1
|
St Pierre K, Cashmore BA, Bolignano D, Zoccali C, Ruospo M, Craig JC, Strippoli GF, Mallett AJ, Green SC, Tunnicliffe DJ. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2024; 10:CD010294. [PMID: 39356039 PMCID: PMC11445802 DOI: 10.1002/14651858.cd010294.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the leading inherited cause of kidney disease. Clinical management has historically focused on symptom control and reducing associated complications. Improved understanding of the molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents targeting disease pathogenesis and preventing disease progression. However, the role of disease-modifying agents for all people with ADPKD is unclear. This is an update of a review first published in 2015. OBJECTIVES We aimed to evaluate the benefits and harms of interventions to prevent the progression of ADPKD and the safety based on patient-important endpoints, defined by the Standardised Outcomes in NephroloGy-Polycystic Kidney Disease (SONG-PKD) core outcome set, and general and specific adverse effects. SEARCH METHODS We searched the Cochrane Kidney and Transplants Register of Studies up to 13 August 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions, placebo, or standard care were considered for inclusion. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. Summary estimates of effects were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 57 studies (8016 participants) that investigated 18 pharmacological interventions (vasopressin 2 receptor (V2R) antagonists, antihypertensive therapy, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins, kinase inhibitors, diuretics, anti-diabetic agents, water intake, dietary intervention, and supplements) in this review. Compared to placebo, the V2R antagonist tolvaptan probably preserves eGFR (3 studies, 2758 participants: MD 1.26 mL/min/1.73 m2, 95% CI 0.73 to 1.78; I2 = 0%) and probably slows total kidney volume (TKV) growth in adults (1 study, 1307 participants: MD -2.70 mL/cm, 95% CI -3.24 to -2.16) (moderate certainty evidence). However, there was insufficient evidence to determine tolvaptan's impact on kidney failure and death. There may be no difference in serious adverse events; however, treatment probably increases nocturia, fatigue and liver enzymes, may increase dry mouth and thirst, and may decrease hypertension and urinary and upper respiratory tract infections. Data on the impact of other therapeutic interventions were largely inconclusive. Compared to placebo, somatostatin analogues probably decrease TKV (6 studies, 500 participants: SMD -0.33, 95% CI -0.51 to -0.16; I2 = 11%), probably have little or no effect on eGFR (4 studies, 180 participants: MD 4.11 mL/min/1.73 m3, 95% CI -3.19 to 11.41; I2 = 0%) (moderate certainty evidence), and may have little or no effect on kidney failure (2 studies, 405 participants: RR 0.64, 95% CI 0.16 to 2.49; I2 = 39%; low certainty evidence). Serious adverse events may increase (2 studies, 405 participants: RR 1.81, 95% CI 1.01 to 3.25; low certainty evidence). Somatostatin analogues probably increase alopecia, diarrhoea or abnormal faeces, dizziness and fatigue but may have little or no effect on anaemia or infection. The effect on death is unclear. Targeted low blood pressure probably results in a smaller per cent annual increase in TKV (1 study, 558 participants: MD -1.00, 95% CI -1.67 to -0.33; moderate certainty evidence) compared to standard blood pressure targets, had uncertain effects on death, but probably do not impact other outcomes such as change in eGFR or adverse events. Kidney failure was not reported. Data comparing antihypertensive agents, mTOR inhibitors, eicosapentaenoic acids, statins, vitamin D compounds, metformin, trichlormethiazide, spironolactone, bosutinib, curcumin, niacinamide, prescribed water intake and antiplatelet agents were sparse and inconclusive. An additional 23 ongoing studies were also identified, including larger phase III RCTs, which will be assessed in a future update of this review. AUTHORS' CONCLUSIONS Although many interventions have been investigated in patients with ADPKD, at present, there is little evidence that they improve patient outcomes. Tolvaptan is the only therapeutic intervention that has demonstrated the ability to slow disease progression, as assessed by eGFR and TKV change. However, it has not demonstrated benefits for death or kidney failure. In order to confirm the role of other therapeutic interventions in ADPKD management, large RCTs focused on patient-centred outcomes are needed. The search identified 23 ongoing studies, which may provide more insight into the role of specific interventions.
Collapse
Affiliation(s)
- Kitty St Pierre
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pharmacy Department, Gold Coast University Hospital, Gold Coast, Australia
| | - Brydee A Cashmore
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Carmine Zoccali
- Institute of Clinical Physiology, CNR - Italian National Council of Research, Reggio Calabria, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Andrew J Mallett
- Department of Renal Medicine, Townsville Hospital and Health Service, Townsville, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Suetonia C Green
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Kędzierska-Kapuza K, Łopuszyńska I, Niewiński G, Franek E, Szczuko M. The Influence of Non-Pharmacological and Pharmacological Interventions on the Course of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:3216. [PMID: 39339816 PMCID: PMC11434835 DOI: 10.3390/nu16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic kidney disease (PKD) includes autosomal dominant (ADPKD) and autosomal recessive (ARPKD) forms, both of which are primary genetic causes of kidney disease in adults and children. ADPKD is the most common hereditary kidney disease, with a prevalence of 329 cases per million in Europe. This condition accounts for 5-15% of end-stage chronic kidney disease (ESKD) cases, and in developed countries such as Poland, 8-10% of all dialysis patients have ESKD due to ADPKD. The disease is caused by mutations in the PKD1 and PKD2 genes, with PKD1 mutations responsible for 85% of cases, leading to a more aggressive disease course. Recent research suggests that ADPKD involves a metabolic defect contributing to cystic epithelial proliferation and cyst growth. Aim: This review explores the interplay between metabolism, obesity, and ADPKD, discussing dietary and pharmacological strategies that target these metabolic abnormalities to slow disease progression. Conclusion: Metabolic reprogramming therapies, including GLP-1 analogs and dual agonists of GIP/GLP-1 or glucagon/GLP-1 receptors, show promise, though further research is needed to understand their potential in ADPKD treatment fully.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Inga Łopuszyńska
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Grzegorz Niewiński
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University, 24 W. Broniewskiego St., 71-460 Szczecin, Poland
| |
Collapse
|
3
|
Gitomer BY, Wang W, George D, Coleman E, Nowak KL, Struemph T, Cadnapaphornchai MA, Patel NU, Jovanovich A, Klawitter J, Farmer B, Ostrow A, You Z, Chonchol M. Statin therapy in patients with early-stage autosomal dominant polycystic kidney disease: Design and baseline characteristics. Contemp Clin Trials 2024; 137:107423. [PMID: 38151173 DOI: 10.1016/j.cct.2023.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development and continued growth of multiple cysts in the kidneys leading to ultimate loss of kidney function in most patients. Currently, tolvaptan is the only agency approved therapy to slow kidney disease advancement in patients with faster progressing disease underscoring the need for additional ADPKD therapies suitable for all patients. We previously showed that pravastatin slowed kidney disease progression in children and young adults with ADPKD. However, the intervention has not been tested in an adult cohort. AIMS The aim of the study is to conduct a single center, randomized, placebo-controlled double-blinded clinical trial to determine the efficacy of pravastatin on slowing kidney disease progression in adult patients with early stage ADPKD. METHODS One hundred and fifty adult patients with ADPKD and eGFR ≥60 ml/min/1.73m2 will be enrolled in the study and randomized to receive 40 mg/day pravastatin or placebo for a period of 2-years. OUTCOMES The primary outcome of the trial is change in total kidney volume assessed by magnetic resonance imaging (MRI). Secondary outcomes include change in kidney function by iothalamate GFR and renal blood flow and markers of inflammation and oxidative stress. CONCLUSION This study will assess the kidney therapeutic benefits of pravastatin in adult patients with ADPKD. The recruitment goal of 150 subjects was attained and the study is ongoing. REGISTRATION This study is registered on Clinicaltrials.gov # NCT03273413.
