1
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhou Z, Hou J, Mo Y, Ren M, Yang G, Qu Z, Hu Y. Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice. Eur J Pharmacol 2020; 869:172857. [DOI: 10.1016/j.ejphar.2019.172857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
|
3
|
Saha S, Sadhukhan P, Mahalanobish S, Dutta S, Sil PC. Ameliorative role of genistein against age-dependent chronic arsenic toxicity in murine brains via the regulation of oxidative stress and inflammatory signaling cascades. J Nutr Biochem 2018; 55:26-40. [PMID: 29331881 DOI: 10.1016/j.jnutbio.2017.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/22/2023]
Abstract
Brain is highly prone to oxidative damage due to its huge lipid content and extensive energy requirements. Exogenous insult in brain via oxidative injury can lead to severe pathophysiological conditions. Age-dependent deterioration of normal brain functions is also noteworthy. Genistein, a polyphenolic isoflavonoid, obtained from the soy plant, is well known to protect against several diseased conditions. Here, in this study chronic brain toxicity model was developed using oral administration of arsenic for 90 days in adult and aged murines. We observed that intraperitoneal administration of genistein improved the arsenic induced behavioral abnormalities in the rats. It was also evident from the histopathological studies that the extent of tissue damage due to arsenic exposure was more in aged rats compared to the adults. Evaluation of different stress markers, intracellular ROS level and mitochondrial membrane potential revealed the involvement of oxidative stress and mitochondrial dysfunction in inducing brain damage in arsenic exposed murines. It was observed that genistein can significantly ameliorate the stressed condition in both the animal groups but the protective effect of genistein was more significant in the adult animals. The underlying signalling mechanism behind the cytotoxicity of arsenic was investigated and revealed that genistein exhibited neuroprotection significantly by modulating the JNK3 mediated apoptosis, ERK1/2 mediated autophagy and TNFα associated inflammatory pathways. Overall study infers that genistein has significant ameliorative effect of against age-dependent cytotoxicity of arsenic in murine brains.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
4
|
Fahlström A, Yu Q, Ulfhake B. Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging 2009; 32:1868-80. [PMID: 20005598 DOI: 10.1016/j.neurobiolaging.2009.11.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 10/21/2009] [Accepted: 11/03/2009] [Indexed: 12/22/2022]
Abstract
Using a range of tests we have studied alterations in behavior with advancing age in female C57BL/6 (of Jackson origin), the golden standard on which most genetically engineered mice are back-crossed. In parallel, growth and survival data were collected. In a protected environment the 90% and 75% cohort survival age was 20 and 25 months, respectively, and the 50% cohort survival was 32 months. In mice, body weight increases continuously until 15-20 months of age, while in advanced age whole body weight drops. The body mass loss in senescence is associated with emergence of other aged phenotype features such as kyphosis, balding and loss of fur-color. Our behavioral data show that aging modulates certain aspects of basic behavior in a continuous manner, like explorative and locomotor activities. Advanced age associates with an acceleration of behavioral impairments evident in most of the tests used, including motor skill acquisition and memory consolidation. However, certain domains of mouse behavior were well preserved also in advanced age such as thermal noxious threshold and working memory as assessed by an object recognition task. The decreased drive to explore is suggested to be a key factor underlying many aspects of reduced performance including cognitive capacity during aging. Behavioral aging affects genetically closely related individuals housed under strictly standardized conditions differentially (Collier, T.J., Coleman, P.D., 1991. Divergence of biological and chronological aging: evidence from rodent studies. Neurobiol. Aging, 12, 685-693; Ingram, D.K., 1988. Motor performance variability during aging in rodents. Assessment of reliability and validity of individual differences. Ann. N.Y. Acad. Sci., 515, 70-96). Consistent with this a subpopulation of the 28-month-old mice showed an explorative activity similar to young-adult mice and a significantly stronger preference for a novel object than aged mice with a less explorative behavior. Thus, subtle environmental factors and epigenetic modifications may be important modulators of aging.
