1
|
Sánchez-Garrido Campos G, Zafra ÁM, Estévez-Rodríguez M, Cordones I, Ruffini G, Márquez-Ruiz J. Preclinical insights into gamma-tACS: foundations for clinical translation in neurodegenerative diseases. Front Neurosci 2025; 19:1549230. [PMID: 40143845 PMCID: PMC11936909 DOI: 10.3389/fnins.2025.1549230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Gamma transcranial alternating current stimulation (gamma-tACS) represents a novel neuromodulation technique with promising therapeutic applications across neurodegenerative diseases. This mini-review consolidates recent preclinical and clinical findings, examining the mechanisms by which gamma-tACS influences neural oscillations, enhances synaptic plasticity, and modulates neuroimmune responses. Preclinical studies have demonstrated the capacity of gamma-tACS to synchronize neuronal firing, support long-term neuroplasticity, and reduce markers of neuroinflammation, suggesting its potential to counteract neurodegenerative processes. Early clinical studies indicate that gamma-tACS may improve cognitive functions and network connectivity, underscoring its ability to restore disrupted oscillatory patterns central to cognitive performance. Given the intricate and multifactorial nature of gamma oscillations, the development of tailored, optimized tACS protocols informed by extensive animal research is crucial. Overall, gamma-tACS presents a promising avenue for advancing treatments that support cognitive resilience in a range of neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Ángela M. Zafra
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Marta Estévez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics Barcelona, Barcelona, Spain
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
2
|
Chocarro J, Rico AJ, Ariznabarreta G, Roda E, Honrubia A, Collantes M, Peñuelas I, Vázquez A, Rodríguez-Pérez AI, Labandeira-García JL, Vila M, Lanciego JL. Neuromelanin accumulation drives endogenous synucleinopathy in non-human primates. Brain 2023; 146:5000-5014. [PMID: 37769648 PMCID: PMC10689915 DOI: 10.1093/brain/awad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.
Collapse
Affiliation(s)
- Julia Chocarro
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alberto J Rico
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Goiaz Ariznabarreta
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elvira Roda
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Adriana Honrubia
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - María Collantes
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Translational Molecular Imaging Unit, Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfonso Vázquez
- Department of Neurosurgery, Hospital Universitario de Navarra, Servicio Navarro de Salud, 31008 Pamplona, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Vall d’Hebron Research Institute, Neurodegenerative Diseses Research Group, 08035 Barcelona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - José L Lanciego
- CNS Gene Therapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (Ciberned-ISCIII), 28031 Madrid, Spain
- Aligning Science Across Parkinsons’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Doyle AM, Bauer D, Hendrix C, Yu Y, Nebeck SD, Fergus S, Krieg J, Wilmerding LK, Blumenfeld M, Lecy E, Spencer C, Luo Z, Sullivan D, Brackman K, Ross D, Best S, Verma A, Havel T, Wang J, Johnson L, Vitek JL, Johnson MD. Spatiotemporal scaling changes in gait in a progressive model of Parkinson's disease. Front Neurol 2022; 13:1041934. [PMID: 36582611 PMCID: PMC9792983 DOI: 10.3389/fneur.2022.1041934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.
Collapse
Affiliation(s)
- Alex M. Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Devyn Bauer
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Claudia Hendrix
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Shane D. Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sinta Fergus
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lucius K. Wilmerding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Madeline Blumenfeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Emily Lecy
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Chelsea Spencer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ziling Luo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Disa Sullivan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Krista Brackman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Ross
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Sendréa Best
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ajay Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Lin HC, Wu YH, Huang CW, Ker MD. Verification of the beta oscillations in the subthalamic nucleus of the MPTP-induced parkinsonian minipig model. Brain Res 2022; 1798:148165. [DOI: 10.1016/j.brainres.2022.148165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
5
|
Davin A, Chabardès S, Belaid H, Fagret D, Djaileb L, Dauvilliers Y, David O, Torres-Martinez N, Piallat B. Early onset of sleep/wake disturbances in a progressive macaque model of Parkinson's disease. Sci Rep 2022; 12:17499. [PMID: 36261689 PMCID: PMC9581909 DOI: 10.1038/s41598-022-22381-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinsonian patients often experience sleep/wake disturbances, which may appear at an early stage of the disease; however, these disturbances have not been fully described. To better understand the evolution of these disturbances with respect to disease progression, we aimed to characterize these clinical signs in a progressive nonhuman primate model of Parkinson's disease. Three adult macaques (Macaca fascicularis) were equipped with a polysomnographic telemetry system allowing the characterization of sleep/wake behavior via long-term neurophysiological recordings and underwent a modified multiple sleep latency test. Experiments were first performed in a healthy state and then during the progressive induction of a parkinsonian syndrome by intramuscular injections of low doses of MPTP. We observed an early onset of significant sleep/wake disturbances (i.e., before the appearance of motor symptoms). These disturbances resulted in (i) a disorganization of nighttime sleep with reduced deep sleep quality and (ii) an excessive daytime sleepiness characterized by sleep episodes occurring more rapidly in the morning and spreading through the middle of the day. The present study suggests that nighttime and daytime sleep/wake disturbances may appear early in the disease and should be considered in the development of biomarkers in further studies.
Collapse
Affiliation(s)
- Aurélie Davin
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France ,grid.450307.50000 0001 0944 2786Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Stéphan Chabardès
- grid.450307.50000 0001 0944 2786Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, 38000 Grenoble, France ,grid.410529.b0000 0001 0792 4829Department of Neurosurgery, University Hospital of Grenoble Alpes, 38000 Grenoble, France
| | - Hayat Belaid
- grid.411439.a0000 0001 2150 9058Department of Neurosurgery, Hospital Pitié-Salpêtrière, 75013 Paris, France
| | - Daniel Fagret
- grid.410529.b0000 0001 0792 4829UMR Inserm, 1039, Department Nuclear Medecine, University Hospital of Grenoble Alpes, 38000 Grenoble, France
| | - Loic Djaileb
- grid.410529.b0000 0001 0792 4829UMR Inserm, 1039, Department Nuclear Medecine, University Hospital of Grenoble Alpes, 38000 Grenoble, France
| | - Yves Dauvilliers
- grid.121334.60000 0001 2097 0141Center of Sleep Disorders, INM Inserm, Hopital Gui de Chauliac, Univ. Montpellier, Montpellier, France
| | - Olivier David
- grid.450307.50000 0001 0944 2786Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, 38000 Grenoble, France ,grid.5399.60000 0001 2176 4817Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Napoléon Torres-Martinez
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
| | - Brigitte Piallat
- grid.450307.50000 0001 0944 2786Inserm, U1216, Grenoble Institut Neurosciences, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
6
|
Klæstrup IH, Just MK, Holm KL, Alstrup AKO, Romero-Ramos M, Borghammer P, Van Den Berge N. Impact of aging on animal models of Parkinson's disease. Front Aging Neurosci 2022; 14:909273. [PMID: 35966779 PMCID: PMC9366194 DOI: 10.3389/fnagi.2022.909273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models.
