1
|
Nonclinical pharmacokinetics and biodistribution of VSV-GP using methods to decouple input drug disposition and viral replication. Mol Ther Methods Clin Dev 2022; 28:190-207. [PMID: 36700123 PMCID: PMC9843450 DOI: 10.1016/j.omtm.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.
Collapse
|
2
|
Bhardwaj J, Hong S, Jang J, Han CH, Lee J, Jang J. Recent advancements in the measurement of pathogenic airborne viruses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126574. [PMID: 34252679 PMCID: PMC8256664 DOI: 10.1016/j.jhazmat.2021.126574] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 05/11/2023]
Abstract
Air-transmissible pathogenic viruses, such as influenza viruses and coronaviruses, are some of the most fatal strains and spread rapidly by air, necessitating quick and stable measurements from sample air volumes to prevent further spread of diseases and to take appropriate steps rapidly. Measurements of airborne viruses generally require their collection into liquids or onto solid surfaces, with subsequent hydrosolization and then analysis using the growth method, nucleic-acid-based techniques, or immunoassays. Measurements can also be performed in real time without sampling, where species-specific determination is generally disabled. In this review, we introduce some recent advancements in the measurement of pathogenic airborne viruses. Air sampling and measurement technologies for viral aerosols are reviewed, with special focus on the effects of air sampling on damage to the sampled viruses and their measurements. Measurement of pathogenic airborne viruses is an interdisciplinary research area that requires understanding of both aerosol technology and biotechnology to effectively address the issues. Hence, this review is expected to provide some useful guidelines regarding appropriate air sampling and virus detection methods for particular applications.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | | - Junbeom Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang-Ho Han
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaegil Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering & Department of Urban and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Bhardwaj J, Kim MW, Jang J. Rapid Airborne Influenza Virus Quantification Using an Antibody-Based Electrochemical Paper Sensor and Electrostatic Particle Concentrator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10700-10712. [PMID: 32833440 DOI: 10.1021/acs.est.0c00441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Airborne influenza viruses are responsible for serious respiratory diseases, and most detection methods for airborne viruses are based on extraction of nucleic acids. Herein, vertical-flow-assay-based electrochemical paper immunosensors were fabricated to rapidly quantify the influenza H1N1 viruses in air after sampling with a portable electrostatic particle concentrator (EPC). The effects of antibodies, anti-influenza nucleoprotein antibodies (NP-Abs) and anti-influenza hemagglutinin antibodies (HA-Abs), on the paper sensors as well as nonpulsed high electrostatic fields with and without corona charging on the virus measurement were investigated. The antigenicity losses of the surface (HA) proteins were caused by H2O2 via lipid oxidation-derived radicals and 1O2 via direct protein peroxidation upon exposure of a high electrostatic field. However, minimal losses in antigenicity of NP of the influenza viruses were observed, and the concentration of the H1N1 viruses was more than 160 times higher in the EPC than the BioSampler upon using NP-Ab based paper sensors after 60 min collection. This NP-Ab-based paper sensors with the EPC provided measurements comparable to quantitative polymerase chain reaction (qPCR) but much quicker, specific to the influenza H1N1 viruses in the presence of other airborne microorganisms and beads, and more cost-effective than enzyme-linked immunosorbent assay and qPCR.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myeong-Woo Kim
- School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Mechanical, Aerospace and Nuclear Engineering, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Meunier SM, Sasges MR, Aucoin MG. Evaluating ultraviolet sensitivity of adventitious agents in biopharmaceutical manufacturing. J Ind Microbiol Biotechnol 2017; 44:893-909. [PMID: 28283956 PMCID: PMC7087614 DOI: 10.1007/s10295-017-1917-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
Incidents of contamination in biopharmaceutical production have highlighted the need to apply alternative or supplementary disinfection techniques. Ultraviolet (UV) irradiation is a well-established method for inactivating a broad range of microorganisms, and is therefore a good candidate as an orthogonal technique for disinfection. To apply UV as a safeguard against adventitious agents, the UV sensitivity of these target agents must be known so that the appropriate dose of UV may be applied to achieve the desired level of inactivation. This document compiles and reviews experimentally derived 254 nm sensitivities of organisms relevant to biopharmaceutical production. In general, different researchers have found similar sensitivity values despite a lack of uniformity in experimental design or standardized quantification techniques. Still, the lack of consistent methodologies has led to suspicious UV susceptibilities in certain instances, justifying the need to create a robust collection of sensitivity values that can be used in the design and sizing of UV systems for the inactivation of adventitious agents.