Collapse
Affiliation(s)
- Berenice Y Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Wei Wang
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Diana George
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Erin Coleman
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Taylor Struemph
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke's Medical Center, 2055 N. High St., Suite 205, Denver, CO 80205, USA
| | - Nayana U Patel
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA; VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| | - Jelena Klawitter
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Beverly Farmer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Anna Ostrow
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, 13199 East Montview Blvd., Suite 495, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
5
|
Wilk EJ, Howton TC, Fisher JL, Oza VH, Brownlee RT, McPherson KC, Cleary HL, Yoder BK, George JF, Mrug M, Lasseigne BN. Prioritized polycystic kidney disease drug targets and repurposing candidates from pre-cystic and cystic mouse Pkd2 model gene expression reversion. Mol Med 2023; 29:67. [PMID: 37217845 PMCID: PMC10201779 DOI: 10.1186/s10020-023-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.
Collapse
Affiliation(s)
- Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Timothy C. Howton
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Vishal H. Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Ryan T. Brownlee
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Biomedical Sciences, Mercer University, Macon, GA USA
| | - Kasi C. McPherson
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Hannah L. Cleary
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- University of Kentucky College of Medicine, Lexington, KY USA
| | - Bradley K. Yoder
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - James F. George
- The Department of Surgery, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Michal Mrug
- The Department of Medicine, HeersinkSchool of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Veterans Affairs Medical Center, Birmingham, AL USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
6
|
Ackley W, Dahl NK, Park M. Pharmacologic Management of Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:228-235. [PMID: 37088525 DOI: 10.1053/j.akdh.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disorder and the fourth leading cause of end-stage kidney disease. ADPKD encompasses a wide range of morbidity in addition to chronic kidney disease and end-stage kidney disease, and its pathogenesis remains incompletely understood. Progress in the management of this condition includes the 2018 FDA approval of tolvaptan as the only mechanism-specific treatment available for individuals at risk of rapid progression. Assessing the risk of rapid progression is discussed at greater length in a separate article in this special issue. This section will address use and prescription of tolvaptan in more detail and address other therapies that may be considered in the treatment of patients with ADPKD.
Collapse
Affiliation(s)
- William Ackley
- Department of Nephrology, University of Connecticut, Nephrology, Farmington, CT
| | - Neera K Dahl
- Section of Nephrology, Yale School of Medicine, New Haven, CT
| | - Meyeon Park
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
7
|
Park H, Paek JH, Kim Y, Park WY, Han S, Jin K. Clinical characteristics and risk factors for kidney failure in patients with autosomal dominant polycystic kidney disease: A retrospective study. Medicine (Baltimore) 2022; 101:e31838. [PMID: 36451428 PMCID: PMC9704897 DOI: 10.1097/md.0000000000031838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary and progressive renal disease. By the age of 65 years, 45% to 70% of patients with ADPKD reach end-stage renal disease (ESRD). Although there are various treatments for this condition, no standard therapy exists to delay the progression of ADPKD. Hence, understanding the factors that affect disease progression may be helpful for the treatment of ADPKD. The medical records of 288 patients with ADPKD at Keimyung University Dongsan Medical Center between January 1989 and August 2018 were analyzed retrospectively. Furthermore, we inspected the risk factors involved in the progression of ADPKD and the kidney survival rates of patients using the Cox proportional hazards model and Kaplan-Meier survival analysis. The mean age at the time of diagnosis was 43.1 ± 14.1 years, and there were 146 males (50.7%). In total, 197 patients (68.4%) had hypertension and 11 patients (3.8%) had cerebral aneurysm. Stroke occurred in 35 patients (12.1%), including 11 cases of cerebral hemorrhage and 24 cases of cerebral infarction. Twenty-eight patients (9.7%) died during the follow-up period (117.1 ± 102.1 months). Infection (42.9%) was the most common cause of mortality, followed by sudden cardiac death (25.0%). Overall, 132 patients (45.8%) progressed to ESRD and 104 patients (36.1%) required renal replacement therapy (RRT). The mean duration from diagnosis to RRT was 110.8 ± 93.9 months. Age at diagnosis after 30 years (odd's ratio [OR], 2.737; 95% confidence interval [CI], 1.320-5.675; P = .007), baseline serum creatinine levels (OR, 1.326; 95% CI, 1.259-1.396; P < .001), and cyst infection (OR, 2.065; 95% CI, 1.242-3.433; P = .005) were the independent risk factors for kidney failure in multivariable analysis. To delay the advance of ADPKD to ESRD, early diagnosis and close observation for the onset of cyst infection are crucial.
Collapse
Affiliation(s)
- Hanil Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| | - Jin Hyuk Paek
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| | - Woo Yeong Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Keimyung University Kidney Institute, Daegu, Korea
| |
Collapse
|
8
|
Association of autosomal dominant polycystic kidney disease with cardiovascular disease: a US-National Inpatient Perspective. Clin Exp Nephrol 2022; 26:659-668. [PMID: 35212882 DOI: 10.1007/s10157-022-02200-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Data on the epidemiology of cardiovascular diseases (CVD) in patients with autosomal dominant polycystic kidney disease (ADPKD) are limited. In this study, we assess the prevalence of CVD in patients with ADPKD and evaluate associations between these two entities. METHODS Using the National Inpatient Sample database, we identified 71,531 hospitalizations among adults aged ≥ 18 years with ADPKD, from 2006 to 2014 and collected relevant clinical data. RESULTS The prevalence of CVD in the study population was 42.6%. The most common CVD were ischemic heart diseases (19.3%), arrhythmias (14.2%), and heart failure (13.1%). The prevalence of CVD increased with the severity of renal dysfunction (RD). We found an increase in hospitalizations of patients with ADPKD and CVD over the years (ptrend < 0.01), irrespective of the degree of RD. CVD was the greatest independent predictor of mortality in these patients (OR: 3.23; 95% CI 2.38-4.38 [p < 0.001]). In a propensity matched model of hospitalizations of patients with CKD with and without ADPKD, there was a significant increase in the prevalence of atrial fibrillation/flutter (AF), pulmonary hypertension (PHN), non-ischemic cardiomyopathy (NICM), and hemorrhagic stroke among patients with ADPKD when compared to patients with similar degree of RD without ADPKD. CONCLUSIONS The prevalence of CVD is high among patients with ADPKD, and the most important risk factor associated with CVD is severity of RD. We found an increase in the trend of hospitalizations of patients with ADPKD associated with increased risk of AF, PHN, NICM, and hemorrhagic stroke. History of CVD is the strongest predictor of mortality among patients with ADPKD.
Collapse
|
9
|
Carullo N, Zicarelli MT, Casarella A, Nicotera R, Castagna A, Urso A, Presta P, Andreucci M, Russo E, Bolignano D, Coppolino G. Retarding Progression of Chronic Kidney Disease in Autosomal Dominant Polycystic Kidney Disease with Metformin and Other Therapies: An Update of New Insights. Int J Gen Med 2021; 14:5993-6000. [PMID: 34588803 PMCID: PMC8473846 DOI: 10.2147/ijgm.s305491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent single-gene disorder leading to renal failure. Current therapies are aimed to treat renal and extrarenal complications of ADPKD, but improved knowledge of the pathophysiological mechanisms leading to the generation and growth of cysts has permitted the identification of new drug candidates for clinical trials. Among these, in this review, we will examine above all the role of metformin, hypothesized to be able to activate the AMP-activated protein kinase (AMPK) pathway and potentially modulate some mechanisms implicated in the onset and the growth of the cysts.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | | | - Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alberto Castagna
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandra Urso
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
10
|
Capuano I, Buonanno P, Riccio E, Amicone M, Pisani A. Therapeutic advances in ADPKD: the future awaits. J Nephrol 2021; 35:397-415. [PMID: 34009558 DOI: 10.1007/s40620-021-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies.