Collapse
Affiliation(s)
- Ida Hyllen Klæstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | | | - Aage Kristian Olsen Alstrup
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Ma W, Li M, Wu J, Zhang Z, Jia F, Zhang M, Bergman H, Li X, Ling Z, Xu X. Multiple step saccades in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of Parkinson’s disease. Front Aging Neurosci 2022; 14:912967. [PMID: 35966789 PMCID: PMC9363762 DOI: 10.3389/fnagi.2022.912967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective It has been argued that the incidence of multiple step saccades (MSS) in voluntary saccades could serve as a complementary biomarker for diagnosing Parkinson’s disease (PD). However, voluntary saccadic tasks are usually difficult for elderly subjects to complete. Therefore, task difficulties restrict the application of MSS measurements for the diagnosis of PD. The primary objective of the present study is to assess whether the incidence of MSS in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of PD. Materials and methods There were four groups of human subjects: PD patients, mild cognitive impairment (MCI) patients, elderly healthy controls (EHCs), and young healthy controls (YHCs). There were four monkeys with subclinical hemi-PD induced by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through the unilateral internal carotid artery and three healthy control monkeys. The behavioral task was a visually guided reactive saccade. Results In a human study, the incidence of MSS was significantly higher in PD than in YHC, EHC, and MCI groups. In addition, receiver operating characteristic (ROC) analysis could discriminate PD from the EHC and MCI groups, with areas under the ROC curve (AUCs) of 0.76 and 0.69, respectively. In a monkey study, while typical PD symptoms were absent, subclinical hemi-PD monkeys showed a significantly higher incidence of MSS than control monkeys when the dose of MPTP was greater than 0.4 mg/kg. Conclusion The incidence of MSS in simply reactive saccades could be a complementary biomarker for the early diagnosis of PD.
Collapse
Affiliation(s)
- Wenbo Ma
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Min Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Junru Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Fangfang Jia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuemei Li
- Department of Cadre Medical Service, The First Clinical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xuemei Li,
| | - Zhipei Ling
- Senior Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Zhipei Ling,
| | - Xin Xu
- Senior Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Xin Xu,
| |
Collapse
|
8
|
Dana S, Ghaedi K, Peymani M, Esfahani MHN. MiR-141-3p Expression Profiling in MPP Treated Differentiated SH-SY5Y Cells: A Model of Parkinson’s Disease. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Norris SA, White H, Tanenbaum A, Williams EL, Cruchaga C, Tian L, Schmidt RE, Perlmutter JS. Severe acute neurotoxicity reflects absolute intra-carotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose in non-human primates. J Neurosci Methods 2022; 366:109406. [PMID: 34767855 DOI: 10.1016/j.jneumeth.2021.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Affiliation(s)
- S A Norris
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| | - Hcb White
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - A Tanenbaum
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - E L Williams
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - C Cruchaga
- Departments of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - L Tian
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - R E Schmidt
- Departments of Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - J S Perlmutter
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Physical, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; Departments of Occupational Therapy, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Teil M, Arotcarena ML, Dehay B. A New Rise of Non-Human Primate Models of Synucleinopathies. Biomedicines 2021; 9:biomedicines9030272. [PMID: 33803341 PMCID: PMC7999604 DOI: 10.3390/biomedicines9030272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases characterized by the presence of α-synuclein-positive intracytoplasmic inclusions in the central nervous system. Multiple experimental models have been extensively used to understand better the mechanisms involved in the pathogenesis of synucleinopathy. Non-human primate (NHP) models are of interest in neurodegenerative diseases as they constitute the highest relevant preclinical model in translational research. They also contribute to bringing new insights into synucleinopathy’s pathogenicity and help in the quest and validation of therapeutical strategies. Here, we reviewed the different NHP models that have recapitulated key characteristics of synucleinopathy, and we aimed to highlight the contribution of NHP in mechanistic and translational approaches for synucleinopathies.
Collapse
|
11
|
Sun M, McDonald SJ, Brady RD, Collins-Praino L, Yamakawa GR, Monif M, O'Brien TJ, Cloud GC, Sobey CG, Mychasiuk R, Loane DJ, Shultz SR. The need to incorporate aged animals into the preclinical modeling of neurological conditions. Neurosci Biobehav Rev 2019; 109:114-128. [PMID: 31877345 DOI: 10.1016/j.neubiorev.2019.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Neurological conditions such as traumatic brain injury, stroke, Parkinson's disease, epilepsy, multiple sclerosis, and Alzheimer's disease are serious clinical problems that affect millions of people worldwide. The majority of clinical trials for these common conditions have failed, and there is a critical need to understand why treatments in preclinical animal models do not translate to patients. Many patients with these conditions are middle-aged or older, however, the majority of preclinical studies have used only young-adult animals. Considering that aging involves biological changes that are relevant to the pathobiology of neurological diseases, the lack of aged subjects in preclinical research could contribute to translational failures. This paper details how aging affects biological processes involved in neurological conditions, and reviews aging research in the context of traumatic brain injury, stroke, Parkinson's disease, epilepsy, multiple sclerosis, and Alzheimer's disease. We conclude that aging is an important, but often overlooked, factor that influences biology and outcomes in neurological conditions, and provide suggestions to improve our understanding and treatment of these diseases in aged patients.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lyndsey Collins-Praino
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Geoffrey C Cloud
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; Department of Stroke Services, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.
