.1399-3011.1999.00113.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A conformational search for the most probable structures of the hormone alpha-MSH in aqueous solution was performed in order to help determine the structural features necessary for biological activity. The free-energy surface was modeled using methods from integral equation theory, and high-temperature molecular dynamics was used to enhance conformational sampling. Families of low free-energy structures have been found. The minimum energy structure shows a stable beta-turn conformation in the putative message region that is stabilized by a salt bridge between Glu5 and Lys11. The orientation of the side chains reflects the amphiphilic nature of the peptide, and a close interaction between the side chains of the His6, Phe7 and Trp9 was observed. Several structural features observed in the minimum energy structure agree well with experimental results. The conformational features led to a hypothesis of a receptor-hormone interaction model in which the hydrophobic side chains of Phe7 and Trp9 interact with the transmembrane portion of the human melanocortin (MC1) receptor. Also, the positively charged side chain of Arg8 and the imidazole side chain of His6 may interact with the negatively charged portions of the receptor which may even be on the receptor's extracellular loops.
Collapse
Affiliation(s)
- N V Prabhu
- Department of Chemistry, University of Houston, TX 77204-5641, USA
| | | | | |
Collapse
|
10
|
Prabhu NV, Perkyns JS, Pettitt BM, Hruby VJ. Structure and dynamics of alpha-MSH using DRISM integral equation theory and stochastic dynamics. Biopolymers 1999; 50:255-72. [PMID: 10397788 DOI: 10.1002/(sici)1097-0282(199909)50:3<255::aid-bip3>3.0.co;2-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structural and dynamical features of the hormone alpha-MSH in solution have been examined over a 100 ns time scale by using free energy molecular mechanics models at room temperature. The free energy surface has been modeled using methods from integral equation theory and the dynamics by the Langevin equation. A modification of the accessible surface area friction drag model was used to calculate the atomic friction coefficients. The molecule shows a stable beta-turn conformation in the message region and a close interaction between the side chains of His6, Phe7, and Trp9. A salt bridge between Glu5 and Arg8 was found not to be a preferred interaction, whereas a Glu5 and Lys11 salt bridge was not sampled, presumably due to relatively high free energy barriers. The message region was more conformationally rigid than the N-terminal region. Several structural features observed here agree well with experimental results. The conformational features suggest a receptor-hormone interaction model where the hydrophobic side chains of Phe7 and Trp9 interact with the transmembrane portion of the MC1 receptor. Also, the positively charged side chain of Arg8 and the imidazole side chain of His6 may interact with the negatively charged portions of the receptor which may even be on the receptor's extracellular loops.
Collapse
Affiliation(s)
- N V Prabhu
- Department of Chemistry, University of Houston, Houston, TX 77204-5641, USA
| | | | | | | |
Collapse
|
11
|
Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxin-induced fever. J Neurosci 1997. [PMID: 9096167 DOI: 10.1523/jneurosci.17-09-03343.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial infection causes fever, an adaptive but potentially self-destructive response, in the host. Also activated are counterregulatory systems such as the pituitary-adrenal axis. Antipyretic roles have also been postulated for certain endogenous central neuropeptides, including the melanocortins (alpha-MSH-related peptides). To test the hypothesis that endogenous central melanocortins have antipyretic effects mediated by central melanocortin receptors (MCRs), we determined the effect of intracerebroventricular injection of a synthetic MCR antagonist, Ac-Nle4,c-[Asp5,DNal(2')7,Lys10]alpha-MSH(4-10)-NH2 (SHU-9119) in endotoxin-challenged rats. The efficacy and specificity of SHU-9119 as an MCR antagonist in the rat was first validated in vitro and in vivo. In vitro, in heterologous cells expressing either rat MC3-R or MC4-R, the major MCR subtypes expressed in brain, SHU-9119 showed no intrinsic agonism, but it inhibited alpha-MSH-induced cAMP accumulation (IC50 = 0.48 +/- 0.19 and 0.41 +/- 0.28 nM, respectively) and [125I]-[Nle4,DPhe7]-alpha-MSH binding (IC50 = 1.0 +/- 0.1 and 0.9 +/- 0.3 nM, respectively). In vivo, exogenous alpha-MSH (180 pmol) inhibited fever in rats when administered intracerebroventricularly 30 min after Escherichia coli lipopolysaccharide (LPS) (25 microg/kg, i.p.). When co-injected with alpha-MSH, SHU-9119 (168 pmol, i.c.v.) prevented the antipyretic action of exogenous alpha-MSH. In contrast, neither alpha-MSH nor SHU-9119, alone or in combination, affected body temperatures in afebrile rats. In LPS-treated rats, intracerebroventricular injection of SHU-9119 significantly increased fever, whereas intravenous injection of the same dose of SHU-9119 had no effect. Neither intracerebroventricular nor intravenous SHU-9119 significantly affected LPS-stimulated plasma ACTH or corticosterone levels. The results indicate that endogenous central melanocortins exert an antipyretic influence during fever by acting on MCRs located within the brain, independent of any modulation of the activity of the pituitary-adrenal axis.