Collapse
Affiliation(s)
- Andreas Fahlström
- Experimental Neurogerontology, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Culum I, Forbes D. Posatirelin (l-pyro-2-aminoadipyl-l-leucyl-l-prolinamide) treatment for persons with dementia. Hippokratia 2008. [DOI: 10.1002/14651858.cd007347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ivan Culum
- University of Western Ontario; Health and Rehabilitation Sciences, Elborn College; London Ontario Canada N6G 1H1
| | - Dorothy Forbes
- University of Western Ontario; H33 Health Sciences Addition, School of Nursing; London Ontario Canada N6A 5C1
| |
Collapse
|
6
|
Altun M, Bergman E, Edström E, Johnson H, Ulfhake B. Behavioral impairments of the aging rat. Physiol Behav 2007; 92:911-23. [PMID: 17675121 DOI: 10.1016/j.physbeh.2007.06.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/24/2022]
Abstract
Several disturbances occurring during aging of humans and rodents alike stem from changes in sensory and motor functions. Using a battery of behavioral tests we have studied alterations in performance with advancing age in female and male rats of some frequently used strains. In parallel, we collected survival and body weight data. The median survival age was similar for female and male Sprague-Dawley rats, inbred female Lewis and outbred male Wistar rats (29-30 months). In contrast, male Fisher 344 had a significantly shorter median life span. During aging there is a gradual decline in locomotor activity and explorative behavior while disturbances of coordination and balance first became evident at more advanced age. In old age, also weight carrying capacity, limb movement and temperature threshold were impaired. While whole body weight continues to increase over the better part of a rats' life span, the behavioral changes in old age associated with a decrease in both total body weight and muscle mass. Dietary restriction increases median life span expectancy; retards the pace of behavioral aging and impedes sarcopenia. Housing in enriched environment did not improve the scoring in the behavioral tests but tended to increase median life span. Finally, there was an agreement between behavioral data collected from longitudinal age-cohorts and those obtained from multiple age-cohorts.
Collapse
Affiliation(s)
- Mikael Altun
- Experimental Neurogerontology, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
7
|
Abstract
Sarcopenia, loss of skeletal muscle mass, is a hallmark of aging commonly attributed to a decreased capacity to maintain muscle tissue in senescence, yet the mechanism behind the muscle wasting remains unresolved. To address these issues we have explored a rodent model of sarcopenia and age-related sensorimotor impairment, allowing us to discriminate between successfully and unsuccessfully aged cohort members. Immunohistochemistry and staining of cell nuclei revealed that senescent muscle has an increased density of cell nuclei, occurrence of aberrant fibers and fibers expressing embryonic myosin. Using real-time PCR we extend the findings of increased myogenic regulatory factor mRNA to show that very high levels are found in unsuccessfully aged cohort members. This pattern is also reflected in the number of embryonic myosin-positive fibers, which increase with the degree of sarcopenia. In addition, we confirm that there is no local down-regulation of IGF-I and IGF-IR mRNA in aged muscle tissue; on the contrary, the most sarcopenic individuals showed significantly higher local expression of IGF-I mRNA. Combined, our results show that the initial drive to regenerate myofibers is most marked in cases with the most advanced loss of muscle mass, a pattern that may have its origin in differences in the rate of tissue deterioration and/or that regenerating myofibers in these cases fail to mature into functional fibers. Importantly, the genetic background is a determinant of the pace of progression of sarcopenia.
Collapse
Affiliation(s)
- Erik Edström
- Experimntal Neurogerontology, Department of Neuroscience, Karolinska Institutet, S171 77 Stockholm, Sweden.
| | | |
Collapse
|
8
|
Prokai L. Central nervous system effects of thyrotropin-releasing hormone and its analogues: opportunities and perspectives for drug discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 59:133-69. [PMID: 12458966 DOI: 10.1007/978-3-0348-8171-5_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Besides its well-known endocrine role in the thyroid system, thyrotropin-releasing hormone (L-pyroglutamyl-L-histidyl-L-prolinamide) has been long recognized as a modulatory neuropeptide. After a brief overview of the extrahypothalamic and receptor distribution, and of the neurophysiological, neuropharmacological and neurochemical effects of this tripeptide, this review discusses efforts devoted to enhance therapeutically beneficial central nervous system effects via structural modifications of the endogenous peptide. An enormous array of maladies affecting the brain and the spinal cord has been a potential target for therapeutic interventions involving agents derived from thyrotropin-releasing hormone as a molecular lead. Successful development of several centrally active analogues and recent accounts of efforts aimed at improving metabolic stability, selectivity and bioavailability are highlighted.