| |
Collapse
|
12
|
Ferreira-Junior NC, Campos AC, Guimarães FS, Del-Bel E, Zimmermann PMDR, Brum Junior L, Hallak JE, Crippa JA, Zuardi AW. Biological bases for a possible effect of cannabidiol in Parkinson's disease. ACTA ACUST UNITED AC 2019; 42:218-224. [PMID: 31314869 PMCID: PMC7115443 DOI: 10.1590/1516-4446-2019-0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Current pharmacotherapy of Parkinson’s disease (PD) is palliative and unable to modify the progression of neurodegeneration. Treatments that can improve patients’ quality of life with fewer side effects are needed, but not yet available. Cannabidiol (CBD), the major non-psychotomimetic constituent of cannabis, has received considerable research attention in the last decade. In this context, we aimed to critically review the literature on potential therapeutic effects of CBD in PD and discuss clinical and preclinical evidence supporting the putative neuroprotective mechanisms of CBD. We searched MEDLINE (via PubMed) for indexed articles published in English from inception to 2019. The following keywords were used: cannabis; cannabidiol and neuroprotection; endocannabinoids and basal ganglia; Parkinson’s animal models; Parkinson’s history; Parkinson’s and cannabidiol. Few studies addressed the biological bases for the purported effects of CBD on PD. Six preclinical studies showed neuroprotective effects, while three targeted the antidyskinetic effects of CBD. Three human studies have tested CBD in patients with PD: an open-label study, a case series, and a randomized controlled trial. These studies reported therapeutic effects of CBD on non-motor symptoms. Additional research is needed to elucidate the potential effectiveness of CBD in PD and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alline C Campos
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto (FORP), USP, Ribeirão Preto, SP, Brazil
| | | | | | - Jaime E Hallak
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Antonio W Zuardi
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
|
14
|
Quintero JE, Ai Y, Andersen AH, Hardy P, Grondin R, Guduru Z, Gash DM, Gerhardt GA, Zhang Z. Validations of apomorphine-induced BOLD activation correlations in hemiparkinsonian rhesus macaques. NEUROIMAGE-CLINICAL 2019; 22:101724. [PMID: 30822717 PMCID: PMC6396014 DOI: 10.1016/j.nicl.2019.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Identification of Parkinson's disease at the earliest possible stage of the disease may provide the best opportunity for the use of disease modifying treatments. However, diagnosing the disease during the pre-symptomatic period remains an unmet goal. To that end, we used pharmacological MRI (phMRI) to assess the function of the cortico-basal ganglia circuit in a non-human primate model of dopamine deficiency to determine the possible relationships between phMRI signals with behavioral, neurochemical, and histological measurements. Animals with unilateral treatments with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that expressed stable, long-term hemiparkinsonism were challenged with the dopaminergic receptor agonist, apomorphine, and structure-specific phMRI blood oxygen level-dependent (BOLD) activation responses were measured. Behavioral, histopathological, and neurochemical measurements were obtained and correlated with phMRI activation of structures of the cortico-basal ganglia system. Greater phMRI activations in the basal ganglia and cortex were associated with slower movement speed, decreased daytime activity, or more pronounced parkinsonian features. Animals showed decreased stimulus-evoked dopamine release in the putamen and substantia nigra pars compacta and lower basal glutamate levels in the motor cortex on the MPTP-lesioned hemisphere compared to the contralateral hemisphere. The altered neurochemistry was significantly correlated with phMRI signals in the motor cortex and putamen. Finally, greater phMRI activations in the caudate nucleus correlated with fewer tyrosine hydroxylase-positive (TH+) nigral cells and decreased TH+ fiber density in the putamen. These results reveal the correlation of phMRI signals with the severity of the motor deficits and pathophysiological changes in the cortico-basal ganglia circuit. Apomorphine in hemiparkinsonian animals can evoke changes in functional MRI signals. Cortico-basal ganglia activation correlates to behavior, neurochemistry, histology Pharmacological MRI has potential to be biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- J E Quintero
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Yi Ai
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - A H Andersen
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - P Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - R Grondin
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Guduru
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - D M Gash
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - G A Gerhardt
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Zhang
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| |
Collapse
|
15
|
Wang YK, Zhu WW, Wu MH, Wu YH, Liu ZX, Liang LM, Sheng C, Hao J, Wang L, Li W, Zhou Q, Hu BY. Human Clinical-Grade Parthenogenetic ESC-Derived Dopaminergic Neurons Recover Locomotive Defects of Nonhuman Primate Models of Parkinson's Disease. Stem Cell Reports 2018; 11:171-182. [PMID: 29910127 PMCID: PMC6067059 DOI: 10.1016/j.stemcr.2018.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Clinical application of stem cell derivatives requires clinical-grade cells and sufficient preclinical proof of safety and efficacy, preferably in primates. We previously successfully established a clinical-grade human parthenogenetic embryonic stem cell (hPESC) line, but the suitability of its subtype-specific progenies for therapy is not clear. Here, we compared the function of clinical-grade hPESC-derived midbrain dopaminergic (DA) neurons in two canonical protocols in a primate Parkinson's disease (PD) model. We found that the grafts did not form tumors and produced variable but apparent behavioral improvement for at least 24 months in most monkeys in both groups. In addition, a slight DA increase in the striatum correlates with significant functional improvement. These results demonstrated that clinical-grade hPESCs can serve as a reliable source of cells for PD treatment. Our proof-of-concept findings provide preclinical data for China's first ESC-based phase I/IIa clinical study of PD (ClinicalTrials.gov number NCT03119636).
Collapse
Affiliation(s)
- Yu-Kai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China
| | - Wan-Wan Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Hua Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Xin Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling-Min Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bao-Yang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Stem Cell Bank, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Li Z, Chen X, Wang T, Gao Y, Li F, Chen L, Xue J, He Y, Li Y, Guo W, Zheng W, Zhang L, Ye F, Ren X, Feng Y, Chan P, Chen JF. The Corticostriatal Adenosine A 2A Receptor Controls Maintenance and Retrieval of Spatial Working Memory. Biol Psychiatry 2018; 83:530-541. [PMID: 28941549 DOI: 10.1016/j.biopsych.2017.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Working memory (WM) taps into multiple executive processes including encoding, maintenance, and retrieval of information, but the molecular and circuit modulation of these WM processes remains undefined due to the lack of methods to control G protein-coupled receptor signaling with temporal resolution of seconds. METHODS By coupling optogenetic control of the adenosine A2A receptor (A2AR) signaling, the Cre-loxP-mediated focal A2AR knockdown with a delayed non-match-to-place (DNMTP) task, we investigated the effect of optogenetic activation and focal knockdown of A2ARs in the dorsomedial striatum (n = 8 to 14 per group) and medial prefrontal cortex (n = 16 to 22 per group) on distinct executive processes of spatial WM. We also evaluated the therapeutic effect of the A2AR antagonist KW6002 on delayed match-to-sample/place tasks in 6 normal and 6 MPTP-treated cynomolgus monkeys. RESULTS Optogenetic activation of striatopallidal A2ARs in the dorsomedial striatum selectively at the delay and choice (not sample) phases impaired DNMTP performance. Optogenetic activation of A2ARs in the medial prefrontal cortex selectively at the delay (not sample or choice) phase improved DNMTP performance. The corticostriatal A2AR control of spatial WM was specific for a novel but not well-trained DNMTP task. Focal dorsomedial striatum A2AR knockdown or KW6002 improved DNMTP performance in mice. Last, KW6002 improved spatial WM in delayed match-to-sample and delayed match-to-place tasks of normal and dopamine-depleted cynomolgus monkeys. CONCLUSIONS The A2ARs in striatopallidal and medial prefrontal cortex neurons exert distinctive control of WM maintenance and retrieval to achieve cognitive stability and flexibility. The procognitive effect of KW6002 in nonhuman primates provides the preclinical data to translate A2AR antagonists for improving cognitive impairments in Parkinson's disease.