Collapse
|
12
|
Desarnaud F, Labbe O, Eggerickx D, Vassart G, Parmentier M. Molecular cloning, functional expression and pharmacological characterization of a mouse melanocortin receptor gene. Biochem J 1994; 299 ( Pt 2):367-73. [PMID: 8172596 PMCID: PMC1138281 DOI: 10.1042/bj2990367] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe the cloning of the mouse HGMP01A gene that encodes a melanocortin receptor functionally distinct from the adrenal cortex corticotropin (adrenocorticotrophic hormone; ACTH) receptor and the melanocyte-stimulating hormone (MSH) receptor expressed in melanoma. The gene encodes a protein of 323 amino acids with a calculated molecular mass of 35,800 Da, displaying potential sites for N-linked glycosylation and phosphorylation by protein kinase C. An RNAase protection assay detected weak expression in the brain, but not in adrenal gland, skin, or any of the other tissues tested. Stable CHO cell lines expressing over 100,000 receptors per cell were generated. The recombinant receptor binds iodinated [Nle4,D-Phe7]alpha-MSH (NDP-MSH) with an apparent Kd of 700 pM. Displacement of the ligand by a variety of pro-opiomelanocortin-derived peptides revealed a pharmacological profile distinct from that of the classical ACTH and MSH receptors. NDP-MSH was the most powerful competitor (IC50 1.4 nM), followed by gamma-MSH (IC50 7 nM). alpha-MSH, beta-MSH and ACTH-(1-39) were significantly less potent, with IC50 values of 30, 19 and 21 nM respectively. ACTH-(4-10) was poorly active (IC50 2.4 microM), while corticotropin-like intermediate lobe peptide (CLIP) and beta-endorphin were totally ineffective. The recombinant receptor was found to stimulate adenylate cyclase. The potency order of the agonists in this assay was consistent with that of the binding displacement assays. This receptor represents the orthologue of the human melanocortin 3 receptor reported recently. The growing family of melanocortin receptors constitute the molecular basis for the variety of actions of melanocortins that have been described over the years. The availability of functionally expressed receptors from the melanocortin family will allow the development of a specific pharmacology, and a better understanding of the function of the pro-opiomelanocortin-derived peptides.
Collapse
Affiliation(s)
- F Desarnaud
- IRIBHN, Université libre de Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
13
|
Ahmed B, Kastin AJ, Banks WA, Zadina JE. CNS effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides, 1986-1993. Peptides 1994; 15:1105-55. [PMID: 7991456 DOI: 10.1016/0196-9781(94)90078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The centrally mediated effects of peptides as published in the journal Peptides from 1986 to 1993 are tabulated in two ways. In one table, the peptides are listed alphabetically. In another table, the effects are arranged alphabetically. Most of the effects observed after administration of peptides are grouped, wherever possible, into categories such as cardiovascular and gastrointestinal. The species used in most cases has been rats; where other animals were used, the species is noted. The route of administration of peptides and source of information also are included in the tables, with a complete listing provided at the end. Many peptides have been shown to exert a large number of centrally mediated effects.
Collapse
Affiliation(s)
- B Ahmed
- VA Medical Center, New Orleans, LA 70146
| | | | | | | |
Collapse
|
14
|
Abstract
The objective of this study was to determine whether glycyl-L-glutamine [beta-endorphin(30-31)] modulates the thermoregulatory actions of alpha-MSH. Microinjection of alpha-MSH (0.06 nmol) into PGE2-responsive thermogenic sites in the medial preoptic area of rats generated a hyperthermic response, inducing a 0.85 +/- 0.19 degrees C rise in colonic temperature (Tc) within 45 min. Coadministration of glycyl-L-glutamine (3.0 nmol) completely blocked the response, maintaining Tc at baseline levels. This was not attributable to glycyl-L-glutamine hydrolysis because coadministration of glycine and glutamine had no effect on alpha-MSH-induced thermogenesis. Glycyl-L-glutamine, injected alone, was similarly without effect. These data indicate that glycyl-L-glutamine inhibits alpha-MSH-induced thermogenesis but is devoid of thermoregulatory activity itself.
Collapse
Affiliation(s)
- G E Resch
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City 64108
| | | |
Collapse
|