Collapse
Affiliation(s)
- Ivana Capuano
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - Pasquale Buonanno
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, Naples, Italy
| | - Eleonora Riccio
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Maria Amicone
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Antonio Pisani
- Chair of Nephrology "Federico II", Department of Public Health, University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
11
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
12
|
Xue C, Zhang LM, Zhou C, Mei CL, Yu SQ. Effect of Statins on Renal Function and Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:407-413. [PMID: 33313061 DOI: 10.1159/000509087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/31/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary nephropathy with few treatments to slow renal progression. The evidence on the effect of lipid-lowering agents (statins) on ADPKD progression remains inconclusive. METHODS We performed a systematic review and meta-analysis by searching the PubMed, Embase, Web of Science, and Cochrane databases (up to November 2019). Changes in estimated glomerular filtration rate (eGFR) and total kidney volume (TKV) were the primary outcomes. Mean differences (MDs) for continuous outcomes and 95% confidence intervals (CIs) were calculated by a random-effects model. RESULTS Five clinical studies with 648 participants were included. Statins did not show significant benefits in the yearly change in eGFR (4 studies, MD = -0.13 mL/min/m2, 95% CI: -0.78 to 0.52, p = 0.70) and the yearly change in TKV (3 studies, MD = -1.17%, 95% CI: -3.40 to 1.05, p = 0.30) compared with the control group. However, statins significantly decreased urinary protein excretion (-0.10 g/day, 95% CI: -0.16 to -0.03, p = 0.004) and serum low-density lipoprotein level (-0.34 mmol/L, 95% CI: -0.58 to -0.10, p = 0.006). CONCLUSION Despite these proteinuria and lipid-lowering benefits, the effect of statins on ADPKD progression was uncertain.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li-Ming Zhang
- Department of Nephrology, Zhabei Central Hospital of Jing'an District, Shanghai, China
| | - Chenchen Zhou
- Outpatient Department, Yangpu Third Military Retreat, Shanghai, China
| | - Chang-Lin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Qiang Yu
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin Ther Targets 2020; 24:589-599. [DOI: 10.1080/14728222.2020.1751818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thijs R. M. Barten
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Lucas H. P. Bernts
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| | - Tom J. G. Gevers
- Department of Gastroenterology and Hepatology, Radboud University, Medical Center, Nijmegen, The Netherlands
- European Reference Network Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|
14
|
Asawa RR, Danchik C, Zahkarov A, Chen Y, Voss T, Jadhav A, Wallace DP, Trott JF, Weiss RH, Simeonov A, Martinez NJ. A high-throughput screening platform for Polycystic Kidney Disease (PKD) drug repurposing utilizing murine and human ADPKD cells. Sci Rep 2020; 10:4203. [PMID: 32144367 PMCID: PMC7060218 DOI: 10.1038/s41598-020-61082-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited monogenic disorders, characterized by a progressive decline in kidney function due in part to the formation of fluid-filled cysts. While there is one FDA-approved therapy, it is associated with potential adverse effects, and all other clinical interventions are largely supportive. Insights into the cellular pathways underlying ADPKD have revealed striking similarities to cancer. Moreover, several drugs originally developed for cancer have shown to ameliorate cyst formation and disease progression in animal models of ADPKD. These observations prompted us to develop a high-throughput screening platform of cancer drugs in a quest to repurpose them for ADPKD. We screened ~8,000 compounds, including compounds with oncological annotations, as well as FDA-approved drugs, and identified 155 that reduced the viability of Pkd1-null mouse kidney cells with minimal effects on wild-type cells. We found that 109 of these compounds also reduced in vitro cyst growth of Pkd1-null cells cultured in a 3D matrix. Moreover, the result of the cyst assay identified therapeutically relevant compounds, including agents that interfere with tubulin dynamics and reduced cyst growth without affecting cell viability. Because it is known that several ADPKD therapies with promising outcomes in animal models failed to be translated to human disease, our platform also incorporated the evaluation of compounds in a panel of primary ADPKD and normal human kidney (NHK) epithelial cells. Although we observed differences in compound response amongst ADPKD and NHK cell preparation, we identified 18 compounds that preferentially affected the viability of most ADPKD cells with minimal effects on NHK cells. Our study identifies attractive candidates for future efficacy studies in advanced pre-clinical models of ADPKD.
Collapse
Affiliation(s)
- Rosita R Asawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Alexey Zahkarov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Yuchi Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ty Voss
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Darren P Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Josephine F Trott
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
15
|
Nowak KL, Hopp K. Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Evidence and Therapeutic Potential. Clin J Am Soc Nephrol 2020; 15:577-584. [PMID: 32086281 PMCID: PMC7133124 DOI: 10.2215/cjn.13291019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autosomal dominant polycystic kidney disease is characterized by progressive development and enlargement of kidney cysts, leading to ESKD. Because the kidneys are under high metabolic demand, it is not surprising that mounting evidence suggests that a metabolic defect exists in in vitro and animal models of autosomal dominant polycystic kidney disease, which likely contributes to cystic epithelial proliferation and subsequent cyst growth. Alterations include defective glucose metabolism (reprogramming to favor aerobic glycolysis), dysregulated lipid and amino acid metabolism, impaired autophagy, and mitochondrial dysfunction. Limited evidence supports that cellular kidney metabolism is also dysregulated in humans with autosomal dominant polycystic kidney disease. There are notable overlapping features and pathways among metabolism, obesity, and/or autosomal dominant polycystic kidney disease. Both dietary and pharmacologic-based strategies targeting metabolic abnormalities are being considered as therapies to slow autosomal dominant polycystic kidney disease progression and are attractive, particularly given the slowly progressive nature of the disease. Dietary strategies include daily caloric restriction, intermittent fasting, time-restricted feeding, a ketogenic diet, and 2-deoxy-glucose as well as alterations to nutrient availability. Pharmacologic-based strategies include AMP-activated kinase activators, sodium glucose cotransporter-2 inhibitors, niacinamide, and thiazolidenediones. The results from initial clinical trials targeting metabolism are upcoming and anxiously awaited within the scientific and polycystic kidney disease communities. There continues to be a need for additional mechanistic studies to better understand the role of dysregulated metabolism in autosomal dominant polycystic kidney disease and for subsequent translation to clinical trials. Beyond single-intervention trials focused on metabolic reprograming in autosomal dominant polycystic kidney disease, great potential also exists by combining metabolic-focused therapeutic approaches with compounds targeting other signaling cascades altered in autosomal dominant polycystic kidney disease, such as tolvaptan.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
16
|
Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2019; 14:678-687. [PMID: 30120380 DOI: 10.1038/s41581-018-0051-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.
Collapse
|
17
|
Brosnahan GM, Abebe KZ, Rahbari-Oskoui FF, Patterson CG, Bae KT, Schrier RW, Braun WE, Chapman AB, Flessner MF, Harris PC, Perrone RD, Steinman TI, Torres VE. Effect of Statin Therapy on the Progression of Autosomal Dominant Polycystic Kidney Disease. A Secondary Analysis of the HALT PKD Trials. Curr Hypertens Rev 2019; 13:109-120. [PMID: 28460625 DOI: 10.2174/1573402113666170427142815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) commonly results in end-stage renal disease (ESRD), yet a long-term treatment that is well tolerated is still lacking. In a small randomized trial in children and adolescents pravastatin administration for 3 years was associated with reduced renal cyst growth, but no large trial has tested the effect of statins in adults. METHODS We performed a post-hoc analysis of the HALT PKD trials to compare outcomes of participants who never used statins with those who used statin for at least 3 years. Because statins were not randomly allocated, we used propensity score models with inverse probability of treatment weighting to account for imbalances between the groups. For subjects in Study A (preserved renal function, n=438) relevant outcomes were percent change in total kidney and liver volume and the rate of decline in estimated glomerular filtration rate (eGFR); for those in Study B (reduced renal function, n=352) we compared time to the composite endpoint of death, ESRD or 50% decline in eGFR. Follow-up was 5-8 years. RESULTS There was no difference in any outcome between the 2 groups. However, limitations of this analysis are the small number of statin users in Study A, different statin drugs and doses used, non-randomized allocation and advanced disease stage in Study B. CONCLUSION Although this post-hoc analysis of the HALT PKD trials does not demonstrate a benefit of statin therapy, conclusions remain preliminary. A larger randomized trial in young people with ADPKD is necessary to answer the question whether statins can slow renal cyst growth and preserve kidney function.