Collapse
Affiliation(s)
- Zhihui Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xingjun Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Tao Wang
- Wincon TheraCells Biotechnologies, Nanning, China
| | - Ying Gao
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fei Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Long Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Jin Xue
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wu Zheng
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Liping Zhang
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fenfen Ye
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xiangpeng Ren
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yue Feng
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiang-Fan Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts.
| |
Collapse
|
17
|
Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109:249-257. [DOI: 10.1016/j.nbd.2017.04.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
|
18
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
19
|
What lysosomes actually tell us about Parkinson's disease? Ageing Res Rev 2016; 32:140-149. [PMID: 26947123 DOI: 10.1016/j.arr.2016.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder of unknown origin mainly characterized by the loss of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal proteinaceous inclusions called Lewy bodies. Lysosomes are dynamic organelles that degrade, in a controlled manner, cellular components delivered via the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Increasing amounts of evidence suggest a central role of lysosomal impairment in PD aetiology. This review provides an update on how genetic evidence support this connection and highlights how the neuropathologic and mechanistic evidence might relate to the disease process in sporadic forms of Parkinson's disease. Finally, we discuss the influence of ageing on lysosomal impairment and PD aetiology and therapeutic strategies targeting lysosomal function.
Collapse
|
20
|
Yue F, Zeng S, Tang R, Tao G, Chan P. MPTP Induces Systemic Parkinsonism in Middle-Aged Cynomolgus Monkeys: Clinical Evolution and Outcomes. Neurosci Bull 2016; 33:17-27. [PMID: 27699717 DOI: 10.1007/s12264-016-0069-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/11/2016] [Indexed: 01/14/2023] Open
Abstract
In this study, we developed a systemic PD model in middle-aged cynomolgus monkeys using individualized low-dose MPTP, to explore effective indicators for the early prediction of clinical outcomes. MPTP was not stopped until the animals showed typical PD motor symptoms on days 10 to 13 after MPTP administration when the Kurlan score reached 10; this abrogated the differences in individual susceptibility to MPTP. The clinical symptoms persisted, peaking on days 3 to 12 after MPTP withdrawal (rapid progress stage), and then the Kurlan score plateaued. A Kurlan score at the end of the rapid progress stage >15 reflected stable or slowly-progressive PD, while a score <15 indicated spontaneous recovery. The entire clinical evolution and outcome of the systemic PD model was characterized in this study, thus providing options for therapeutic and translational research.
Collapse
Affiliation(s)
- Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Key Laboratory on Parkinson's Disease, Beijing, 100053, China
| | - Sien Zeng
- Department of Pathology, Guilin Medical College, Guilin, 541001, China
| | - Rongping Tang
- Wincon TheraCells Biotechnologies Co., Ltd., Nanning, 530003, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co., Ltd., Nanning, 530003, China
| | - Piu Chan
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Key Laboratory on Parkinson's Disease, Beijing, 100053, China.
| |
Collapse
|
21
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
22
|
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson's Disease. Front Neurosci 2016; 9:503. [PMID: 26834536 PMCID: PMC4718050 DOI: 10.3389/fnins.2015.00503] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems.
Collapse
Affiliation(s)
- Shail A Jagmag
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Naveen Tripathi
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sunil D Shukla
- Department of Zoology, Government Meera Girl's College Udaipur, India
| | - Sankar Maiti
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sukant Khurana
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| |
Collapse
|
23
|
Johnston TM, Fox SH. Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 2015; 22:221-35. [PMID: 25158623 DOI: 10.1007/7854_2014_352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Models of Parkinson's disease (PD) can be produced in several non-human primate (NHP) species by applying neurotoxic lesions to the nigrostriatal dopamine pathway. The most commonly used neurotoxin is MPTP, a compound accidentally discovered as a contaminant of street drugs. Compared to other neurotoxins, MPTP has the advantage of crossing the blood-brain barrier and can thus be administered systemically. MPTP-lesioned NHPs exhibit the main core clinical features of PD. When treated with L-DOPA, these NHP models develop involuntary movements resembling the phenomenology of human dyskinesias. In old-world NHP species (macaques, baboons), choreic and dystonic dyskinesias can be readily distinguished and quantified with specific rating scales. More recently, certain non-motor symptoms relevant to human PD have been described in L-DOPA-treated MPTP-NHPs, including a range of neuropsychiatric abnormalities and sleep disturbances. The main shortcomings of MPTP-NHP models consist in a lack of progression of the underlying neurodegenerative lesion, along with an inability to model the intracellular protein-inclusion pathology typical of PD. The strength of MPTP-NHP models lies in their face and predictive validity for symptomatic treatments of parkinsonian motor features. Indeed, these models have been instrumental to the development of several medical and surgical approaches that are currently applied to treat PD.
Collapse
Affiliation(s)
- Tom M Johnston
- Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
24
|
Bourdenx M, Dovero S, Engeln M, Bido S, Bastide MF, Dutheil N, Vollenweider I, Baud L, Piron C, Grouthier V, Boraud T, Porras G, Li Q, Baekelandt V, Scheller D, Michel A, Fernagut PO, Georges F, Courtine G, Bezard E, Dehay B. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun 2015. [PMID: 26205255 PMCID: PMC4513748 DOI: 10.1186/s40478-015-0222-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons as well as the presence of proteinaceous inclusions named Lewy bodies. α-synuclein (α-syn) is a major constituent of Lewy bodies, and the first disease-causing protein characterized in PD. Several α-syn-based animal models of PD have been developed to investigate the pathophysiology of PD, but none of them recapitulate the full picture of the disease. Ageing is the most compelling and major risk factor for developing PD but its impact on α-syn toxicity remains however unexplored. In this study, we developed and exploited a recombinant adeno-associated viral (AAV) vector of serotype 9 overexpressing mutated α-syn to elucidate the influence of ageing on the dynamics of PD-related neurodegeneration associated with α-syn pathology in different mammalian species. RESULTS Identical AAV pseudotype 2/9 vectors carrying the DNA for human mutant p.A53T α-syn were injected into the substantia nigra to induce neurodegeneration and synucleinopathy in mice, rats and monkeys. Rats were used first to validate the ability of this serotype to replicate α-syn pathology and second to investigate the relationship between the kinetics of α-syn-induced nigrostriatal degeneration and the progressive onset of motor dysfunctions, strikingly reminiscent of the impairments observed in PD patients. In mice, AAV2/9-hα-syn injection into the substantia nigra was associated with accumulation of α-syn and phosphorylated hα-syn, regardless of mouse strain. However, phenotypic mutants with either accelerated senescence or resistance to senescence did not display differential susceptibility to hα-syn overexpression. Of note, p-α-syn levels correlated with nigrostriatal degeneration in mice. In monkeys, hα-syn-induced degeneration of the nigrostriatal pathway was not affected by the age of the animals. Unlike mice, monkeys did not exhibit correlations between levels of phosphorylated α-syn and neurodegeneration. CONCLUSIONS In conclusion, AAV2/9-mediated hα-syn induces robust nigrostriatal neurodegeneration in mice, rats and monkeys, allowing translational comparisons among species. Ageing, however, neither exacerbated nigrostriatal neurodegeneration nor α-syn pathology per se. Our unprecedented multi-species investigation thus favours the multiple-hit hypothesis for PD wherein ageing would merely be an aggravating, additive, factor superimposed upon an independent disease process.
