1
|
Kapil S, Sharma V. d-Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Can J Microbiol 2020; 67:119-137. [PMID: 32783775 DOI: 10.1139/cjm-2020-0142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance have triggered exploration of natural alternatives to stabilize its seriousness. Antimicrobial peptides are small, positively charged oligopeptides that are as potent as commercially available antibiotics against a wide spectrum of organisms, such as Gram-positive bacteria, Gram-negative bacteria, viruses, and fungal strains. In addition to their antibiotic capabilities, these peptides possess anticancer activity, activate the immune response, and regulate inflammation. Peptides have distinct modes of action and fall into various categories due to their amino acid composition. Although antimicrobial peptides specifically target the bacterial cytoplasmic membrane, they can also target the cell nucleus and protein synthesis. Owing to the increasing demand for novel treatments against the threat of antimicrobial resistance, naturally synthesized peptides are a beneficial development concept. Antimicrobial peptides are pervasive and can easily be modified using de-novo synthesis technology. Antimicrobial peptides can be isolated from natural resources such as humans, plants, bacteria, and fungi. This review gives a brief overview of antimicrobial peptides and their diastereomeric composition. Other current trends, the future scope of antimicrobial peptides, and the role of d-amino acids are also discussed, with a specific emphasis on the design and development of new drugs.
Collapse
Affiliation(s)
- Shikha Kapil
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| | - Vipasha Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| |
Collapse
|
2
|
Lewicky JD, Fraleigh NL, Boraman A, Martel AL, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Montaut S, Le HT. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. Eur J Pharm Biopharm 2020; 154:290-296. [PMID: 32717389 DOI: 10.1016/j.ejpb.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Nya L Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Alexandrine L Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Thi M-D Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada; Department of Pharmacology and Physiology, University of Montreal, 2900 Boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Tze Chieh Shiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Programme, Laurentian University, Subdury, Ontario, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Northern Ontario School of Medicine, Medicinal Sciences Division, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
3
|
Lewicky JD, Martel AL, Fraleigh NL, Boraman A, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Le HT. Strengthening peptide-based drug activity with novel glyconanoparticle. PLoS One 2018; 13:e0204472. [PMID: 30260999 PMCID: PMC6160049 DOI: 10.1371/journal.pone.0204472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of peptide-based drugs is significantly limited by the rapid proteolytic degradation that occurs when in blood. Encapsulation of these peptide structures within a delivery system, such as liposomes, can greatly improve both stability and target delivery. As part of our work focused on novel ambiphilic mannosylated neoglycolipids as targeted drug delivery systems, we have developed a C14-alkyl-mannopyranoside that forms self-assembled monodisperse liposomes. Herein, these glycoliposomes are investigated as a potential method to improve the plasma stability of peptide-based drugs. Reversed phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) methods were developed to assess the in vitro plasma stability of two structurally diverse peptides, including the kappa opioid receptor selective antagonist dynantin, and the NOD2 innate immune receptor ligand muramyl dipeptide (MDP). The RP-HPLC methods developed were able to resolve the peptides from background plasma contaminants and provided suitable response levels and linearity over an appropriate concentration range. Both compounds were found to be significantly degraded in rat plasma. Increasing degrees of both entrapment and stabilization were noted when dynantin was combined with the C14-alkyl-mannopyranoside in increasing peptide:glycoside ratios. The combination of MDP with the glycolipid also led to peptide entrapment, which greatly improved the plasma stability of the peptide. Overall, the results clearly indicate that the stability of peptide-based structures, which are subject to degradation in plasma, can be greatly improved via entrapment within C14-alkyl-mannopyranoside-bearing glycoliposomes.
