1
|
Leuko S, Rettberg P. The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae. ASTROBIOLOGY 2017; 17:110-117. [PMID: 28151694 DOI: 10.1089/ast.2015.1458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three halophilic archaea, Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae, have been exposed to different regimes of simulated outer space ionizing radiation. Strains were exposed to high-energy heavy ion (HZE) particles, namely iron and argon ions, as well as to γ radiation (60Co) and X-rays, and the survival and the genetic integrity of the 16S rRNA gene were evaluated. Exposure to 1 kGy of argon or iron ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Japan did not lead to a detectable loss in viability; only after exposure to 2 kGy of iron ions a decline in survival was observed. Furthermore, a delay in growth was manifested following exposure to 2 kGy iron ions. DNA integrity of the 16S rRNA was not compromised up to 1 kGy, with the exception of Hcc. hamelinensis following exposure to argon particles. All three strains showed a high resistance toward X-rays (exposed at the DLR in Cologne, Germany), where Hcc. hamelinensis and Hcc. morrhuae displayed better survival compared to Hbt. salinarum NRC-1. In all three organisms the DNA damage increased in a dose-dependent manner. To determine a biological endpoint for survival following exposure to γ radiation, strains were exposed to up to 112 kGy at the Beta-Gamma-Service GmbH (BGS) in Germany. Although all strains were incubated for up to 4 months, only Hcc. hamelinensis and Hcc. morrhuae recovered from 6 kGy of γ radiation. In comparison, Hbt. salinarum NRC-1 did not recover. The 16S rRNA gene integrity stayed remarkably well preserved up to 48 kGy for both halococci. This research presents novel data on the survival and genetic stability of three halophilic archaea following exposure to simulated outer space radiation. Key Words: Halophilic archaea-Radiation-Survival. Astrobiology 17, 110-117.
Collapse
Affiliation(s)
- Stefan Leuko
- Astrobiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Petra Rettberg
- Astrobiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
2
|
Toyoshima Y, Takahashi A, Tanaka H, Watanabe J, Mogi Y, Yamazaki T, Hamada R, Iwashita K, Satoh K, Narumi I. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae. Mutat Res 2012; 740:43-49. [PMID: 23280012 DOI: 10.1016/j.mrfmmm.2012.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation.
Collapse
|
3
|
Moeller R, Reitz G, Nicholson The Protect Team WL, Horneck G. Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. ASTROBIOLOGY 2012; 12:457-468. [PMID: 22680692 DOI: 10.1089/ast.2011.0739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As part of the PROTECT experiment of the EXPOSE-E mission on board the International Space Station (ISS), the mutagenic efficiency of space was studied in spores of Bacillus subtilis 168. After 1.5 years' exposure to selected parameters of outer space or simulated martian conditions, the rates of induced mutations to rifampicin resistance (Rif(R)) and sporulation deficiency (Spo(-)) were quantified. In all flight samples, both mutations, Rif(R) and Spo(-), were induced and their rates increased by several orders of magnitude. Extraterrestrial solar UV radiation (>110 nm) as well as simulated martian UV radiation (>200 nm) led to the most pronounced increase (up to nearly 4 orders of magnitude); however, mutations were also induced in flight samples shielded from insolation, which were exposed to the same conditions except solar irradiation. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Mutations isolated from flight and parallel mission ground reference (MGR) samples were exclusively localized to Cluster I. The 21 Rif(R) mutations isolated from the flight experiment showed all a C to T transition and were all localized to one hotspot: H482Y. In mutants isolated from the MGR, the spectrum was wider with predicted amino acid changes at residues Q469K/L/R, H482D/P/R/Y, and S487L. The data show the unique mutagenic power of space and martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne, Germany.
| | | | | | | |
Collapse
|
4
|
Moeller R, Reitz G, Berger T, Okayasu R, Nicholson WL, Horneck G. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores. ASTROBIOLOGY 2010; 10:509-521. [PMID: 20624059 DOI: 10.1089/ast.2009.0429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J Bacteriol 2007; 190:1134-40. [PMID: 18055591 DOI: 10.1128/jb.01644-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via alpha/beta-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and alpha/beta-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the alpha/beta-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.
Collapse
|
6
|
Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL. Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J Bacteriol 2007; 189:3306-11. [PMID: 17293412 PMCID: PMC1855867 DOI: 10.1128/jb.00018-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Ralf Moeller
- Space Life Sciences Laboratory, Building M6-1025/SLSL, Kennedy Space Center, FL 32953, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Horneck G, Krasavin EA, Kozubek S. Mutagenic effects of heavy ions in bacteria. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1994; 14:315-329. [PMID: 11539967 DOI: 10.1016/0273-1177(94)90484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and lambda-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z < or = 4) the cross section decreases with increasing energy. For ions of Z = 10, it is nearly independent of energy. For heavier ions (Z > or = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a "mutagenic belt" inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.