Collapse
Affiliation(s)
| | - Kaleab Z Abebe
- University of Pittsburgh, Pittsburgh, Pennsylvania PA. United States
| | | | | | - Kyongtae T Bae
- University of Pittsburgh, Pittsburgh, Pennsylvania PA. United States
| | | | | | | | | | | | | | - Theodore I Steinman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts MA. United States
| | | | | |
Collapse
|
18
|
Müller RU, Benzing T. Management of autosomal-dominant polycystic kidney disease-state-of-the-art. Clin Kidney J 2018; 11:i2-i13. [PMID: 30581561 PMCID: PMC6295602 DOI: 10.1093/ckj/sfy103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most frequent genetic cause of end-stage renal disease in adults. Affected individuals and families face a significant medical and psychosocial burden due to both renal and extrarenal manifestations. Consequently, interventions that ameliorate the course of the disease and specifically slow down the loss of kidney function are of special interest. Major research efforts in both the clinical and pre-clinical setting in the last two decades resulted in a number of pivotal clinical trials aimed to ameliorate the disease. These studies have underlined the important role of specific supportive measures and provided the basis for first targeted pharmacological therapies. Very recently, the concept of repurposing drugs approved for other conditions for a use in ADPKD has gained increasing attention. Here, we review the current best-practice management of ADPKD patients with a focus on interventions that have reached clinical use to maintain kidney function and give an outlook on future trials and potential novel treatment strategies.
Collapse
Affiliation(s)
- Roman-Ulrich Müller
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Germany.,Center for Rare and Hereditary Kidney Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Germany.,Center for Rare and Hereditary Kidney Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
|
20
|
Reddy BV, Chapman AB. The spectrum of autosomal dominant polycystic kidney disease in children and adolescents. Pediatr Nephrol 2017; 32:31-42. [PMID: 27034070 DOI: 10.1007/s00467-016-3364-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder. It is characterized by the development of renal cysts and kidney enlargement and ultimately leads to renal failure typically in the sixth decade of life. Although most patients are asymptomatic until well into adulthood, renal cysts develop much earlier, often in utero. Significant renal anatomic and cystic expansion typically occurs before clinical manifestations in children and young adults with AKPKD. The cyst burden detected by imaging represents the minority of cyst burden, and renal and cardiovascular abnormalities are the most common manifestations in children with ADPKD. Here we review the molecular pathogenesis of ADPKD, discuss the screening, diagnosis and clinical manifestations of this renal disorder in childhood and adolescents and review treatment options and potential therapies currently being tested.
Collapse
Affiliation(s)
- Bharathi V Reddy
- University of Chicago, 5841, S. Maryland Avenue Suite S-511, MC 5100, Chicago, IL, 60637, USA.
| | - Arlene B Chapman
- University of Chicago, 5841, S. Maryland Avenue Suite S-511, MC 5100, Chicago, IL, 60637, USA
| |
Collapse
|
21
|
Ecder T. Statins in the treatment of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2016; 31:1194-6. [PMID: 26908774 DOI: 10.1093/ndt/gfv449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tevfik Ecder
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
22
|
Validation of Effective Therapeutic Targets for ADPKD Using Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 933:71-84. [DOI: 10.1007/978-981-10-2041-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Zand L, Torres VE, Larson TS, King BF, Sethi S, Bergstralh EJ, Angioi A, Fervenza FC. Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2015; 31:1290-5. [PMID: 26614268 DOI: 10.1093/ndt/gfv394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To determine the effect of statins on renal hemodynamics in normal volunteers and those with autosomal dominant polycystic kidney disease either with mild or moderate renal dysfunction. METHODS Thirty-two study subjects were enrolled in this study: 11 normal volunteers, 11 study subjects with autosomal dominant polycystic kidney disease (ADPKD) and mild kidney disease and 10 study subjects with ADPKD and moderate kidney disease. Subjects in each group received simvastatin 40 mg once daily for a period of 4 weeks. Renal blood flow was measured based on para-amino-hippurate (PAH) clearance and with the use of a magnetic resonance (MR) scanner at the beginning and following 4 weeks of therapy with statins. RESULTS At the end of the study, except for the lipid profile, which was significantly lower in all groups, other laboratory results showed no change. Four weeks of therapy with simvastatin resulted in no change in serum creatinine, 24-h urinary protein, sodium, iothalamate clearance, PAH clearance or renal blood flow as measured by MRI or based on PAH clearance. CONCLUSIONS Four weeks of therapy with simvastatin did not change renal blood flow in the study subjects with ADPKD with mild-to-moderate renal dysfunction or in healthy volunteers. CLINICAL TRIAL REGISTRATION NUMBER NCT02511418.
Collapse
Affiliation(s)
- Ladan Zand
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Vicente E Torres
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Timothy S Larson
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bernard F King
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eric J Bergstralh
- Department of Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrea Angioi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Fernando C Fervenza
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
24
|
Schrier RW. Decade in review--polycystic kidney disease: Slowing progression of autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2015; 11:638-9. [PMID: 26460355 DOI: 10.1038/nrneph.2015.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert W Schrier
- Division of Renal Diseases and Hypertension, University of Colorado Denver, 12700 East 19th Avenue, Campus Box C281, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Klawitter J, McFann K, Pennington AT, Wang W, Klawitter J, Christians U, Schrier RW, Gitomer B, Cadnapaphornchai MA. Pravastatin Therapy and Biomarker Changes in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 2015. [PMID: 26224879 DOI: 10.2215/cjn.11331114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Disease-specific treatment options for autosomal dominant polycystic kidney disease are limited. Clinical intervention early in life is likely to have the greatest effect. In a 3-year randomized double-blind placebo-controlled phase 3 clinical trial, the authors recently showed that pravastatin decreased height-corrected total kidney volume (HtTKV) progression of structural kidney disease over a 3-year period. However, the underlying mechanisms have not been elucidated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Participants were recruited nationally from July 2007 through October 2009. Plasma and urine samples collected at baseline, 18 months, and 36 months from 91 pediatric patients enrolled in the above-mentioned clinical trial were subjected to mass spectrometry-based biomarker analysis. Changes in biomarkers over 3 years were compared between placebo and pravastatin-treated groups. Linear regression was used to evaluate the changes in biomarkers with the percent change in HtTKV over 3 years. RESULTS Changes in plasma concentrations of proinflammatory and oxidative stress markers (9- hydroxyoctadecadienoic acid, 13-hydroxyoctadecadienoic acid, and 15-hydroxyeicosatetraenoic acid [HETE]) over 3 years were significantly different between the placebo and pravastatin-treated groups, with the pravastatin group showing a lower rate of biomarker increase. Urinary 8-HETE, 9-HETE, and 11-HETE were positively associated with the changes in HtTKV in the pravastatin group. CONCLUSIONS Pravastatin therapy diminished the increase of cyclooxygenase- and lipoxygenase-derived plasma lipid mediators. The identified biomarkers and related molecular pathways of inflammation and endothelial dysfunction may present potential targets for monitoring of disease severity and therapeutic intervention of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Jelena Klawitter
- Division of Renal Diseases and Hypertension, Department of Anesthesiology, and
| | - Kim McFann
- Division of Renal Diseases and Hypertension
| | | | - Wei Wang