Collapse
Affiliation(s)
- Sarah M Meunier
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael R Sasges
- Trojan Technologies, 3020 Gore Rd., London, ON, N5V 4T7, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
5
|
Fittipaldi M, Rodriguez NJP, Codony F, Adrados B, Peñuela GA, Morató J. Discrimination of infectious bacteriophage T4 virus by propidium monoazide real-time PCR. J Virol Methods 2010; 168:228-32. [DOI: 10.1016/j.jviromet.2010.06.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022]
|
6
|
Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl Environ Microbiol 2008; 75:297-307. [PMID: 19011062 DOI: 10.1128/aem.01150-08] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
7
|
Azar Daryany MK, Hosseini SM, Raie M, Fakharie J, Zareh A. Study on continuous (254 nm) and pulsed UV (266 and 355 nm) lights on BVD virus inactivation and its effects on biological properties of fetal bovine serum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 94:120-4. [PMID: 19095459 DOI: 10.1016/j.jphotobiol.2008.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/28/2008] [Accepted: 10/28/2008] [Indexed: 01/02/2023]
Abstract
Both continuous UV lights and pulsed UV lasers have potentials to inactivate known and emerging viruses. Bovine viral diarrhea virus (BVDV), from the Pestivirus genus, is known to be a common viral contamination in (fetal) bovine serum (FBS). Also, BVDV has been used in the blood product industry as a surrogate for Hepatitis C virus (HCV), due to its similarity in structure and genome. Germicidal UV lamp with the wavelength of 254 nm and Nd:YAG laser (pulsed UV laser) in its third and fourth harmonic with the wavelengths of 355 and 266 nm, respectively, were used. BVDV suspended in PBS or FBS were exposed to different intensities and doses and then reduction in BVDV titer were calculated. To complete inactivation of BVDV suspended in PBS and PBS containing 5% FBS, 1.6 (t=30 min) and 3.2 (t=60 min)J/cm(2) were used. The minimum doses for inactivation of BVDV suspended in PBS with the 355 and 266 nm of pulsed UV laser were 352 and 92.25 J/cm(2). Also, the minimum doses for inactivation of BVDV suspended in FBS with 355 and 266 nm wavelengths of pulsed UV laser were 704 and 127 J/cm(2). To evaluate the irradiated FBS quality to support cell culture growth, FBS was treated with the dose of 190.5 J/cm(2) and 266 nm pulsed UV laser and was used to grow Vero cells, in comparison with a control group. The viability of cells in two groups was identical and the statistical evaluation showed no significant difference in 12 passages.
Collapse
Affiliation(s)
- Mahmoud Karimi Azar Daryany
- Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Evin, 19839 Tehran, Iran
| | | | | | | | | |
Collapse
|
8
|
Nuanualsuwan S, Mariam T, Himathongkham S, Cliver DO. Ultraviolet Inactivation of Feline Calicivirus, Human EntericViruses and Coliphages¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760406uiofch2.0.co2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abstract
UV radiation from the sun is the primary germicide in the environment. The goal of this study was to estimate inactivation of viruses by solar exposure. We reviewed published reports on 254-nm UV inactivation and tabulated the sensitivities of a wide variety of viruses, including those with double-stranded DNA, single-stranded DNA, double-stranded RNA, or single-stranded RNA genomes. We calculated D(37) values (fluence producing on average one lethal hit per virion and reducing viable virus to 37%) from all available data. We defined "size-normalized sensitivity" (SnS) by multiplying UV(254) sensitivities (D(37) values) by the genome size, and SnS values were relatively constant for viruses with similar genetic composition. In addition, SnS values were similar for complete virions and their defective particles, even when the corresponding D(37) values were significantly different. We used SnS to estimate the UV(254) sensitivities of viruses for which the genome composition and size were known but no UV inactivation data were available, including smallpox virus, Ebola, Marburg, Crimean-Congo, Junin, and other hemorrhagic viruses, and Venezuelan equine encephalitis and other encephalitis viruses. We compiled available data on virus inactivation as a function of wavelength and calculated a composite action spectrum that allowed extrapolation from the 254-nm data to solar UV. We combined our estimates of virus sensitivity with solar measurements at different geographical locations to predict virus inactivation. Our predictions agreed with the available experimental data. This work should be a useful step to understanding and eventually predicting the survival of viruses after their release in the environment.