Collapse
|
25
|
Wang S, Zou C, Fu L, Wang B, An J, Song G, Wu J, Tang X, Li M, Zhang J, Yue F, Zheng C, Chan P, Zhang YA, Chen Z. Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson's disease model. Cell Discov 2015; 1:15012. [PMID: 27462412 PMCID: PMC4860772 DOI: 10.1038/celldisc.2015.12] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
Autologous dopamine (DA) neurons are a new cell source for replacement therapy of Parkinson's disease (PD). In this study, we tested the safety and efficacy of autologous induced pluripotent stem cell (iPSC)-derived DA cells for treatment of a cynomolgus monkey PD model. Monkey bone marrow mesenchymal cells were isolated and induced to iPSCs, followed by differentiation into DA cells using a method with high efficiency. Autologous DA cells were introduced into the brain of a cynomolgus monkey PD model without immunosuppression; three PD monkeys that had received no grafts served as controls. The PD monkey that had received autologous grafts experienced behavioral improvement compared with that of controls. Histological analysis revealed no overgrowth of grafts and a significant number of surviving A9 region-specific graft-derived DA neurons. The study provided a proof-of-principle to employ iPSC-derived autologous DA cells for PD treatment using a nonhuman primate PD model.
Collapse
Affiliation(s)
- Shuyan Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
- Center of Neural Injury and Repair, Beijing Institute for Brain
Disorders, Beijing,
China
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
| | - Chunlin Zou
- Center for Translational Medicine, Guangxi Medical
University, Nanning,
China
| | - Linlin Fu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Bin Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jing An
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Gongru Song
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jianyu Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Xihe Tang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical
University, Nanning,
China
| | - Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu
Hosptial, Capital Medical University, Beijing, China
| | - Chengyun Zheng
- Department of Hematology, Second Hospital of Shandong
University, Jinan,
China
| | - Piu Chan
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu
Hosptial, Capital Medical University, Beijing, China
| | - Y Alex Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
- Center of Neural Injury and Repair, Beijing Institute for Brain
Disorders, Beijing,
China
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
| |
Collapse
|
26
|
Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG. Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging 2015; 36:1903-13. [PMID: 25726361 DOI: 10.1016/j.neurobiolaging.2015.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/24/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Richard Grondin
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Hamed Haghnazar
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Don M Gash
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA.
| |
Collapse
|
27
|
Fox SH, Brotchie JM, Johnston TM. Primate Models of Complications Related to Parkinson Disease Treatment. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Fan XT, Zhao F, Ai Y, Andersen A, Hardy P, Ling F, Gerhardt GA, Zhang Z, Quintero JE. Cortical glutamate levels decrease in a non-human primate model of dopamine deficiency. Brain Res 2014; 1552:34-40. [PMID: 24398457 DOI: 10.1016/j.brainres.2013.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 12/19/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
Abstract
While Parkinson's disease is the result of dopaminergic dysfunction of the nigrostriatal system, the clinical manifestations of Parkinson's disease are brought about by alterations in multiple neural components, including cortical areas. We examined how 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration affected extracellular cortical glutamate levels by comparing glutamate levels in normal and MPTP-lesioned nonhuman primates (Macaca mulatta). Extracellular glutamate levels were measured using glutamate microelectrode biosensors. Unilateral MPTP-administration rendered the animals with hemiparkinsonian symptoms, including dopaminergic deficiencies in the substantia nigra and the premotor and motor cortices, and with statistically significant decreases in basal glutamate levels in the primary motor cortex on the side ipsilateral to the MPTP-lesion. These results suggest that the functional changes of the glutamatergic system, especially in the motor cortex, in models of Parkinson's disease could provide important insights into the mechanisms of this disease.
Collapse
Affiliation(s)
- X T Fan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China.,Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - F Zhao
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry Education, Capital Medical University, Beijing 100069 China
| | - Y Ai
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - A Andersen
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - P Hardy
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - F Ling
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China
| | - G A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| | - Z Zhang
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA
| | - J E Quintero
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY 40536 0098 USA.,Center for Microelectrode Technology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098 USA
| |
Collapse
|
29
|
Dopamine-dependent compensation maintains motor behavior in mice with developmental ablation of dopaminergic neurons. J Neurosci 2013; 33:17095-107. [PMID: 24155314 DOI: 10.1523/jneurosci.0890-13.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function.
Collapse
|
30
|
Synthesis and neuroprotective action of xyloketal derivatives in Parkinson's disease models. Mar Drugs 2013; 11:5159-89. [PMID: 24351912 PMCID: PMC3877910 DOI: 10.3390/md11125159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting people over age 55. Oxidative stress actively participates in the dopaminergic (DA) neuron degeneration of PD. Xyloketals are a series of natural compounds from marine mangrove fungus strain No. 2508 that have been reported to protect against neurotoxicity through their antioxidant properties. However, their protection versus 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity is only modest, and appropriate structural modifications are necessary to discover better candidates for treating PD. In this work, we designed and synthesized 39 novel xyloketal derivatives (1–39) in addition to the previously reported compound, xyloketal B. The neuroprotective activities of all 40 compounds were evaluated in vivo via respiratory burst assays and longevity-extending assays. During the zebrafish respiratory burst assay, compounds 1, 9, 23, 24, 36 and 39 strongly attenuated reactive oxygen species (ROS) generation at 50 μM. In the Caenorhabditis elegans longevity-extending assay, compounds 1, 8, 15, 16 and 36 significantly extended the survival rates (p < 0.005 vs. dimethyl sulfoxide (DMSO)). A total of 15 compounds were tested for the treatment of Parkinson’s disease using the MPP+-induced C. elegans model, and compounds 1 and 8 exhibited the highest activities (p < 0.005 vs. MPP+). In the MPP+-induced C57BL/6 mouse PD model, 40 mg/kg of 1 and 8 protected against MPP+-induced dopaminergic neurodegeneration and increased the number of DA neurons from 53% for the MPP+ group to 78% and 74%, respectively (p < 0.001 vs. MPP+ group). Thus, these derivatives are novel candidates for the treatment of PD.
Collapse
|
31
|
Development and application of neural stem cells for treating various human neurological diseases in animal models. Lab Anim Res 2013; 29:131-7. [PMID: 24106507 PMCID: PMC3791346 DOI: 10.5625/lar.2013.29.3.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
Stem cells derived from adult tissues or the inner cell mass (ICM) of embryos in the mammalian blastocyst (BL) stage are capable of self-renewal and have remarkable potential for undergoing lineage-specific differentiation under in vitro culturing conditions. In particular, neural stem cells (NSCs) that self-renew and differentiate into major cell types of the brain exist in the developing and adult central nervous system (CNS). The exact function and distribution of NSCs has been assessed, and they represent an interesting population that includes astrocytes, oligodendrocytes, and neurons. Many researchers have demonstrated functional recovery in animal models of various neurological diseases such as stroke, Parkinson's disease (PD), brain tumors, and metastatic tumors. The safety and efficacy of stem cell-based therapies (SCTs) are also being evaluated in humans. The therapeutic efficacy of NSCs has been shown in the brain disorder-induced animal models, and animal models may be well established to perform the test before clinical stage. Taken together, data from the literature have indicated that therapeutic NSCs may be useful for selectively treating diverse types of human brain diseases without incurring adverse effects.