- Division of Renal Diseases and Hypertension
| | | | | | | | | | - Melissa A Cadnapaphornchai
- Division of Renal Diseases and Hypertension, Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
26
|
Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GFM. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev 2015; 2015:CD010294. [PMID: 26171904 PMCID: PMC8406618 DOI: 10.1002/14651858.cd010294.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disorder causing kidney disease. Current clinical management of ADPKD focuses primarily on symptom control and reducing associated complications, particularly hypertension. In recent years, improved understanding of molecular and cellular mechanisms involved in kidney cyst growth and disease progression has resulted in new pharmaceutical agents to target disease pathogenesis to prevent progressive disease. OBJECTIVES We aimed to evaluate the effects of interventions for preventing ADPKD progression on kidney function, kidney endpoints, kidney structure, patient-centred endpoints (such as cardiovascular events, sudden death, all-cause mortality, hospitalisations, BP control, quality of life, and kidney pain), as well as the general and specific adverse effects related to their use. SEARCH METHODS We searched the Cochrane Renal Group's Specialised Register to 6 June 2015 using relevant search terms. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any interventions for preventing the progression of ADPKD with other interventions or placebo were considered for inclusion without language restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed study risks of bias and extracted data. We summarised treatment effects on clinical outcomes, kidney function and structure and adverse events using random effects meta-analysis. We assessed heterogeneity in estimated treatment effects using the Cochran Q test and I(2) statistic. Summary treatment estimates were calculated as a mean difference (MD) or standardised mean difference (SMD) for continuous outcomes and a risk ratio (RR) for dichotomous outcomes together with their 95% confidence intervals. MAIN RESULTS We included 30 studies (2039 participants) that investigated 11 pharmacological interventions (angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), calcium channel blockers, beta blockers, vasopressin receptor 2 (V2R) antagonists, mammalian target of rapamycin (mTOR) inhibitors, somatostatin analogues, antiplatelet agents, eicosapentaenoic acids, statins and vitamin D compounds) in this review.ACEi significantly reduced diastolic blood pressure (9 studies, 278 participants: MD -4.96 mm Hg, 95% CI -8.88 to -1.04), but had uncertain effects on kidney volumes (MD -42.50 mL, 95% CI -115.68 to 30.67), GFR (MD -3.41 mL/min/1.73 m(2), 95% CI -15.83 to 9.01), and SCr (MD -0.02 mg/dL, 95% CI -0.14 to 0.09), in data largely restricted to children. ACEi did not show different effects on GFR (MD -8.19 mL/min/1.73 m(2), 95% CI -29.46 to 13.07) and albuminuria (SMD -0.19, 95% CI -1.77 to 1.39) when compared with beta-blockers, or SCr (MD 0.00 mg/dL, 95% CI -0.09 to 0.10) when compared with ARBs.Data for effects of V2R antagonists on kidney function and volumes compared to placebo were limited to narrative information within a single study while these agents increased thirst (1444 participants: RR 2.70, 95% CI 2.24 to 3.24) and dry mouth (1455 participants: RR 1.33, 95% CI 1.01 to 1.76).Compared with no treatment, mTOR inhibitors had uncertain effects on kidney function (2 studies, 115 participants: MD 4.45 mL/min/1.73 m(2), 95% CI -3.20 to 12.11) and kidney volume (MD -0.08 L, 95% CI -0.75 to 0.59) but in three studies (560 participants) caused angioedema (RR 13.39, 95% CI 2.56 to 70.00), oral ulceration (RR 6.77, 95% CI 4.42 to 10.38), infections (RR 1.14, 95% CI 1.04 to 1.25) and diarrhoea (RR 1.70, 95% CI 1.26 to 2.29).Somatostatin analogues (6 studies, 138 participants) slightly improved SCr (MD -0.43 mg/dL, 95% CI -0.86 to -0.01) and total kidney volume (MD -0.62 L, 95% CI -1.22 to -0.01) but had no definite effects on GFR (MD 9.50 mL/min, 95% CI -4.45 to 23.44) and caused diarrhoea (RR 3.72, 95% CI 1.43 to 9.68).Data for calcium channel blockers, eicosapentaenoic acids, statins, vitamin D compounds and antiplatelet agents were sparse and inconclusive.Random sequence generation was adequate in eight studies, and in almost half of the studies, blinding was not present or not specified. Most studies did not adequately report outcomes, which adversely affected our ability to assess this bias. The overall drop-out rate was over 10% in nine studies, and few were conducted using intention-to-treat analyses. AUTHORS' CONCLUSIONS Although several interventions are available for patients with ADPKD, at present there is little or no evidence that treatment improves patient outcomes in this population and is associated with frequent adverse effects. Additional large randomised studies focused on patient-centred outcomes are needed.
Collapse
Affiliation(s)
- Davide Bolignano
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Suetonia C Palmer
- University of Otago ChristchurchDepartment of Medicine2 Riccarton AvePO Box 4345ChristchurchNew Zealand8140
| | - Marinella Ruospo
- DiaverumMedical Scientific OfficeLundSweden
- Amedeo Avogadro University of Eastern PiedmontDivision of Nephrology and Transplantation, Department of Translational MedicineVia Solaroli 17NovaraItaly28100
| | - Carmine Zoccali
- CNR ‐ Italian National Council of ResearchInstitute of Clinical PhysiologyCNR‐IFC Via Vallone Petrara c/o Ospedali RiunitiReggio CalabriaItaly89100
| | - Jonathan C Craig
- The University of SydneySydney School of Public HealthEdward Ford Building A27SydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
| | - Giovanni FM Strippoli
- DiaverumMedical Scientific OfficeLundSweden
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchWestmeadNSWAustralia2145
- University of BariDepartment of Emergency and Organ TransplantationBariItaly
- Diaverum AcademyBariItaly
| | | |
Collapse
|
27
|
Grantham JJ. Rationale for early treatment of polycystic kidney disease. Pediatr Nephrol 2015; 30:1053-62. [PMID: 25022529 DOI: 10.1007/s00467-014-2882-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
In hereditary cystic disorders, renal injury begins with the formation of the first cyst. Renal injury may manifest as large kidneys, abdominal pain, hypertension and hematuria in children and young adults with autosomal dominant polycystic kidney disease (ADPKD). In autosomal recessive PKD (ARPKD) and ADPKD, cysts form primarily in collecting ducts and expand progressively. Collecting duct cysts that block urine flow have the potential to block urine formation in large numbers of upstream nephrons. In an ARPKD rat congenitally lacking vasopressin, only a few cysts developed until exogenous arginine vasopressin (AVP) was administered. AVP elevates cyclic AMP in vulnerable tubule cells to stimulate mitogenesis and fluid secretion, thereby causing cysts to form and enlarge indefinitely. The administration of an AVP-V2 receptor inhibitor or the consumption of sufficient water to persistently lower plasma AVP levels will ameliorate disease progression. Renal volume measurements provide the most reliable way to forecast long-term outcome in individual children and adult patients with ADPKD. Many drugs that have demonstrated efficacy in small clinical trials, preclinical trials and cell-based studies are in the treatment pipeline. Counseling, regular exercise, limitation of dietary calories, salt, protein and fat, increased fluid intake throughout the day and treatment of hypertension are components of a rational treatment program that can be offered at an early age to those with, or at risk for developing PKD.
Collapse
Affiliation(s)
- Jared J Grantham
- The Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
28
|
Kazancioglu R, Gursu M. New options in the treatment of autosomal dominant polycystic kidney disease. Ren Fail 2015; 37:535-41. [PMID: 25682970 DOI: 10.3109/0886022x.2015.1013404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic disease (ADPKD) is one of the most common monogenic disorders, and globally is among the most common hereditary causes of end stage kidney disease. Until recently, the causes of this disease remained obscure. However, in the past decade there have been enormous advances in the understanding of the pathophysiology and genetics of this condition, and recent studies have suggested the possibility of specific treatment for slowing cyst growth. This review will focus on the new options for the control of ADPKD.