Collapse
Affiliation(s)
- C David Lytle
- Edgewood Chemical Biological Center, U.S. Army, Aberdeen Proving Ground, Maryland 21010-5424, USA
| | | |
Collapse
|
10
|
|
11
|
Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J. Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 2004; 86:230-8. [PMID: 15144527 DOI: 10.1111/j.0042-9007.2004.00485.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Ultraviolet-C (UVC) irradiation is a viral-inactivation method that was dismissed by many plasma fractionators as a result of the potential for protein damage and the difficulty in delivering uniform doses. A reactor with novel spiral flow hydraulic mixing was recently designed for uniform and controlled UVC treatment. The objective of this study was to investigate virus inactivation and protein recovery after treatment through the new reactor. MATERIALS AND METHODS Virus- and mock-spiked Alpha1-proteinase inhibitor (Alpha1-PI) solutions were treated with UVC. The virus samples were assayed for residual infectivity and amplified by the polymerase chain reaction (PCR). The mock-spiked samples were assayed for protein integrity. RESULTS Greater than 4 log10 of all test viruses were inactivated, regardless of the type of nucleic acid or presence of an envelope. Unlike previous studies, viruses with the smallest genomes were found to be those most sensitive to UVC irradiation, and detection of PCR amplicons > or = 2.0 kb was correlated to viral infectivity. Doses that achieved significant virus inactivation yielded recovery of > 90% protein activity, even in the absence of quenchers. CONCLUSIONS The results demonstrate the effectiveness of UVC treatment, in the novel reactor, to inactivate viruses without causing significant protein damage, and confirm the utility of large PCR amplicons as markers for infectious virus.
Collapse
Affiliation(s)
- J Wang
- Bayer Healthcare, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li JW, Xin ZT, Wang XW, Zheng JL, Chao FH. Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide. WATER RESEARCH 2004; 38:1514-9. [PMID: 15016528 DOI: 10.1016/j.watres.2003.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 11/07/2003] [Accepted: 12/13/2003] [Indexed: 05/20/2023]
Abstract
In this study, to elucidate the mechanisms of inactivation of hepatitis A virus (HAV) by chlorine dioxide, cell culture, enzyme-linked immunosorbent assay (ELISA), and long-overlapping RT-PCR were used to detect the infectivity, antigenicity, and entire genome of HAV before and after disinfection. The results revealed the complete inactivation of infectivity after a 10-min exposure to 7.5mg of chlorine dioxide per liter; and the highest level of sensitivity in the 5'non-translated regions (5'NTR) (the sequence from bp 1 to 671), inactivation of which took as much time as the inactivation of infectivity of HAV by chlorine dioxide; the complete destruction of antigenicity after a 10-min exposure to 7.5mg of chlorine dioxide per liter. It is suggested that the inactivation mechanism of HAV by chlorine dioxide was due to the loss of the 5'NTR and/or destruction of the antigenicity, which is not similar to that of chlorine (Appl Environ Microbiol 68: 4951).