Collapse
Affiliation(s)
- Laszlo Prokai
- Center for Drug Discovery, College of Pharmacy, and the McKnight Brain Institute, University of Florida Health Science Center, Gainesville, FL 32610-0497, USA
| |
Collapse
|
9
|
Santucci AC, Perez S. Multiple injections of thyrotropin releasing hormone fail to reverse learning and memory deficits in rats with lesions of the nucleus basalis of meynert. Behav Brain Res 2002; 136:433-8. [PMID: 12429405 DOI: 10.1016/s0166-4328(02)00195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The learning and memory enhancing effects of thyrotropin releasing hormone (TRH) was examined in an animal model of Alzheimer's disease. Adult rats were prepared with either sham surgeries or cholinergic lesions of the nucleus basalis of Meynert (nbM). Subjects were injected (ip) with one of three doses of TRH (0, 5, 10 mg/kg) starting on the day of surgery and continuing once every other day for a total of four injections. Performance (four trials/day for 4 days, 30 m inter-trial interval) in a Morris water maze was assessed one week after the last TRH injection (i.e., 2 weeks postoperatively). Latency to find the hidden platform served as the dependent variable. Results indicated that damage to the nbM impaired task performance in that animals with nbM lesions generally required more time to find the platform and showed less trial-to-trial improvement. Treatment with TRH failed to reverse this lesion-induced deficit. These results suggest that multiple injections of TRH do not provide residual protection against the deleterious effects on learning and memory produced by cholinergic lesions of the basal forebrain. Other doses and administration parameters, however, need to be studied in order to determine the generalizability of these findings.
Collapse
Affiliation(s)
- Anthony C Santucci
- Deptartment of Psychology, Manhattanville College, 2900 Purchase Street, Purchase, NY 10577, USA.
| | | |
Collapse
|
10
|
Maes M, Lin AH, Bonaccorso S, Goossens F, Van Gastel A, Pioli R, Delmeire L, Scharpé S. Higher serum prolyl endopeptidase activity in patients with post-traumatic stress disorder. J Affect Disord 1999; 53:27-34. [PMID: 10363664 DOI: 10.1016/s0165-0327(98)00086-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND It is reported that psychiatric disorders, such as depression and schizophrenia, are associated with changes in serum activity of prolyl endopeptidase (EC 3.4.21.26), a cytosolic endopeptidase, which cleaves peptide bonds on the carboxylside of proline in proteins of relatively small molecular mass. AIMS AND METHODS The aims of the present study were to examine serum PEP activity in patients with post-traumatic stress disorder (PTSD) versus healthy volunteers. PEP activity has been determined by a fluorimetric assay. RESULTS Serum PEP activity was significantly higher in patients with PTSD than in normal volunteers. Serum PEP activity was significantly higher in patients with PTSD and concurrent major depression than in patients with PTSD without major depression. In PTSD patients, there were no significant correlations between serum PEP activity and severity of PTSD symptoms. CONCLUSIONS The results show that PTSD and, in particular, PTSD with concurrent major depression is associated with increased activity of PEP. RELEVANCE these results may be of importance for the (i) neuroendocrine pathophysiology of PTSD since PEP degrades neuropeptides, such as arginine vasopressin (AVP) and thyrotropin releasing hormone (TRH); and (ii) etiology of PTSD, since PEP degrades behaviorally active neuropeptides, such as AVP, TRH, oxytocin, neurotensin and substance P, which play a key role in positive reinforcement, social interactions, emotions and stress responsivity.
Collapse
Affiliation(s)
- M Maes
- Clinical Research Center for Mental Health, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferrari E, Cucinotta D, Albizatti M, Bartorelli L, Colombo N, Ferretti G, Galetti G, Galliano U, Grezzana L, Pedone V, Sarti G, Scali G, Zamboni M, Girardello R, Poli A, Ambrosoli L. Effectiveness and safety of posatirelin in the treatment of senile dementia: A multicenter, double-blind, placebo-controlled study. Arch Gerontol Geriatr 1998. [DOI: 10.1016/s0167-4943(98)80024-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Posatirelin for the treatment of degenerative and vascular dementia: results of explanatory and pragmatic efficacy analyses. Arch Gerontol Geriatr 1997; 26:33-47. [DOI: 10.1016/s0167-4943(97)00029-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/1997] [Revised: 07/31/1997] [Accepted: 08/06/1997] [Indexed: 11/23/2022]
|