Collapse
Affiliation(s)
| | | | - Nya L. Fraleigh
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Thi M.-D. Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | | | - René Roy
- Glycovax Pharma Inc., Montreal, Quebec, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Medicinal Sciences Division, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
4
|
Singh S, Shrivastava R, Singh G, Ali R, Sankar Ampapathi R, Bhadhuria S, Haq W. AzaGly-Appended Peptidomimetics Structurally Related to PTR6154 as Potential PKB/Akt Inhibitors. Chembiochem 2017; 18:1061-1065. [DOI: 10.1002/cbic.201700031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Shalini Singh
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
| | - Richa Shrivastava
- Toxicology Division; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
- Academy of Scientific and Innovative Research; New Delhi 11000 India
| | - Gajendra Singh
- NMR Centre; SAIF; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
- Academy of Scientific and Innovative Research; New Delhi 11000 India
| | - Rafat Ali
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
| | - Ravi Sankar Ampapathi
- NMR Centre; SAIF; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
- Academy of Scientific and Innovative Research; New Delhi 11000 India
| | - Smrati Bhadhuria
- Toxicology Division; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
- Academy of Scientific and Innovative Research; New Delhi 11000 India
| | - Wahajul Haq
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh 226031 India
- Academy of Scientific and Innovative Research; New Delhi 11000 India
| |
Collapse
|
5
|
2',6'-dimethylphenylalanine: a useful aromatic amino Acid surrogate for tyr or phe residue in opioid peptides. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2012; 2012:498901. [PMID: 25954528 PMCID: PMC4412257 DOI: 10.1155/2012/498901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 11/17/2022]
Abstract
Two aromatic amino acids, Tyr(1) and Phe(3) or Phe(4), are important structural elements in opioid peptides because they interact with opioid receptors. The usefulness of an artificial amino acid residue 2',6'-dimethylphenylalanine (Dmp) was investigated as an aromatic amino acid surrogate for several opioid peptides, including enkephalin, dermorphin, deltorphin, endomorphin, dynorphin A, and nociceptin peptides. In most peptides, substitutions of Phe(3) by a Dmp residue produced analogs with improved receptor-binding affinity and selectivity, while the same substitution of Phe(4) induced markedly reduced receptor affinity and selectivity. Interestingly, replacement of Tyr(1) by Dmp produced analogs with unexpectedly high affinity or produced only a slight drop in receptor affinity and bioactivity for most peptides. Thus, Dmp is also a useful surrogate for the N-terminal Tyr residue in opioid peptides despite the lack of a phenolic hydroxyl group, which is considered necessary for opioid activity. The Dmp(1)-substituted analogs are superior to 2',6'-dimethyltyrosine (Dmt)(1)-substituted analogs for high receptor selectivity since the latter generally have poor receptor selectivity. Thus, Dmp is very useful as an aromatic amino acid surrogate in opioid peptides and may be useful for developing other novel peptide mimetics with high receptor specificity.
Collapse
|
6
|
Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS JOURNAL 2009; 11:312-22. [PMID: 19430912 DOI: 10.1208/s12248-009-9105-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/26/2009] [Indexed: 11/30/2022]
Abstract
While narcotic analgesics such as morphine, which act preferentially through mu opioid receptors, remain the gold standard in the treatment of severe pain, their use is limited by detrimental liabilities such as respiratory depression and drug dependence. Thus, there has been considerable interest in developing ligands for kappa opioid receptors (KOR) as potential analgesics and for the treatment of a variety of other disorders. These include effects mediated both by central receptors, such as antidepressant activity and a reduction in cocaine-seeking behavior, and activity resulting from the activation of peripheral receptors, such as analgesic and anti-inflammatory effects. While the vast majority of opioid receptor ligands that have progressed in preclinical development have been small molecules, significant advances have been made in recent years in identifying opioid peptide analogs that exhibit promising in vivo activity. This review will focus on possible therapeutic applications of ligands for KOR and specifically on the potential development of peptide ligands for these receptors.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., 4050 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