Collapse
Affiliation(s)
- Jun Wen Li
- Institute of Health and Environmental Medicine of Tianjin, 1 Da Li Road, Tianjin City 300050, People's Republic of China.
| | | | | | | | | |
Collapse
|
13
|
Abstract
During inactivation of poliovirus type 1 (PV-1) by exposure to UV, hypochlorite, and heat (72 degrees C), the infectivity of the virus was compared with that of its RNA. DEAE-dextran (1-mg/ml concentration in Dulbecco's modified Eagle medium buffered with 0.05 M Tris, pH 7.4) was used to facilitate transfecting PV-1 RNA into FRhK-4 host cells. After interaction of PV-1 RNA with cell monolayer at room temperature (21 to 22 degrees C) for 20 min, the monolayers were washed with 5 ml of Hanks balanced salt solution. The remainder of the procedure was the same as that for the conventional plaque technique, which was also used for quantifying the PV-1 whole-particle infectivity. Plaque formation by extracted RNA was approximately 100,000-fold less efficient than that by whole virions. The slopes of best-fit regression lines of inactivation curves for virion infectivity and RNA infectivity were compared to determine the target of inactivation. For UV and hypochlorite inactivation the slopes of inactivation curves of virion infectivity and RNA infectivity were not statistically different. However, the difference of slopes of inactivation curves of virion infectivity and RNA infectivity was statistically significant for thermal inactivation. The results of these experiments indicate that viral RNA is a primary target of UV and hypochlorite inactivations but that the sole target of thermal inactivation is the viral capsid.
Collapse
Affiliation(s)
- Suphachai Nuanualsuwan
- World Health Organization Collaborating Center for Food Virology, Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616-8743, USA
| | | |
Collapse
|
14
|
Myatt TA, Johnston SL, Rudnick S, Milton DK. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay. BMC Public Health 2003; 3:5. [PMID: 12525263 PMCID: PMC140314 DOI: 10.1186/1471-2458-3-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 01/13/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. METHODS We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis. RESULTS We obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. CONCLUSION The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles.
Collapse
Affiliation(s)
- Theodore A Myatt
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston MA USA 02115
| | - Sebastian L Johnston
- Department of Respiratory Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG, UK
| | - Stephen Rudnick
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston MA USA 02115
| | - Donald K Milton
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Ave, Boston MA USA 02115
| |
Collapse
|
15
|
Nuanualsuwan S, Cliver DO. Capsid functions of inactivated human picornaviruses and feline calicivirus. Appl Environ Microbiol 2003; 69:350-7. [PMID: 12514015 PMCID: PMC152381 DOI: 10.1128/aem.69.1.350-357.2003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 10/10/2002] [Indexed: 11/20/2022] Open
Abstract
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.
Collapse
Affiliation(s)
- Suphachai Nuanualsuwan
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616-8743, USA
| | | |
Collapse
|
16
|
Li JW, Xin ZT, Wang XW, Zheng JL, Chao FH. Mechanisms of inactivation of hepatitis a virus by chlorine. Appl Environ Microbiol 2002; 68:4951-5. [PMID: 12324343 PMCID: PMC126388 DOI: 10.1128/aem.68.10.4951-4955.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study was intended to investigate the feasibility of reverse transcription-PCR (RT-PCR) for evaluation of the efficacy of inactivation of viruses in water and to elucidate the mechanisms of inactivation of hepatitis A virus (HAV) by chlorine. Cell culture, enzyme-linked immunosorbent assay, and long-overlap RT-PCR were used to detect the infectivity, antigenicity, and entire genome of HAV inactivated or destroyed by chlorine. The cell culture results revealed the complete inactivation of infectivity after 30 min of exposure to 10 or 20 mg of chlorine per liter and the highest level of sensitivity in the 5' nontranslated regions (5'NTR), inactivation of which took as much time as the inactivation of infectivity of HAV by chlorine. However, antigenicity was not completely destroyed under these conditions. Some fractions in the coding region were resistant to chlorine. To determine the specific region of the 5'NTR lost, three segments of primers were redesigned to monitor the region from bp 1 to 1023 across the entire genome. It was shown that the sequence from bp 1 to 671 was the region most sensitive to chlorine. The results suggested that the inactivation of HAV by chlorine was due to the loss of the 5'NTR. It is believed that PCR can be used to assess the efficacy of disinfection of HAV by chlorine as well as to research the mechanisms of inactivation of viruses by disinfectants.