Collapse
Affiliation(s)
- Rumeyza Kazancioglu
- Department of Nephrology, Bezmialem Vakif University School of Medicine , Istanbul , Turkey and
| | | |
Collapse
|
29
|
Riella C, Czarnecki PG, Steinman TI. Therapeutic advances in the treatment of polycystic kidney disease. Nephron Clin Pract 2015; 128:297-302. [PMID: 25573484 DOI: 10.1159/000368244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 01/10/2023] Open
Abstract
The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes. Cysts are the disease, and overall cystic burden, measured by MRI as total kidney volume, is being established as the best available biomarker of disease progression. Current state-of-the-art therapy is aimed at quality treatment for chronic renal insufficiency and cyst-related complications. Recent therapeutic studies have focused on mechanisms reducing intracellular cyclic AMP levels, blocking the renin-angiotensin-aldosterone system and inhibiting the mTOR-signaling pathway. PKD therapies with vasopressin antagonists and somatostatin analogues result in the reduction of intracellular cAMP levels and have shown limited clinical success, but side effects are prominent. Similarly, mTOR pathway inhibition has not shown significant therapeutic benefits. While the HALT-PKD study will answer questions by the end of 2014 about the utility of renin-angiotensin-aldosterone system blockade and aggressive blood pressure control, the next generation of PKD therapy studies targeting proliferative mechanisms of cyst expansion are already under way. Advances in research on the molecular mechanisms of cystogenesis will help design novel targeted PKD therapies in the future.
Collapse
Affiliation(s)
- Cristian Riella
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
30
|
Chang MY, Ong ACM. New treatments for autosomal dominant polycystic kidney disease. Br J Clin Pharmacol 2014; 76:524-35. [PMID: 23594398 DOI: 10.1111/bcp.12136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/21/2013] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and results from mutations in PKD1 or PKD2. Cyst initiation and expansion arise from a combination of abnormal cell proliferation, fluid secretion and extracellular matrix defects and results in kidney enlargement and interstitial fibrosis. Since its first description over 200 years ago, ADPKD has been considered an untreatable condition and its management is limited to blood pressure reduction and symptomatic treatment of disease complications. Results of the recently reported TEMPO 3/4 trial thus represent a paradigm shift in demonstrating for the first time that cystic disease and loss of renal function can be slowed in humans. In this paper, we review the major therapeutic strategies currently being explored in ADPKD including a range of novel approaches in preclinical models. It is anticipated that the clinical management of ADPKD will undergo a revolution in the next decade with the translation of new treatments into routine clinical use.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | |
Collapse
|
31
|
Cadnapaphornchai MA, George DM, McFann K, Wang W, Gitomer B, Strain JD, Schrier RW. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2014; 9:889-96. [PMID: 24721893 DOI: 10.2215/cjn.08350813] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES In autosomal dominant polycystic kidney disease (ADPKD), progressive kidney cyst formation commonly leads to ESRD. Because important manifestations of ADPKD may be evident in childhood, early intervention may have the largest effect on long-term outcome. Statins are known to slow progressive nephropathy in animal models of ADPKD. This randomized double-blind placebo-controlled phase III clinical trial was conducted from 2007 to 2012 to assess the effect of pravastatin on height-corrected total kidney volume (HtTKV) and left ventricular mass index (LVMI) by magnetic resonance imaging (MRI) and urine microalbumin excretion (UAE) in children and young adults with ADPKD. DESIGNS, SETTING, PARTICIPANTS, & MEASUREMENTS There were 110 pediatric participants with ADPKD and normal kidney function receiving lisinopril who were randomized to treatment with pravastatin or placebo for a 3-year period with evaluation at 0, 18, and 36 months. The primary outcome variable was a ≥ 20% change in HtTKV, LVMI, or UAE over the study period. RESULTS Ninety-one participants completed the 3-year study (83%). Fewer participants receiving pravastatin achieved the primary endpoint compared with participants receiving placebo (69% versus 88%; P=0.03). This was due primarily to a lower proportion reaching the increase in HtTKV (46% versus 68%; P=0.03), with similar findings observed between study groups for LVMI (25% versus 38%; P=0.18) and UAE (47% versus 39%; P=0.50). The percent change in HtTKV adjusted for age, sex, and hypertension status over the 3-year period was significantly decreased with pravastatin (23% ± 3% versus 31% ± 3%; P=0.02). CONCLUSIONS Pravastatin is an effective agent to slow progression of structural kidney disease in children and young adults with ADPKD. These findings support a role for early intervention with pravastatin in this condition.
Collapse
Affiliation(s)
- Melissa A Cadnapaphornchai
- Departments of Pediatrics and, †Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, ‡Department of Radiology, Children's Hospital Colorado, Aurora, Colorado
| | | | | | | | | | | | | |
Collapse
|
32
|
Klawitter J, Zafar I, Klawitter J, Pennington AT, Klepacki J, Gitomer BY, Schrier RW, Christians U, Edelstein CL. Effects of lovastatin treatment on the metabolic distributions in the Han:SPRD rat model of polycystic kidney disease. BMC Nephrol 2013; 14:165. [PMID: 23902712 PMCID: PMC3751441 DOI: 10.1186/1471-2369-14-165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We previously demonstrated that lovastatin decreases cyst volume and improves kidney function in the Han:SPRD (Cy/+) rat model of ADPKD. Since endothelial dysfunction and inflammatory activity are evident in patients with ADPKD, we investigated whether lovastatin reduces the inflammation and vascular dysfunction and improves kidney cell energy metabolism of Cy/+ rats. METHODS Cy/+ and normal littermate control animals (+/+) were treated with either lovastatin (4 mg/kg/day) or vehicle (ethanol) from 3-8 weeks of age. 1H-NMR analysis was performed on water-soluble and lipid kidney fractions following perchloric acid extraction. Targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess endothelial dysfunction, oxidative stress and inflammation markers in plasma and kidney tissue extracts. RESULTS Cy/+ rats showed perturbations in fatty acid metabolism and increased synthesis of pro-inflammatory lipoxygenases-produced bioactive lipids was observed. Lovastatin decreased inflammatory markers, specifically 13-HODE, 12-HETE and leukotriene B4. In Cy/+ rats, lovastatin reduced the elevated homocysteine and allantoin plasma levels and increased arginine, that is known to positively affect NO production. CONCLUSION As previously described, lovastatin was able to decrease kidney weight and cyst volume density in Cy/+ rats. The decrease in cyst volume was accompanied by a reduction in arachidonic acid-mediated inflammation markers, the normalization of metabolism of NO precursors and the improvement of kidney energy cell metabolism.
Collapse
|
33
|
Zhou J, Ouyang X, Schoeb TR, Bolisetty S, Cui X, Mrug S, Yoder BK, Johnson MR, Szalai AJ, Mrug M. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement. J Am Soc Nephrol 2012; 23:1161-71. [PMID: 22518005 DOI: 10.1681/asn.2011050442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AKI accelerates cystogenesis. Because cystogenic mutations induce strong transcriptional responses similar to those seen after AKI, these responses may accelerate the progression of cystic renal disease. Here, we modulated the severity of the AKI-like response in Cys1(cpk/cpk) mice, a model that mimics autosomal recessive polycystic kidney disease. Specifically, we induced or inhibited activity of the renoprotective enzyme heme oxygenase (HO) and determined the effects on renal cystogenesis. We found that induction of HO attenuated both renal injury and the rate of cystogenesis, whereas inhibition of HO promoted cystogenesis. HO activity mediated the response of NFκB, which is a hallmark transcriptional feature common to both cystogenesis and AKI. Among the HO-modulated effects we measured, expression of complement component 3 (C3) strongly correlated with cystogenesis, a functionally relevant association as suggested by Cys1(cpk/cpk) mice with genetically induced C3 deficiency. Because both C3 deficiency and HO induction reduce cyst number and cyst areas, these two factors define an injury-stimulated cystogenic pathway that may provide therapeutic targets to slow the formation of new renal cysts and the growth of existing cysts.