7
|
Tugyi R, Mezõ G, Gitta S, Fellinger E, Andreu D, Hudecz F. Effect of Conjugation with Polypeptide Carrier on the Enzymatic Degradation of Herpes Simplex Virus Glycoprotein D Derived Epitope Peptide. Bioconjug Chem 2008; 19:1652-9. [DOI: 10.1021/bc700469r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Regina Tugyi
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gábor Mezõ
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Schlosser Gitta
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Erzsébet Fellinger
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferenc Hudecz
- Chemical Research Center, Institute of Biomolecular Chemistry, Hungarian Academy of Sciences, Budapest, Hungary, Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest 112, P.O. Box 32, H-1518, Hungary, Department of General Zoology and Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary, and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
8
|
Sasaki Y, Kawano S, Kohara H, Watanabe H, Ambo A. ORL1 and opioid receptor preferences of nociceptin and dynorphin A analogues with Dmp substituted for N-terminal aromatic residues. Bioorg Med Chem 2006; 14:2433-7. [PMID: 16321540 DOI: 10.1016/j.bmc.2005.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 11/19/2022]
Abstract
Nociceptin (NOC) and dynorphin A (DYN) analogues containing 2',6'-dimethylphenylalanine (Dmp) in place of Phe or Tyr in position 1 and/or 4 were synthesized and their metabolic stability and receptor-binding properties were investigated. [Dmp1]NOC(1-13)-NH2 (1) possessed high ORL1 receptor affinity comparable to that of the parent peptide with substantially improved affinities for kappa-, mu-, and delta-opioid receptors. However, Dmp4 substitution of NOC peptide (2) reduced ORL1 receptor affinity. [Dmp1]DYN(1-13)-NH2 (4) and its Dmp4 analogue (5) possessed a 3-fold greater kappa-opioid receptor affinity and improved kappa-receptor selectivity compared to the parent peptide. Analogue 4 however exhibited an unexpectedly low in vitro bioactivity (GPI assay), suggesting, the phenolic hydroxyl group at the N-terminal residue in DYN peptide is extremely important for activation of the kappa-opioid receptor. Analogue 5 possessed an improved kappa-opioid receptor selectivity with an IC50 ratio of 1(kappa)/509(mu)/211598(delta); thus, this peptide may serve as a highly selective kappa-receptor agonist for pharmacological study. Dmp1 substitution in both the NOC and DYN peptides improved metabolic stability toward these peptides, while Dmp4 substitution provided no additional metabolic stability.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Tohoku Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | |
Collapse
|
9
|
Lung FDT, Chen CH, Liu JH. Development of highly potent and selective dynorphin A analogues as new medicines. ACTA ACUST UNITED AC 2005; 66:263-76. [PMID: 16218994 DOI: 10.1111/j.1399-3011.2005.00302.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynorphin A (Dyn A), a 17 amino acid peptide H-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln-OH, is a potent opioid peptide which interacts preferentially with kappa-opioid receptors. Research in the development of selective and potent opioid peptide ligands for the kappa-receptor is important in mediating analgesia. Several cyclic disulphide bridge-containing peptide analogues of Dyn A, which were conformationally constrained in the putative message or address segment of the opioid ligand, were designed, synthesized and assayed. To further investigate the conformational and topographical requirements for the residues in positions 5 and 11 of these analogues, a systematic series of Dyn A(1-11)-NH2 cyclic analogues incorporating the sulphydryl-containing amino acids L- and D-Cys and L- and D-Pen in positions 5 and 11 were synthesized and assayed. Cyclic lactam peptide analogues were also synthesized and assayed. Several of these cyclic analogues, retained the same affinity and selectivity (vs. the mu- and delta-receptors) as the parent Dyn A(1-11)-NH2 peptide in the guinea-pig brain (GPB), but exhibited a much lower activity in the guinea-pig ileum (GPI), thus leading to centrally vs. peripherally selective peptides. Studies of the structure-activity relationship of Dyn A peptide provide new insights into the importance of each amino acid residue (and their configurations) in Dyn A analogues for high potency and good selectivity at kappa-opioid receptors. We report herein the progress towards the development of Dyn A peptide ligands, which can act as agonists or antagonists at cell surface receptors that modulate cell function and animal behaviour using various approaches to rational peptide ligand-based drug design.