Collapse
Affiliation(s)
- Jun Wen Li
- Institute of Health and Environmental Medicine of Tianjin, Tianjin City 300050, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Volkin DB, Burke CJ, Marfia KE, Oswald CB, Wolanski B, Middaugh CR. Size and conformational stability of the hepatitis A virus used to prepare VAQTA, a highly purified inactivated vaccine. J Pharm Sci 1997; 86:666-73. [PMID: 9188048 DOI: 10.1021/js960475h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A variety of biophysical techniques have been employed to examine the size and conformational integrity of highly purified hepatitis A virus (HAV) in solution (purified HAV particles are subsequently formalin-inactivated and adsorbed to aluminum salts for use as the vaccine VAQTA). The size of HAV particles was assessed by a combination of electron microscopy, sedimentation velocity, and dynamic light scattering. The effect of ionic strength and temperature on the overall conformational stability of HAV was determined by a combination of intrinsic HAV protein fluorescence, fluorescent probes of both RNA and protein, and UV-visible spectroscopy. A major structural change in HAV occurs near 60 degrees C with the addition of 0.2 M magnesium chloride enhancing the thermal stability of HAV by approximately 10 degrees C. Salt concentrations above 0.2 M, however, decrease the solubility of HAV. The effect of pH on the physical properties of HAV particles was monitored by dynamic light scattering, analytical size exclusion HPLC, and interaction with fluorescent dyes. HAV particles undergo a substantially reversible association/aggregation at pH values below 6 with the concomitant exposure of previously buried hydrophobic surfaces below pH 4. These results are in good agreement with previous studies of HAV thermal stability under extreme conditions in which the irreversible inactivation of the viral particles was measured primarily by the loss of viral infectivity. The wide variety of biophysical measurements described in this work, however, directly monitor structural changes as they occur, thus providing a molecular basis with which to monitor HAV stability during purification and storage.
Collapse
Affiliation(s)
- D B Volkin
- Department of Vaccine Pharmaceutical Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang CH, Tschen SY, Flehmig B. Quantitative determination of immune response against hepatitis A virus capsids after natural infection. Vaccine 1996; 14:355-6. [PMID: 8744565 DOI: 10.1016/0264-410x(95)00152-q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Wang CH, Tschen SY, Heinricy U, Weber M, Flehmig B. Immune response to hepatitis A virus capsid proteins after infection. J Clin Microbiol 1996; 34:707-13. [PMID: 8904442 PMCID: PMC228874 DOI: 10.1128/jcm.34.3.707-713.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study was undertaken to determine the immune response of humans to viral capsid polypeptides of hepatitis A virus (HAV) after natural infection, which is very important for vaccine development. Antiviral capsids in 73 serum samples from patients with acute and chronic HAV infections were analyzed by immunoblotting against individual HAV capsid polypeptides (VP1, VP2, VP3, and VP4) by using a cell culture-based HAV antigen. For reference, total anti-HAV immunoglobulin G (IgG) and anti-HAV IgM were also determined by radioimmunoassay. As a result, a dominant immune response against VP1 (98% IgG, 94% IgM) was found in the acute phase. However, many other sera also reacted with VP0 (88% IgG; 35% IgM) and VP3 (81% IgG and 29% IgM). In contrast to the acute phase, anti-VP1, anti-VP0, and anti-VP3, IgG antibodies against all three viral proteins (29, 29, and 73% respectively), especially those against VP3, were found years after onset of HAV disease and over long periods in the sera of hepatitis patients. These results suggest that antibodies for capsid polypeptides are present over an extended period in the sera of HAV-infected patients. They are likely of importance in maintaining long-term immunity.
Collapse
Affiliation(s)
- C H Wang
- Department of Medical Virology and Epidemiology of Virus Diseases, Hygiene Institute of the University of Tubingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|