1
|
Chemical Ecology of Chemosensation in Asteroidea: Insights Towards Management Strategies of Pest Species. J Chem Ecol 2018; 44:147-177. [PMID: 29362949 DOI: 10.1007/s10886-018-0926-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.
Collapse
|
2
|
Abstract
There are no studies that document the production of prostaglandins (PGs) or their role in Rhinella arenarum oocyte maturation. In this study, we analysed the effect of arachidonic acid (AA) and prostaglandins (PGs) on maturation, activation and pronuclear formation in R. arenarum oocytes. Our results demonstrated that AA was capable of inducing maturation in time-dependent and dose-dependent manner. Arachidonic acid-induced maturation was inhibited by indomethacin. PGs from AA hydrolysis, such as prostaglandin F2α (PGF2α) and, to a lesser extent, PGE2, induced meiosis resumption. Oocyte maturation in response to PGF2α was similar to that produced by progesterone (P4). Oocyte response to PGE1 was scarce. Rhinella arenarum oocyte PGF2α-induced maturation showed seasonal variation. From February to June, oocytes presented low sensitivity to PGF2α. In following periods, this response increased until a maximum was reached during October to January, a close temporal correlation with oocyte response to P4 being observed. The effect of PGF2α on maturation was verified by analysing the capacity of oocytes to activate and form pronuclei after being injected with homologous sperm. The cytological analysis of activated oocytes demonstrated the absence of cortical granules in oocytes, suggesting that PGF2α induces germinal vesicle breakdown (GVBD) and meiosis resumption up to metaphase II. In turn, oocytes matured by the action of PGF2α were able to form pronuclei after fertilization in a similar way to oocyte maturated by P4. In microinjection of mature cytoplasm experiments, the transformation of pre-maturation promoting factor (pre-MPF) to MPF was observed when oocytes were treated with PGF2α. In summary, our results illustrated the participation of the AA cascade and its metabolites in maturation, activation and pronuclei formation in R. arenarum.
Collapse
|
3
|
Dong G, Xu T, Yang B, Lin X, Zhou X, Yang X, Liu Y. Chemical constituents and bioactivities of starfish. Chem Biodivers 2011; 8:740-91. [PMID: 21560228 DOI: 10.1002/cbdv.200900344] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Starfish have been the research topic in many chemical and pharmacological laboratories due to their complex secondary metabolites and diverse bioactivities. The aim of this review is to provide an up-to-date review on the chemistry and bioactivity of compounds isolated from all kinds of starfish to illustrate the chemodiversity and biological significance of these constituents, along with their geographical distribution where it is discernible.
Collapse
Affiliation(s)
- Guang Dong
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
4
|
Patiño R, Yoshizaki G, Bolamba D, Thomas P. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker. Biol Reprod 2003; 68:516-23. [PMID: 12533414 DOI: 10.1095/biolreprod.102.009662] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F(2alpha) and PGE(2), whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 microM) and PGF(2alpha) (5 microM) did not induce maturation, and NDGA (10 microM) did not affect MIH-dependent maturation. However, IM (100 microM) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 microg/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 microM; H7, 50 microM) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 microM) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF(2alpha) restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role of COX products of AA during maturation is possible. A novel model of MIH-dependent ovulation is proposed in which 1). LOX and COX metabolites of AA are both required for ovulation, but at upstream and downstream sites of the pathway, respectively, relative to PKC, and 2). PKC is downstream of genomic activation.
Collapse
Affiliation(s)
- Reynaldo Patiño
- U S Geological Survey, Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, Lubbock, Texas 79409-2120, USA.