Collapse
|
32
|
Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci 2013; 33:11986-93. [PMID: 23864685 DOI: 10.1523/jneurosci.1568-13.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gait and balance disorders unresponsive to dopaminergic drugs in Parkinson's disease (PD) are secondary to lesions located outside the dopaminergic system. However, available animal models of PD fail to display l-3,4-dihydroxyphenylalanine (DOPA)-responsive parkinsonism and drug-resistant gait and balance disorders, and this lack of appropriate model could account for the deficit of efficient treatments. Because the pedunculopontine nucleus (PPN) plays an important role in locomotion control, we conducted the present study to investigate the consequences of combined dopaminergic and PPN lesions in a same animal. We used macaques that received first 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to render them parkinsonian and then local stereotaxic lesion of the PPN. Adding bilateral PPN lesions in MPTP-lesioned macaques induced dopamine-resistant gait and balance disorders but unexpectedly improved hypokinesia. Additional MPTP injections resulted in the association of a severe DOPA-responsive parkinsonism together with DOPA-unresponsive gait disorders. Histological examination assessed a severe dopaminergic degeneration and a significant loss of PPN cholinergic neurons. We observed similar results in aged monkeys intoxicated with MPTP: they developed severe DOPA-responsive hypokinesia and tremor together with unresponsive gait and balance disorders and displayed dopaminergic lesion and a weak but significant cholinergic PPN lesion. Our results highlight the complex role of the cholinergic PPN neurons in the pathophysiology of PD because its lesion induces a dual effect with an improvement of hypokinesia contrasting with a worsening of DOPA-unresponsive gait and balance disorders. Thus, we obtained a primate model of PD that could be useful to test symptomatic treatments for these heavily disabling symptoms.
Collapse
|
33
|
Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211:51-76. [DOI: 10.1016/j.neuroscience.2011.10.057] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
|
34
|
Classic and new animal models of Parkinson's disease. J Biomed Biotechnol 2012; 2012:845618. [PMID: 22536024 PMCID: PMC3321500 DOI: 10.1155/2012/845618] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson's Disease (PD) is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydropiridine (MPTP), rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.
Collapse
|
35
|
Age-related decline in motor behavior and striatal dopamine transporter in cynomolgus monkeys. J Neural Transm (Vienna) 2012; 119:943-52. [DOI: 10.1007/s00702-012-0770-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
|
36
|
Vezoli J, Fifel K, Leviel V, Dehay C, Kennedy H, Cooper HM, Gronfier C, Procyk E. Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson's disease. PLoS One 2011; 6:e23952. [PMID: 21887350 PMCID: PMC3161087 DOI: 10.1371/journal.pone.0023952] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms. Methodology/Principal Findings Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested. Conclusions/Significance Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits.
Collapse
Affiliation(s)
- Julien Vezoli
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- Ernst Strüngmann Institute (ESI) in Cooperation with Max Planck Society, Frankfurt, Germany
- * E-mail: (JV); (HMC)
| | - Karim Fifel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Vincent Leviel
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Colette Dehay
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Henry Kennedy
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Howard M. Cooper
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
- * E-mail: (JV); (HMC)
| | - Claude Gronfier
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| | - Emmanuel Procyk
- Inserm, U846, Stem Cell and Brain Research Institute, Bron, France
- Université de Lyon, Lyon 1, UMR-S 846, Lyon, France
| |
Collapse
|
37
|
Proteomic analysis of expression and protein interactions in a 6-hydroxydopamine-induced rat brain lesion model. Neurochem Int 2010; 57:16-32. [DOI: 10.1016/j.neuint.2010.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/28/2010] [Accepted: 04/01/2010] [Indexed: 12/21/2022]
|
38
|
Zhao F, Fan X, Grondin R, Edwards R, Forman E, Moorehead J, Gerhardt G, Wang X, Zhang Z. Improved methods for electroacupuncture and electromyographic recordings in normal and parkinsonian rhesus monkeys. J Neurosci Methods 2010; 192:199-206. [PMID: 20654649 DOI: 10.1016/j.jneumeth.2010.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 12/22/2022]
Abstract
Although acupuncture has been widely and routinely used in healthcare in the USA, its use has been based more on empirical observation than on scientific knowledge. Therefore, there is a great need for better understanding the underlying mechanism(s) of action. A great body of evidence supports that nonhuman primates are a candidate for studying human diseases. However, the use of nonhuman primates in neurophysiological, neuroimaging and neurochemical studies is extremely challenging, especially under fully conscious, alert conditions. In the present study, we developed a protocol for safely performing acupuncture, electroacupuncture (EA) and electromyography (EMG) in both normal nonhuman primates and animals with parkinsonian-like symptoms. Four normal and four hemiparkinsonian middle-aged rhesus monkeys were extensively trained, behaviorally monitored, and received both EA and EMG for several months. The results demonstrated that (1) all rhesus monkeys used in the study could be trained for procedures including EA and EMG; (2) all animals tolerated the procedures involving needle/electrode insertion; (3) EA procedures used in the study did not adversely alter the animal's locomotor activities; rather, MPTP-treated animals showed a significant improvement in movement speed; and (4) EMG detected significant differences in muscle activity between the arms with and without MPTP-induced rigidity. Our results support that rhesus monkeys can be used as an experimental animal model to study EA and that EMG has the potential to be used to objectively assess the effects of antiparkinsonian therapies. The results also indicate that animals, especially those with parkinsonian-like symptoms, could benefit from long-term EA stimulations.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry Education, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker HP, Hunot S, Hartmann A, Lehéricy S, Hirsch EC, François C. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 2010; 120:2745-54. [PMID: 20628197 DOI: 10.1172/jci42642] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/26/2010] [Indexed: 11/17/2022] Open
Abstract
Gait disorders and postural instability, which are commonly observed in elderly patients with Parkinson disease (PD), respond poorly to dopaminergic agents used to treat other parkinsonian symptoms. The brain structures underlying gait disorders and falls in PD and aging remain to be characterized. Using functional MRI in healthy human subjects, we have shown here that activity of the mesencephalic locomotor region (MLR), which is composed of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus, was modulated by the speed of imagined gait, with faster imagined gait activating a discrete cluster within the MLR. Furthermore, the presence of gait disorders in patients with PD and in aged monkeys rendered parkinsonian by MPTP intoxication correlated with loss of PPN cholinergic neurons. Bilateral lesioning of the cholinergic part of the PPN induced gait and postural deficits in nondopaminergic lesioned monkeys. Our data therefore reveal that the cholinergic neurons of the PPN play a central role in controlling gait and posture and represent a possible target for pharmacological treatment of gait disorders in PD.