Collapse
Affiliation(s)
- Juling Zhou
- Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Toyohara T, Suzuki T, Akiyama Y, Yoshihara D, Takeuchi Y, Mishima E, Kikuchi K, Suzuki C, Tanemoto M, Ito S, Nagao S, Soga T, Abe T. Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model. Clin Exp Nephrol 2011; 15:676-687. [DOI: 10.1007/s10157-011-0467-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 05/18/2011] [Indexed: 02/03/2023]
|
35
|
Sun Y, Zhou H, Yang BX. Drug discovery for polycystic kidney disease. Acta Pharmacol Sin 2011; 32:805-16. [PMID: 21642949 PMCID: PMC4009953 DOI: 10.1038/aps.2011.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022] Open
Abstract
In polycystic kidney disease (PKD), a most common human genetic diseases, fluid-filled cysts displace normal renal tubules and cause end-stage renal failure. PKD is a serious and costly disorder. There is no available therapy that prevents or slows down the cystogenesis and cyst expansion in PKD. Numerous efforts have been made to find drug targets and the candidate drugs to treat PKD. Recent studies have defined the mechanisms underlying PKD and new therapies directed toward them. In this review article, we summarize the pathogenesis of PKD, possible drug targets, available PKD models for screening and evaluating new drugs as well as candidate drugs that are being developed.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Bao-xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
36
|
Cadnapaphornchai MA, George DM, Masoumi A, McFann K, Strain JD, Schrier RW. Effect of statin therapy on disease progression in pediatric ADPKD: design and baseline characteristics of participants. Contemp Clin Trials 2011; 32:437-45. [PMID: 21266204 DOI: 10.1016/j.cct.2011.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney condition and is associated with important renal and cardiovascular manifestations in childhood. Renal cystic disease can be documented in some cases as early as in utero. Early intervention is critical if the long-term complications of this condition, including end-stage renal disease, are to be ameliorated. Here we describe our ongoing randomized double-blind placebo-controlled phase III clinical trial to assess the effect of pravastatin treatment on renal and cardiovascular disease progression in 107 children and young adults age 8-22 years with ADPKD who are receiving the angiotensin converting enzyme inhibitor lisinopril. Baseline demographic and laboratory data are provided. Results of this study could markedly impact the standard of care for evaluation and treatment of ADPKD in this population.
Collapse
|
37
|
Kugita M, Nishii K, Morita M, Yoshihara D, Kowa-Sugiyama H, Yamada K, Yamaguchi T, Wallace DP, Calvet JP, Kurahashi H, Nagao S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am J Physiol Renal Physiol 2011; 300:F177-88. [PMID: 20926632 DOI: 10.1152/ajprenal.00470.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Han:SPRD Cy is a spontaneous rat model of polycystic kidney disease (PKD) caused by a missense mutation in Pkdr1. Cystogenesis in this model is not clearly understood. In the current study, we performed global gene expression profiling in early-stage PKD cyst development in Cy/Cy kidneys and normal (+/+) kidneys at 3 and 7 days of postnatal age. Expression profiles were determined by microarray analysis, followed by validation with real-time RT-PCR. Genes were selected with over 1.5-fold expression changes compared with age-matched +/+ kidneys for canonical pathway analysis. We found nine pathways in common between 3- and 7-day Cy/Cy kidneys. Three significantly changed pathways were designated "Vitamin D Receptor (VDR)/Retinoid X Receptor (RXR) Activation," "LPS/IL-1-Mediated Inhibition of RXR Function," and "Liver X Receptor (LXR)/RXR Activation." These results suggest that RXR-mediated signaling is significantly altered in developing kidneys with mutated Pkdr1. In gene ontology analysis, the functions of these RXR-related genes were found to be involved in regulating cell proliferation and organ morphogenesis. With real-time RT-PCR analysis, the upregulation of Ptx2, Alox15b, OSP, and PCNA, major markers of cell proliferation associated with the RXR pathway, were confirmed in 3- and 7-day Cy/Cy kidneys compared with 3-day +/+ kidneys. The increased RXR protein was observed in both the nucleus and cytoplasm of cystic epithelial cells in early-stage Cy/Cy kidneys, and the RXR-positive cells were strongly positive for PCNA staining. Taken together, cell proliferation and organ morphogenesis signals transduced by RXR-mediated pathways may have important roles for cystogenesis in early-stage PKD in this Pkdr1-mutated Cy rat.
Collapse
Affiliation(s)
- Masanori Kugita
- Education and Research Center of Animal Models for Human Diseases, Faculty of Rehabilitation, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, Japan 470-1192
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fassett RG, Coombes JS, Packham D, Fairley KF, Kincaid-Smith P. Effect of pravastatin on kidney function and urinary protein excretion in autosomal dominant polycystic kidney disease. ACTA ACUST UNITED AC 2010; 44:56-61. [PMID: 20034362 DOI: 10.3109/00365590903359908] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Autosomal dominant polycystic kidney disease (ADPKD) is progressive, resulting in end-stage kidney failure in most patients. Experimental and clinical studies have suggested that statins may slow the progression of chronic kidney disease in general and ADPKD specifically. MATERIAL AND METHODS This randomized open-label clinical trial was conducted to assess the effect of pravastatin 20 mg on kidney function and urinary protein excretion in patients with ADPKD. Sixty patients were initially recruited but 49 of these received either pravastatin 20 mg or no treatment for 2 years. Trial visits were conducted every 3 months, assessing kidney function by estimated glomerular filtration rate and 24 h urine creatinine clearance and urinary protein excretion. RESULTS There were no significant (p > 0.05) changes in markers of kidney function or urinary protein excretion between groups over the 2 years despite a significant fall in total serum cholesterol in pravastatin-treated patients (p = 0.029). CONCLUSION This trial found that taking 20 mg pravastatin for 2 years had no significant effect on kidney function or urinary protein excretion in patients with ADPKD. The lack of statistical power limits the external validity of these findings. A larger, longer duration study using a higher dose of a more potent statin is required.
Collapse
Affiliation(s)
- Robert G Fassett
- Renal Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
39
|
Belibi FA, Edelstein CL. Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Investig Drugs 2010; 19:315-28. [PMID: 20141351 DOI: 10.1517/13543781003588491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. AREAS COVERED IN THE REVIEW The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. WHAT THE READER WILL GAIN Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. TAKE HOME MESSAGE The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin-angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans.
Collapse
Affiliation(s)
- Franck A Belibi
- University of Colorado Denver, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave, Aurora, CO 80045, USA
| | | |
Collapse
|
40
|
Dietary Conjugated Linoleic Acid Renal Benefits and Possible Toxicity vary with Isomer, Dose and Gender in Rat Polycystic Kidney Disease. Lipids 2008; 43:783-91. [DOI: 10.1007/s11745-008-3211-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 06/18/2008] [Indexed: 11/25/2022]
|
41
|
Chiba Y, Arima J, Sakai H, Misawa M. Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am J Physiol Lung Cell Mol Physiol 2008; 294:L705-13. [PMID: 18296496 DOI: 10.1152/ajplung.00531.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies revealed an importance of a monomeric GTP-binding protein, RhoA, in contraction of bronchial smooth muscle (BSM). RhoA and its downstream have been proposed as a new target for the treatment of airway hyperresponsiveness in asthma. Statins are known to inhibit the functional activation of RhoA via the depletion of geranylgeranylpyrophosphate. To determine the beneficial effects of statins on the airway hyperresponsiveness in allergic bronchial asthma, we investigated the effects of systemic treatment with lovastatin on the augmented BSM contraction and activation of RhoA in rats with allergic bronchial asthma. Rats were sensitized and repeatedly challenged with 2,4-dinitrophenylated Ascaris suum antigen. Animals were also treated with lovastatin (4 mg kg(-1) day(-1) ip) once a day before and during the antigen inhalation period. Repeated antigen inhalation caused a marked BSM hyperresponsiveness to ACh with the increased expression and translocation of RhoA. Lovastatin treatments significantly attenuated both the augmented contraction and RhoA translocation to the plasma membrane. Lovastatin also reduced the increased cell number in bronchoalveolar lavage fluids and histological changes induced by antigen exposure, whereas the levels of immunoglobulin E in sera and interleukins-4, -6, and -13 in bronchoalveolar lavage fluids were not significantly changed. These findings suggest that lovastatin ameliorates antigen-induced BSM hyperresponsiveness, an important factor of airway hyperresponsiveness in allergic asthmatics, probably by reducing the RhoA-mediated signaling.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
42
|
Tao Y, Zafar I, Kim J, Schrier RW, Edelstein CL. Caspase-3 gene deletion prolongs survival in polycystic kidney disease. J Am Soc Nephrol 2008; 19:749-55. [PMID: 18272845 DOI: 10.1681/asn.2006121378] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Yunxia Tao
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Box C281, 4200 E. 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
43
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
44
|
Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol 2007; 293:F854-9. [PMID: 17581927 DOI: 10.1152/ajprenal.00059.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease and is the fourth most common cause of end-stage kidney disease. Preclinical studies to identify effective interventions to prevent or slow progression of PKD nephropathy are therefore direly needed. Heterozygous Han:SPRD rats are an autosomal dominant PKD model with many of the characteristics of ADPKD in humans. In the present study, parameters known to antedate the decrease in renal function, namely, renal structure, renal blood flow (RBF), and mean arterial pressure (MAP), were evaluated with three different interventions, namely, HMG-CoA reductase inhibition with lovastatin, angiotensin-converting enzyme (ACE) inhibition with enalapril, and a combination of these two treatments. The statin therapy demonstrated structural and functional benefits, including increased RBF and decreased BUN, independently of a change in MAP, while the ACE inhibition therapy demonstrated structural benefit in association with a decrease in MAP. An enhancement of these protective interventions in this autosomal dominant PKD model was not demonstrated with the combined treatment.