| | | | | | | |
Collapse
|
5
|
Schneider C, Brash AR. Lipoxygenase-catalyzed formation of R-configuration hydroperoxides. Prostaglandins Other Lipid Mediat 2002; 68-69:291-301. [PMID: 12432924 DOI: 10.1016/s0090-6980(02)00041-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prototypical lipoxygenases (LOXs) of animals and plants synthesize hydroperoxy fatty acids of the S stereoconfiguration, yet enzymes forming R-configuration products are found in both the animal and plant kingdoms. R-LOX are widespread in aquatic invertebrates, in some of which their R-HETE products have a defined role in reproductive function. A 12R-LOX has been found recently in humans and mice. The human 12R-LOX product, 12R-HETE, appears to be involved in the pathophysiology of psoriasis and other proliferative skin diseases; a role in normal skin development is implied from the spatial and temporal expression patterns of the 12R-LOX in the mouse embryo. In plants, there are few reports of R-LOX activity and in higher plants this is limited to enzymes that catalyze a significant degree of non-specific oxygenation. There are no obvious amino acid sequence motifs characterizing R-LOXs; and in the phylogenetic tree of the LOX superfamily, the R-LOXs do not group into a specific branch of genes. The mechanistic basis of stereocontrol over the oxygenation reaction performed by LOXs may relate to a changed binding orientation of the fatty acid substrate or to the direction of attack by molecular oxygen. A potentially relevant precedent for switching of R- and S-oxygenation specificity was described recently in studies of prostaglandin C-15 oxygenation during cycloxygenase catalysis; single amino acid changes can invert the oxygenation stereospecificity at C-15. In this case, the evidence suggests that R/S switching can occur with the substrate binding in the normal conformation.
Collapse
Affiliation(s)
- Claus Schneider
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232-6602, USA
| | | |
Collapse
|
6
|
Steel DJ, Tieman TL, Schwartz JH, Feinmark SJ. Identification of an 8-lipoxygenase pathway in nervous tissue of Aplysia californica. J Biol Chem 1997; 272:18673-81. [PMID: 9228037 DOI: 10.1074/jbc.272.30.18673] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Arachidonic acid is converted to (8R)-hydroperoxyeicosa-5,9,11, 14-tetraenoic acid (8-HPETE) during incubations with homogenates of the central nervous system of the marine mollusc, Aplysia californica. 8-HPETE can be reduced to the corresponding hydroxy acid or be enzymatically converted to a newly identified metabolite, 8-ketoeicosa-5,9,11,14-tetraenoic acid (8-KETE). These metabolites were identified by high performance liquid chromatography, UV absorbance, and gas chromatography/mass spectrometry. Stereochemical analysis of the products demonstrate that the neuronal enzyme is an (8R)-lipoxygenase. Previously we have shown that the neurotransmitters, histamine and Phe-Met-Arg-Phe-amide, activate 12-lipoxygenase metabolism in isolated identified Aplysia neurons. We now show that acetylcholine activates the (8R)-lipoxygenase pathway within intact nerve cells. Thus, both (12S)- and (8R)-lipoxygenase co-exist in intact Aplysia nervous tissue but are differentially activated by several neurotransmitters. The precise physiological role of the 8-lipoxygenase products is currently under investigation, but by analogy to the well-described 12-lipoxygenase pathway, we suggest that (8R)-HPETE and 8-KETE may serve as second messengers in Aplysia cholinoceptive neurons.
Collapse
Affiliation(s)
- D J Steel
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
7
|
SPAZIANI ERICP, HINSCH GERTRUDEW. Variation in selected unsaturated fatty acids during vitellogenesis in the Florida freshwater crayfishProcambarus paeninsulanus. INVERTEBR REPROD DEV 1997. [DOI: 10.1080/07924259.1997.9672600] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Hada T, Swift LL, Brash AR. Discovery of 5R-lipoxygenase activity in oocytes of the surf clam, Spisula solidissima. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1346:109-19. [PMID: 9219894 DOI: 10.1016/s0005-2760(96)00179-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arachidonic acid and 5-hydroxyeicosatetraenoic acid (5-HETE) are reported to induce reinitiation of meiosis in oocytes of the surf clam Spisula sachalinensis from the Sea of Japan (Varaksin et al., Comp. Biochem. Physiol. 101C, 627-630 (1992). As the Atlantic surf clam Spisula solidissima is a commonly used model for the study of meiosis reinitiation, we examined these cells for the possible occurrence of lipoxygenases and for the bioactivity of the products. Incubation of [14C]arachidonic acid with homogenates of S. solidissima oocytes led to the formation of two major metabolites: 5R-HETE, a novel lipoxygenase product, and 8R-HETE. The products were identified by HPLC, uv spectroscopy, and GC-MS. The corresponding hydroperoxy fatty acids, the primary lipoxygenase products, were isolated from incubations of ammonium sulfate fractionated oocyte cytosol. Arachidonic and eicosapentaenoic acids were identified as constituents of S. solidissima oocyte lipids and the free acids were equally good lipoxygenase substrates. We examined the activity of C18 and C20 polyunsaturated fatty acids and their lipoxygenase products on meiosis reinitiation in Spisula solidissima oocytes, using serotonin and ionophore A23187 as positive controls. The fatty acids and their derivatives were inactive. We conclude that in the surf clam, (as in starfish), there are responding and non-responding species in regard to the maturation-inducing activity of the oocyte lipoxygenase products, and that the lipoxygenase has another, as yet uncharacterized, function in oocyte physiology.