Collapse
Affiliation(s)
- Carine Karachi
- Université Pierre et Marie Curie -Paris 6, CR-ICM, UMR-S975, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Q, Jiang X, Ke Y, Zhang S, Xu R, Zeng Y. Gene therapy in hemiparkinsonian rhesus monkeys: long-term survival and behavioral recovery by transplantation of autologous human tyrosine hydroxylase-expressing neural stem cells. Cytotherapy 2010; 12:226-37. [DOI: 10.3109/14653240903490371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. PROGRESS IN BRAIN RESEARCH 2010; 184:133-57. [DOI: 10.1016/s0079-6123(10)84007-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Emborg ME, Moirano J, Raschke J, Bondarenko V, Zufferey R, Peng S, Ebert AD, Joers V, Roitberg B, Holden JE, Koprich J, Lipton J, Kordower JH, Aebischer P. Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 2009; 36:303-11. [PMID: 19660547 PMCID: PMC2989601 DOI: 10.1016/j.nbd.2009.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023] Open
Abstract
This study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment. GDNF ELISA of striatal brain samples confirmed increased GDNF expression in lenti-GDNF treated aged animals that correlated with functional improvements and preserved nigrostriatal dopaminergic markers. Our results indicate that the aged primate brain challenged by MPTP administration has the potential to respond to trophic factor delivery and that the degree of neuroprotection depends on GDNF levels.
Collapse
Affiliation(s)
- M E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin - Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu N, Yue F, Tang WP, Chan P. An objective measurement of locomotion behavior for hemiparkinsonian cynomolgus monkeys. J Neurosci Methods 2009; 183:188-94. [PMID: 19591869 DOI: 10.1016/j.jneumeth.2009.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 06/21/2009] [Accepted: 06/27/2009] [Indexed: 11/28/2022]
Abstract
Both clinical rating scales and objective locomotion measurement are critical evaluation for primate models of Parkinson's disease. Video image analysis system which has been widely used for objective measurement of locomotion behavior for systemic models has rarely been applied to hemiparkinsonian primate model. In this study, a video image analysis system provided by Vigie Primates software was used to assess the locomotion behavior of MPTP hemi-lesioned parkinsonian cynomolgus monkeys by intracarotid infusion. Regardless the presence of only hemilateral abnormal movement, this video image analysis system was sensitive enough to demonstrate a significant difference between normal and MPTP hemi-lesioned animal on several aspects of motor behavior depicted by this software, including quantity of movement, duration spent in activity and count of burst activity. Specifically, a newly introduced ratio of duration/count for every type of movements was a sensitive parameter to objectively measure the changes of locomotion behavior in MPTP hemi-lesioned parkinsonian primates. As a result, the ratio of duration/count for the middle activity was decreased and the ratio of duration/count for the freezing activity was increased in MPTP hemi-lesioned animals, which correlated well with clinical rating scores. Our results support that video image analysis system would be a sensitive objective measurement of locomotion behavior for hemi-lesioned parkinsonian monkeys.
Collapse
Affiliation(s)
- N Liu
- Department of Neurology and Neurobiology, Key Laboratory on Neurodegenerative Diseases of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | | | | |
Collapse
|
44
|
New evidences for fractalkine/CX3CL1 involved in substantia nigral microglial activation and behavioral changes in a rat model of Parkinson's disease. Neurobiol Aging 2009; 32:443-58. [PMID: 19368990 DOI: 10.1016/j.neurobiolaging.2009.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 02/13/2009] [Accepted: 03/05/2009] [Indexed: 11/23/2022]
Abstract
Activated microglia are instrumental to neurodegeneration in Parkinson's disease (PD). Fractalkine, as an exclusive ligand for CX3CR1 expressed on microglia, has recently been reported to be released out by neurons, and induce microglial activation as a neuron-to-glia signal in the spinal cord. However, the role of fractalkine-induced microglial activation in PD remains unknown. In our study, we injected 1-methyl-4-phenylpyridinium (MPP(+)) into unilateral substantia nigra (SN) which induced ipsilateral endogenous fractalkine expression on neuron and observe the increase of CX3CR1 expression in response to MPP(+) by Western blotting analysis. Moreover, pre-administration of anti-CX3CR1 neutralizing antibody which potentially blocked microglial activation can promote rotation behaviors. To further investigate the role of fractalkine in PD, we injected exogenous fractalkine in unilateral SN, and observed microglial activation, dopaminergic cell depletion, and motor dysfunction. All these effects can be totally abolished by cerebroventricular administration of anti-CX3CR1. Intracerebroventricular administration of minocycline, a selective microglia inhibitor, can prevent fractalkine-induced rotation behaviors, and inhibit dopaminergic neurons from degeneration in the way of dose-dependent. Our studies demonstrate that fractalkine-induced microglial activation plays an important role in the development of PD, and provide an evidence of fractalkine and CX3CR1 as new therapeutic targets for PD treatment.
Collapse
|
45
|
Ding F, Luan L, Ai Y, Walton A, Gerhardt GA, Gash DM, Grondin R, Zhang Z. Development of a stable, early stage unilateral model of Parkinson's disease in middle-aged rhesus monkeys. Exp Neurol 2008; 212:431-9. [PMID: 18547564 DOI: 10.1016/j.expneurol.2008.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/12/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
An important issue raised in testing new neuroprotective/restorative treatments for Parkinson's disease (PD) is the optimal stage in the disease process to initiate therapy. Current palliative treatments are effective in the early disease stages raising ethical concerns about substituting an experimental treatment for a proven therapy. Thus, we have endeavored to create a stable 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) nonhuman primate model of early PD. The new model was created by controlling for dose and route administration of MPTP (unilateral intracarotid infusion), and age of the animals (middleaged, 16-19 years old) in 27 female rhesus monkeys. All animals showed stable parkinsonian features lasting for up to 12-month as per behavioral evaluation. Compared with late-stage PD animals, postmortem analysis demonstrated that more dopaminergic neurons remained in the substantia nigra pars compacta, and more fibers were found in the striatum. In addition, tissue levels of striatal dopamine and its metabolites were also higher. Our results support that a milder but stable PD model can be produced in middle-aged rhesus monkeys.