Collapse
Affiliation(s)
- Iram Zafar
- University of Colorado School of Medicine, 4200 East Ninth Ave., B173, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
45
|
Velázquez E, Santos A, Montes A, Blázquez E, Ruiz-Albusac JM. 25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes. Neuropharmacology 2006; 51:229-37. [PMID: 16678217 DOI: 10.1016/j.neuropharm.2006.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 03/07/2006] [Accepted: 03/10/2006] [Indexed: 11/20/2022]
Abstract
We examined the effects of 25-OH-cholesterol on the growth of cultured rat astrocytes in the presence of lipoprotein-deficient serum (LPDS). 25-OH-cholesterol at 0.5-8 microM induced an increase in DNA synthesis as measured by [3H]thymidine incorporation into DNA, staining the cells with crystal violet, or counting the number of cells in different phases of the cell cycle by flow cytometry; however, at higher doses, an inhibition of cell proliferation was produced. Similar dose-dependent effects were found in media containing albumin (alone or with added EGF, PDGF, IGF-I or insulin), fetal bovine serum (FBS), or cholesterol-enriched LPDS. Mevalonate, and partially 25-OH-cholesterol, reversed the decrease in cell viability caused by mevinolin (lovastatin). However, mevalonate did not have any effect on 25-OH-cholesterol-stimulated proliferation. Finally, in media with albumin alone or in the presence of fetal bovine serum, growth factors, insulin or forskolin, 25-OH-cholesterol did not affect the expression of either c-fos mRNA or c-fos protein, as measured by real-time quantitative PCR or by Western blot, respectively. These results suggest that 25-OH-cholesterol has a dual effect on the proliferation of cultured rat astrocytes through an AP-1-independent mechanism. This could be of interest for gaining a better knowledge of the pathophysiological processes occurring in these cells.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Walz G. Therapeutic approaches in autosomal dominant polycystic kidney disease (ADPKD): is there light at the end of the tunnel? Nephrol Dial Transplant 2006; 21:1752-7. [PMID: 16705023 DOI: 10.1093/ndt/gfl246] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M. Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 2006; 17:1604-14. [PMID: 16641154 DOI: 10.1681/asn.2004090800] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The expression of mitogen-activated protein kinases (MAPK) in DBA/2-pcy/pcy (pcy) mice, a murine model of polycystic kidney disease was investigated. Proliferating cell nuclear antigen-positive cells were recognized in cyst epithelium from embryonic day 14.5 to 25 wk of age. Extracellular signal-regulated kinase (ERK) was expressed in the renal tubules of control and pcy mice, but stronger immunostaining was observed in cyst epithelium. Phosphorylated ERK was detected only in pcy mice and was localized predominantly in the cysts. p38 MAPK (p38) was no longer expressed after birth in controls but was detected in the cyst epithelium and in occasional tubular cells of pcy mice at all stages examined. c-Jun N-terminal kinase (JNK) was expressed in all tubular segments of controls after neonatal day 7, whereas in pcy kidneys, tubules became positive for JNK after 8 wk, and the cysts expressed little JNK. Administration of an oral MAP/ERK kinase inhibitor, PD184352, 400 mg/kg per d, to 10-wk-old pcy mice daily for the first week and then every third day for 6 additional weeks significantly decreased BP, kidney weight, serum creatinine level, and water intake and significantly increased urine osmolality. The cystic index and expression of phosphorylated ERK and ERK were significantly lower in PD184352-treated pcy mice. These results demonstrate that the expression of MAPK is dysregulated in cyst epithelium and that inhibition of ERK slowed the progression of renal disease in pcy mice.
Collapse
Affiliation(s)
- Sayu Omori
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Nelson PJ, Shankland SJ. Therapeutics in renal disease: the road ahead for antiproliferative targets. Nephron Clin Pract 2005; 103:e6-15. [PMID: 16340240 PMCID: PMC1440889 DOI: 10.1159/000090138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Discovery into the molecular basis of renal disease is occurring at an unprecedented rate. With the advent of the NIH Roadmap, there is a greater expectation of translating this knowledge into new treatments. Here, we review the therapeutic strategy to preserve renal function in proliferative renal diseases by directly inhibiting the mitogenic pathways within renal parenchymal cells that promote G0 to G1/S cell-cycle phase progression. Reductionist methodologies have identified several antiproliferative molecular targets, and promising preclinical testing of leading small-molecule drugs to modulate these targets has now led to landmark clinical trials. Yet, this advancement into targeted therapy highlights important differences between the therapeutic goals of molecular nephrology versus molecular oncology and, by extension, the poorly understood role of alternative target activity in drug efficacy. Systems research to clarify these issues should accelerate the development of this promising therapeutic strategy.
Collapse
Affiliation(s)
- Peter J Nelson
- Division of Nephrology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
50
|
Cowley BD. Recent advances in understanding the pathogenesis of polycystic kidney disease: therapeutic implications. Drugs 2004; 64:1285-94. [PMID: 15200344 DOI: 10.2165/00003495-200464120-00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hereditary polycystic kidney disease (PKD) is a common cause of renal failure. Increasing knowledge is available regarding mechanisms of cyst development and progression, and renal functional deterioration in PKD. On the basis of this information and theories regarding the pathophysiology of these processes, studies to alter progression and potentially treat PKD have been reported. Cyst development and progression requires epithelial cell proliferation, transepithelial fluid secretion and extracellular matrix remodelling. Several interventions designed to inhibit cell proliferation or alter fluid secretion modify the progression of PKD in selected animal models. Renal functional deterioration appears to involve interstitial inflammation and fibrosis, and tubular apoptosis. Glucocorticoids with anti-inflammatory and antifibrotic properties slow the progression of cystic disease and renal functional deterioration in animal models of PKD. Other interventions, such as dietary modification and angiotensin antagonism, shown to be of benefit in non-PKD models of slowly progressive renal disease, are also of benefit in animal models of PKD. Caution should be used in extrapolating interventional studies in one animal model to another model and certainly to human disease, since examples exist in which treatments in one model of PKD have different effects in another model. Nonetheless, early attempts to determine whether potential treatments are tolerated and of potential benefit in patients with PKD are beginning to appear. Ultimately, treatment of PKD may involve efforts to identify patients at greatest risk for disease progression, thus allowing targeted therapy, use of surrogate markers for disease progression to assist assessment of therapeutic efficacy, and combination therapy to retard disease progression and renal functional deterioration in this common hereditary cause of chronic renal failure.
Collapse
Affiliation(s)
- Benjamin D Cowley
- Nephrology/WP2250, University of Oklahoma Health Sciences Center, 920 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|