Collapse
Affiliation(s)
- T Hada
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | | | | |
Collapse
|
9
|
Spaziani EP, Hinsch GW, Edwards SC. Changes in prostaglandin E2 and F2 alpha during vitellogenesis in the Florida crayfish Procambarus paeninsulanus. J Comp Physiol B 1993; 163:541-5. [PMID: 8151012 DOI: 10.1007/bf00302112] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While the role of eicosanoids in reproduction in vertebrate species has been well established, the role of these fatty acid derivatives in invertebrate species has not been as well characterized. The purpose of this study was to investigate changes in prostaglandins E2 and F2 alpha during vitellogenesis in the crayfish Procambarus paeninsulanus. In homogenates of crayfish ovaries taken at various stages of development, the rate of prostaglandin synthesis and the concentrations of prostaglandins E2 and F2 alpha increased during the final stages of yolk production just prior to ovulation. A gradual increase in prostaglandin E2 amounts was observed throughout the progression of vitellogenesis. The data suggests the possible involvement of prostaglandins in regulatory events associated with vitellogenesis and the induction of ovulation in Procambarus paeninsulanus.
Collapse
Affiliation(s)
- E P Spaziani
- Department of Biology, University of South Florida, Tampa 33620-5150
| | | | | |
Collapse
|
10
|
Varaksin A, Varaksina G, Reunova O, Latyshev N. Effect of serotonin, some fatty acids and their metabolites on reinitiation of meiotic maturation in oocytes of bivalve Spisula sachalinensis (schrenk). ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0742-8413(92)90097-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Prostaglandin F-1,15-lactone fatty acyl esters: a prostaglandin lactone pathway branch developed during the reproduction and early larval stages of a marine mollusc. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0305-0491(92)90164-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Brash A, Hughes M, Hawkins D, Boeglin W, Song W, Meijer L. Allene oxide and aldehyde biosynthesis in starfish oocytes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Witchel HJ, Steinhardt RA. 1-Methyladenine can consistently induce a fura-detectable transient calcium increase which is neither necessary nor sufficient for maturation in oocytes of the starfish Asterina miniata. Dev Biol 1990; 141:393-8. [PMID: 2210042 DOI: 10.1016/0012-1606(90)90393-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In starfish oocytes a calcium transient can consistently be detected with the dye fura-2 in response to perfusion of threshold levels of 1-methyladenine, the hormone responsible for induction of meiotic maturation. The calcium transient cannot be detected when the hormone is allowed to slowly diffuse to the oocyte, and the hormone-induced calcium transient can be inhibited by preperfusion of the oocyte with subthreshold levels of hormone. The calcium transient is shown to be unnecessary for maturation by eliciting maturation in situations that are not associated with a calcium transient, and the calcium transient is shown to be insufficient for maturation by eliciting a calcium transient and washing the hormone off the oocytes before the end of the hormone-dependent period. A mechanism is suggested to explain why some investigators have detected transient calcium rises during induction of oocyte maturation while others have not.