Collapse
Affiliation(s)
- G Horneck
- DLR, Institute of Aerospace Medicine, Biophysics Division, Koln, Germany
| | | | | |
Collapse
|
8
|
Micke U, Horneck G, Kozubek S. Double strand breaks in the DNA of Bacillus subtilis cells irradiated by heavy ions. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1994; 14:207-211. [PMID: 11539952 DOI: 10.1016/0273-1177(94)90469-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cells of Bacillus subtilis strain TKJ 8431 in stationary phase were irradiated with X-rays (150 kV at DLR) or heavy ions (Ne, Ar, Pb with residual energies between 3 and 15 MeV/u at GSI). The action cross section for the formation of double strand breaks in the DNA of the irradiated cells follows a similar dependence on mass and energy of the ions as has been found for various biological endpoints, e.g. inactivation, mutagenesis and repair efficacy.
Collapse
Affiliation(s)
- U Micke
- DLR, Institute of Aerospace Medicine, Koln, Germany
| | | | | |
Collapse
|
9
|
Takahashi T, Yatagai F, Izumo K. Microdosimetric considerations of effects of heavy ions on E. coli K-12 mutants. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1992; 12:65-68. [PMID: 11537048 DOI: 10.1016/0273-1177(92)90091-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The inactivation cross sections of E. coli K-12 recombination-deficient mutants, JC1553 (recA) and AB2470 (recB), for several MeV/u alpha-particles and N ions have been successfully analyzed by Katz's target theory in which radiosensitivity parameter E0 is assumed to be LET independent and equal to D37 for gamma-rays. For E. coli K-12 wild type, AB1157 (rec+, uvr+), however, it is impossible to interpret the inactivation cross section data by an LET-independent E0-value. In the latter case, as in the case of B. subtilis spore, it is necessary to assume that the radiosensitivity of the target for the core of a heavy ion is higher than that for delta-electrons. As well as Waligorski, Hamm and Katz's dose, the dose around the trajectory of an ion based on Tabata and Ito's energy deposition algorithm for electrons has been used in the course of analysis.
Collapse
Affiliation(s)
- T Takahashi
- RIKEN (int. Phys. Chem. Res.), Saitama, Japan
| | | | | |
Collapse
|
10
|
Horneck G, Schafer M, Baltschukat K, Weisbrod U, Micke U, Facius R, Bucker H. Cell inactivation, repair and mutation induction in bacteria after heavy ion exposure: results from experiments at accelerators and in space. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:105-116. [PMID: 11537282 DOI: 10.1016/0273-1177(89)90428-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.
Collapse
Affiliation(s)
- G Horneck
- DFVLR, Institut fur Flugmedizin, Linder Hohe, Koln, F.R.G
| | | | | | | | | | | | | |
Collapse
|
11
|
Takahashi T, Yatagai F, Konno S, Katayama T, Kaneko I. Microdosimetric considerations of effects of heavy ions on microorganisms. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1986; 6:117-125. [PMID: 11537210 DOI: 10.1016/0273-1177(86)90284-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An estimation of dose around the trajectory of an ion has been made by use of Tabata and Ito's energy deposition algorithm for electrons which takes into account transmission coefficient. The result of the calculation, as well as Butts and Katz's dose, is successfully applied to the interpretation of inactivation cross sections of vegetative cells of E. coli Bs-1, and E. coli B/r and of B. subtilis spores for He, C and N ions.
Collapse
Affiliation(s)
- T Takahashi
- RIKEN (Inst. Phys. Chem. Res.) Wako-shi, Japan
| | | | | | | | | |
Collapse
|
12
|
Baltschukat K, Horneck G, Bucker H, Facius R, Schafer M. Genetic response of bacterial spores to very heavy ions. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1986; 6:109-115. [PMID: 11537209 DOI: 10.1016/0273-1177(86)90283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using spores of two Bacillus subtilis strains differing in repair capacity, we have studied repair and mutation induction in the spores after irradiation with very heavy ions up to uranium with specific particle energies up to 18.6 MeV/u. The results indicate that repair and mutation induction after heavy ion irradiation are closely related to each other and that both phenomena strongly depend on the atomic number and specific energy of the ions. The effects are discussed in comparison with results obtained after X-irradiation.
Collapse
|
13
|
Kiefer J. Cellular and subcellular effects of very heavy ions. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1985; 48:873-92. [PMID: 3905664 DOI: 10.1080/09553008514552041] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The biological effects of irradiation with ions of masses larger than 40 and energies up to 20 MeV per atomic mass unit are reviewed. The objects are viruses, bacterial spores, yeast and mammalian cells. Experimental parameters include loss of colony forming ability, induction of mutants, chromosomal aberrations, cell cycle progression, inhibition of biochemical activities and the formation of strand breaks. Some of the pertinent physical questions--e.g. track structure--are also discussed. It is shown that with very heavy ions the biological effectiveness is no longer unambiguously related to a single parameter like l.e.t. or Z*2/beta 2 but depends strongly on ion energy. This points to the importance of far-reaching delta-electrons. The analysis indicates also that even with very high l.e.t., cells are not killed by the passage of a single particle through their nucleus. Possible implications of the findings for fundamental radiation biology are outlined.
Collapse
|