Collapse
Affiliation(s)
- Feng Ding
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong, University School of Medicine, Jinan, Shandong, 250021, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Luan L, Ding F, Ai Y, Andersen A, Hardy P, Forman E, Gerhardt GA, Gash DM, Grondin R, Zhang Z. Pharmacological MRI (phMRI) Monitoring of Treatment in Hemiparkinsonian Rhesus Monkeys. Cell Transplant 2008. [DOI: 10.3727/096368908784423319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is a great need for the development of noninvasive, highly sensitive, and widely available imaging methods that can potentially be used to longitudinally monitor treatment of Parkinson's disease (PD). Here we report the monitoring of GDNF-induced functional changes of the basal ganglia in hemiparkinsonian monkeys via pharmacological MRI measuring the blood oxygenation level-dependent (BOLD) response to a direct dopamine agonist (apomorphine, APO). After testing BOLD responsiveness to APO in their normal state, two additional scans were taken with the same dose of APO stimulation after induced parkinsonism. Then all animals were chronically treated with GDNF for 18 weeks by a programmable pump and catheter system. The catheter was surgically implanted into the right putamen and connected to the pump via flexible polyurethane tubing. phMRI scans were taken at both 6 and 18 weeks while they received 22.5 μg of GDNF per day. In addition, behavioral changes were monitored throughout the entire study. The primary finding of this study was that APO-evoked activations in the DA denervated putamen were attenuated by the chronic intraputamenal infusion of GDNF accompanied by improvements of parkinsonian features, movement speed, and APO-induced rotation compared to data collected before the chronic GDNF treatment. The results suggest that phMRI methods in combination with administration of a selective DA agonist may be useful for monitoring neurorestorative therapies in PD patients in the future.
Collapse
Affiliation(s)
- Liming Luan
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
| | - Feng Ding
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
| | - Yi Ai
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anders Andersen
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Eric Forman
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Greg A. Gerhardt
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Don M. Gash
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard Grondin
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
47
|
Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, Gerhardt GA, Gash DM. Intraputamenal Infusion of Exogenous Neurturin Protein Restores Motor and Dopaminergic Function in the Globus Pallidus of MPTP-Lesioned Rhesus Monkeys. Cell Transplant 2008. [DOI: 10.3727/096368908784423256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The neurorestorative effects of exogenous neurturin (NTN) delivered directly into the putamen via multiport catheters were studied in 10 MPTP-lesioned rhesus monkeys expressing stable parkinsonism. The parkinsonian animals were blindly assigned to receive coded solutions containing either vehicle (n = 5) or NTN (n = 5, 30 μg/day). Both solutions were coinfused with heparin using convection-enhanced delivery for 3 months. The NTN recipients showed a significant and sustained behavioral improvement in their parkinsonian features during the treatment period, an effect not seen in the vehicle-treated animals. At study termination, locomotor activity levels were increased by 50% in the NTN versus vehicle recipients. Also, DOPAC levels were significantly increased by 150% ipsilateral (right) to NTN infusion in the globus pallidus, while HVA levels were elevated bilaterally in the NTN-treated animals by 10% on the left and 67% on the right hemisphere. No significant changes in DA function were seen in the putamen. Volumetric analysis of putamenal NTN labeling showed between-subject variation, with tissue distribution ranging from 214 to 744 mm3, approximately equivalent to 27–93% of area coverage. Our results support the concept that intraparenchymal delivery of NTN protein may be effective for the treatment of PD. More studies are needed to determine strategies that would enhance tissue distribution of exogenous NTN protein, which could contribute to optimize its trophic effects in the parkinsonian brain.
Collapse
Affiliation(s)
- R. Grondin
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Medical Center, Lexington, KY, USA
| | - Z. Zhang
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Medical Center, Lexington, KY, USA
| | - Y. Ai
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Medical Center, Lexington, KY, USA
| | - F. Ding
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
| | - A. A. Walton
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - S. P. Surgener
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - G. A. Gerhardt
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Medical Center, Lexington, KY, USA
| | - D. M. Gash
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Medical Center, Lexington, KY, USA
| |
Collapse
|
48
|
Xin T, Ai Y, Gerhardt G, Gash D, Zhang Z. Globus pallidus plays a critical role in neurotrophic factor induced functional improvements in hemiparkinsonian monkeys. Biochem Biophys Res Commun 2008; 370:434-9. [PMID: 18381061 DOI: 10.1016/j.bbrc.2008.03.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022]
Abstract
This study was designed to test the hypothesis that the integrity of the globus pallidus (GP) is critical for neurotrophic factor, such as glial-derived neurotrophic factor (GDNF), induced functional changes in rhesus macaques with MPTP-induced parkinsonism, because our previous studies demonstrated that the GP was one of the most affected areas as assessed by the levels of dopamine (DA) and its metabolites. A group of eight hemiparkinsonian monkeys with pallidal lesions, which positively responsed to intraventricular (ICV) injections of GDNF prior to the lesions, and a group of eight hemiparkinsonian monkeys without pallidal lesions, were treated with GDNF after a long washout period after the initial ICV infusions of GDNF. Significant behavioral improvements were only seen in the monkeys without pallidal lesions that received GDNF. Monkeys with pallidal lesions failed to exhibit any behavioral improvement even though they had elevated nigral DA levels. The results suggest that the GP is critical for neurotrophic factor induced functional changes in PD monkeys.
Collapse
Affiliation(s)
- Tao Xin
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong, University School of Medicine, Jinan, Shandong 250021, PR China
| | | | | | | | | |
Collapse
|
49
|
Berger TW, Gerhardt G, Liker MA, Soussou W. The Impact of Neurotechnology on Rehabilitation. IEEE Rev Biomed Eng 2008; 1:157-97. [PMID: 22274903 DOI: 10.1109/rbme.2008.2008687] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
50
|
Walton A, Scheib JL, McLean S, Zhang Z, Grondin R. Motor memory preservation in aged monkeys mirrors that of aged humans on a similar task. Neurobiol Aging 2007; 29:1556-62. [PMID: 17428582 DOI: 10.1016/j.neurobiolaging.2007.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/28/2007] [Accepted: 03/12/2007] [Indexed: 11/19/2022]
Abstract
We studied long-term motor memory preservation in rhesus monkeys tested on a task similar to that employed in humans. First, motor speed and rate of motor decline was measured in 23 animals ranging from 4 to 26 years old. The task for the animals consisted of removing a food reward from a curved rod within the inner chamber of an automated panel. Young animals performed twice as fast as the aged animals. Second, young (n=6) and aged (n=10) animals were re-tested 1 year later on the same task with no intervening practice. We anticipated a decline in motor speed of 144 ms/year, instead the average performance time recorded during the repeat session improved significantly by 17% in the aged animals. This finding mirrors that of a longitudinal study conducted in humans using a similar test panel and supports that, while initial performance times of a novel motor task decline with age, motor memory traces are preserved over an extended time interval, even without continued practice. The data also support that the rhesus monkey could be used as a model to study the mechanisms by which long-term retention of motor memory occurs in aging.
Collapse
Affiliation(s)
- Ashley Walton
- Department of Anatomy & Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Room #305 Davis Mills Building (MRISC), Lexington, KY 40536-0098, USA
| | | | | | | | | |
Collapse
|