Collapse
Affiliation(s)
- H J Witchel
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
14
|
Hawkins DJ, Brash AR. Lipoxygenase metabolism of polyunsaturated fatty acids in oocytes of the frog Xenopus laevis. Arch Biochem Biophys 1989; 268:447-55. [PMID: 2492416 DOI: 10.1016/0003-9861(89)90312-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, oocytes or eggs of two marine invertebrates have been found to metabolize arachidonic acid to specific monohydroxy products. These studies have prompted our examination of the oocytes of higher organisms. In the present study, oocytes of an amphibian, Xenopus laevis, were examined for their capacity to biosynthesize hydroxyeicosatetraenoic acids (HETEs) and related hydroxy fatty acids. Two hydroxyeicosanoids were formed during incubations of oocyte homogenates with [14C]arachidonic acid; their structures and stereochemistry were determined by high-pressure liquid chromatography, uv spectroscopy, and gas chromatography-mass spectrometry. The compounds were identified as 15(S)- and 12(S)-hydroxyeicosatetraenoic acids. The synthesis of the two HETEs was not blocked by a cyclooxygenase inhibitor, indomethacin (10 microM), or by prior exposure of the oocyte homogenates to carbon monoxide, an inhibitor of cytochrome P450. Furthermore, 12(S)- and 15(S)-hydroperoxyeicosatetraenoic acids were isolated from brief incubations of gel-filtered ammonium sulfate fraction of frog oocyte homogenates; isolation of the hydroperoxide is further support for the existence of 12(S)- and 15(S)-lipoxygenase activities in the oocytes of X. laevis. Other polyunsaturated acids, including C18.2, C18.3, C20.3, C20.5, and C22.6 were also substrates for the lipoxygenase, and in each case the major product was formed by omega 6 oxygenation.
Collapse
Affiliation(s)
- D J Hawkins
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, Tennessee 37232
| | | |
Collapse
|
15
|
Marine eicosanoids: Occurrence of 8-(R)-HETE in the starfishPatiria miniata. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01941042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Meijer L, Zarutskie P. Starfish oocyte maturation: 1-methyladenine triggers a drop of cAMP concentration related to the hormone-dependent period. Dev Biol 1987; 121:306-15. [PMID: 3034700 DOI: 10.1016/0012-1606(87)90166-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Oocytes of Evasterias troschelii contain 0.43 pmole cyclic AMP/mg protein and 0.47 pmole cyclic GMP/mg protein. Upon stimulation by 1-MeAde the oocytes undergo a moderate (10-30%) decrease in their cAMP concentration. The concentration of cGMP remains unaltered. Oocytes treated with forskolin, an activator of adenylate cyclase, increase their cAMP concentration over 35-fold, up to 16 pmole cAMP/mg protein. When stimulated by 1-MeAde these forskolin-pretreated oocytes undergo a major (50-70%) decrease in their cAMP concentration. A similar decrease is triggered by mimetics of 1-MeAde, such as dithiothreitol, arachidonic acid (AA), and 8-hydroxyeicosatetraenoic acid (8-HETE), but not by adenine which is inactive. 1-MeAde-stimulated oocytes of Pisaster ochraceus also undergo a decrease in cAMP content, the size of which is increased by forskolin. Although a decrease in cAMP begins at sub-threshold 1-MeAde concentrations, the maximal decrease occurs at the same concentration of 1-MeAde needed for maturation induction and a further 1000-fold increase of the 1-MeAde concentration has no further effect. Upon removal of 1-MeAde, the cAMP concentration immediately increases to its original level. Sequential addition and removal of 1-MeAde triggers a sequential decrease and increase of the cAMP concentration, illustrating the continuous requirement for 1-MeAde for eliciting the decrease. Successive additions of 1-MeAde, however, do not trigger further decreases of the cAMP concentration. The temperature dependences of the cAMP concentration decrease and of the hormone-dependent period (HDP; the time of contact with 1-MeAde required for induction of maturation) are closely related. Forskolin, which increases the cAMP concentration, also increases the duration of the HDP (2.5-fold), delays the time course of protein phosphorylation burst and germinal vesicle breakdown, and inhibits AA- and 8-HETE-induced maturation. We conclude that 1-MeAde triggers a drop in cAMP concentration, which is tightly associated with the hormone-dependent period of oocyte maturation.
Collapse
|
17
|
Meijer L, Brash AR, Bryant RW, Ng K, Maclouf J, Sprecher H. Stereospecific induction of starfish oocyte maturation by (8R)-hydroxyeicosatetraenoic acid. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)75996-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|