Collapse
Affiliation(s)
- F-D T Lung
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| | | | | |
Collapse
|
10
|
Tugyi R, Uray K, Iván D, Fellinger E, Perkins A, Hudecz F. Partial D-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A 2005; 102:413-8. [PMID: 15630090 PMCID: PMC544305 DOI: 10.1073/pnas.0407677102] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/24/2004] [Indexed: 11/18/2022] Open
Abstract
The stability of an immunogen against enzymatic degradation is considered an important factor for the design of synthetic vaccines. For our studies, we have selected an epitope from the tandem-repeat unit of the high-molecular-weight MUC2 mucin glycoprotein, which can be underglycosylated in case of colon cancer. In this study, we prepared a MUC2 peptide containing the PTGTQ epitope of a MUC2 protein backbone-specific mAb 996 and its derivatives. In these peptides, the N- and C-terminal flanking regions were systematically substituted by up to three d-amino acids. Peptides prepared by solid-phase synthesis were tested for their mAb 996 binding in competitive ELISA experiments, and their stability was studied in serum and lysosomal preparation. Our data show that the epitope function of peptide (15)TPTPTGTQTPT(25) is retained even in the presence of two d-amino acid residues at its N-terminal flanking region and up to three at its C-terminal flanking region (tpTPTGTQtpt). Also, this partly d peptide shows high resistance against proteolytic degradation in diluted human serum and in lysosomal preparation. These findings suggest that, by appropriate combination of structural modifications (namely, d-amino acid substitution) in the flanks of an Ab epitope, it is feasible to construct a synthetic antigen with preserved recognition properties and high stability against enzymatic degradation. Peptides tPTPTGTQTpt and tpTPTGTQTpt derived from this study can be used for immunization experiments and as potential components of synthetic vaccines for tumor therapy.
Collapse
Affiliation(s)
- Regina Tugyi
- Institute of Chemistry, Hungarian Academy of Sciences, 59-67 Pusztaszeri út, Budapest, H-1025 Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Tugyi R, Mezö G, Fellinger E, Andreu D, Hudecz F. The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. J Pept Sci 2005; 11:642-9. [PMID: 15864815 DOI: 10.1002/psc.669] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One linear and three cyclic peptides corresponding to the 278-287 ((278)LLEDPVGTVA(287)) sequence of glycoprotein D (gD-1) of herpes simplex virus were synthesized for the analysis of the effect of cyclization on protection against enzymatic degradation. In this design, the turn-forming motif ((281)DPVG(284)) was positioned in the central part of the peptide and elongated by three amino acids at both termini. Cyclopeptide formation was achieved by the introduction of a peptide bond, a disulfide bridge or a thioether link. The stability of these peptides was compared in human serum and also in rat lysosomal preparations. The data obtained in 10% and 50% human serum show that all three types of cyclization enhanced the stability, but at different levels. Complete stability was only achieved by the introduction of a thioether link, while the presence of a disulfide or peptide bond resulted in improved, but partial resistance against hydrolytic decomposition. In lysosomal preparations the presence of cyclic primary structure provided full protection against enzymatic hydrolysis. Taken together, these findings indicate that by appropriate structural modification it is feasible to construct a synthetic antigen with high stability against enzymatic degradation in complex biological fluids. Further studies are in progress to identify enzymes responsible for degradation in diluted human sera as well as in the lysosomal preparations and to gain more detailed information on the mechanism of action.
Collapse
Affiliation(s)
- Regina Tugyi
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
12
|
Krumme D, Tschesche H. Synthesis and reduction of endothiodipeptides containing malonic acid derivatives. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|