1
|
Winiarska-Mieczan A, Muszyński S, Tomaszewska E, Kwiecień M, Donaldson J, Tomczyk-Warunek A, Blicharski T. The Impact of Tannic Acid Consumption on Bone Mineralization. Metabolites 2023; 13:1072. [PMID: 37887397 PMCID: PMC10609055 DOI: 10.3390/metabo13101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Tannic acid (TA) is an organic compound belonging to the tannin group. Like other tannins, it has an affinity for endogenous proteins, including digestive enzymes, which can result in the reduced digestibility and absorption of nutrients. It can also form complexes with mineral components, reducing their absorption. In some cases, this can be beneficial, such as in the case of toxic metals, but sometimes it may have a detrimental effect on the body when it involves essential mineral components like Ca, P, Mg, Na, K, or Fe. Therefore, the impact of TA on bone health should be considered from both perspectives. This relatively short review summarizes the available information and research findings on TA, with a particular focus on its potential impact on bone health. It is worth noting that future research and clinical studies may provide more detailed and precise information on this topic, allowing for a better understanding of the role of TA in maintaining the integrity of the musculoskeletal system. Despite its brevity, this paper represents a valuable contribution to the analysis of the potential benefits and challenges associated with TA in the context of bone health. We anticipate that future research will continue along this important research line, expanding our knowledge of the influence of this compound on the skeletal system and its potential therapeutic applications.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor System Research, Department of Rehabilitation and Physiotherapy, Medical University in Lublin, 20-090 Lublin, Poland;
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University in Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
2
|
Shi W, Kong Y, Su Y, Kuss MA, Jiang X, Li X, Xie J, Duan B. Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J Mater Chem B 2021; 9:7182-7195. [PMID: 33651063 DOI: 10.1039/d1tb00156f] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their intrinsic injectable and self-healing characteristics, dynamic hydrogels, based on dynamic covalent bonds, have gained a great attention. In this study, a novel dynamic hydrogel based on the boronic ester dynamic covalent bond is facilely developed using phenylboronic acid-modified hyaluronic acid (HA-PBA) and plant-derived polyphenol-tannic acid (TA). The dynamic hydrogel gelated quickly under mild conditions and had favorable viscoelastic properties with good self-healing and shear-thinning capabilities. Moreover, the simultaneous utilization of TA as a reductant for the green synthesis of silver nanoparticles (AgNP) inspired the preparation of a TA-reduced AgNP hybrid dynamic hydrogel with potent and broad-spectrum antibacterial activities. The dynamic hydrogels could also be applied for pH- and reactive oxygen species (ROS)-responsive release of loaded protein molecules without showing evident cytotoxicity and hemolysis in vitro. In addition, the dynamic hydrogels showed the anti-oxidative properties of high free radical and ROS scavenging capacity, which was verified by the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay and ROS fluorescence staining. Overall, this novel class of cytocompatible, self-healing, dual stimuli responsive, antibacterial, anti-oxidative, and injectable hydrogels could be promising as a wound dressing for chronic wound healing.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Yajuan Su
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingwei Xie
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Medical Center, Omaha, NE, USA. .,Division of Cardiology, Department of Internal Medicine, University of Nebraska, Medical Center, Omaha, NE, USA.,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Prinsloo G, Nogemane N, Street R. The use of plants containing genotoxic carcinogens as foods and medicine. Food Chem Toxicol 2018; 116:27-39. [DOI: 10.1016/j.fct.2018.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/20/2023]
|
4
|
SOUZA JANAINASDE, BRUNETTO ERIKAL, NUNES MARIATEREZA. Iron restriction increases myoglobin gene and protein expression in Soleus muscle of rats. AN ACAD BRAS CIENC 2016; 88:2277-2290. [DOI: 10.1590/0001-3765201620160173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- JANAINA S. DE SOUZA
- Universidade de São Paulo, Brazil; Universidade Federal de São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Dwevedi A, Dwivedi R, Sharma YK. Exploration of Phytochemicals Found in Terminalia sp. and their Antiretroviral Activities. Pharmacogn Rev 2016; 10:73-83. [PMID: 28082788 PMCID: PMC5214561 DOI: 10.4103/0973-7847.194048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human immunodeficiency virus (HIV) infects cells of the immune system and destroys their function. Approximately, 2 million people die every year from HIV as reported by the World Health Organization. HIV/AIDS is difficult to treat as the virus continuously develops resistance to drugs being developed. Approach is now turning toward natural products for the development of anti-HIV drugs. Although HIV/AIDS is not a new disease, but research based on plant-derived products is still under clinical trials. Experimentally, it has been proven that plants have the potential for HIV treatment. The process involves identification of the active ingredients responsible for the reported anti-HIV activities, testing of the extract, and development of appropriate bioassays. Further development would require optimization of the formulation and manufacturing in compliance with preclinical safety and efficacy testing. The most challenging task for the natural product scientists is to separate these highly complex extracts containing several compounds into its individual components that are biologically active. Recently developed direct binding assay with mass spectrometry (MS) technology (viz., real-time time-of-flight-MS) is helpful in this respect but needs extensive optimization. At present, we have compiled all the information for the various phytochemicals present in Terminalia catappa having anti-HIV properties. These include tannins, gallotannins, ellagitannins, cyanidin, and flavonoids. Further, we have also discussed their pharmacological as well as pharmacokinetics studies.
Collapse
Affiliation(s)
- Alka Dwevedi
- Department of Environmental Sciences, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Raman Dwivedi
- Department of Polymer Sciences, Delhi Technological University, New Delhi, India
| | - Yogesh K Sharma
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Scientific Opinion on the safety and efficacy of tannic acid when used as feed flavouring for all animal species. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Sehrawat A, Sharma S, Sultana S. Preventive effect of tannic acid on 2-acetylaminofluorene induced antioxidant level, tumor promotion and hepatotoxicity: a chemopreventive study. Redox Rep 2013; 11:85-95. [PMID: 16686999 DOI: 10.1179/135100006x101066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tannic acid, present in almost every food derived from plants, has been widely investigated as a chemopreventive agent because, apart from its use as a food additive, pharmacological studies have demonstrated its many health-promoting properties. In this study, we show the modulatory effect of tannic acid on 2-acetylaminofluorene (2-AAF)-mediated hepatic oxidative stress and cell proliferation in rats. 2-AAF (50 mg/kg body weight) caused reduction in hepatic glutathione content and the activities of hepatic anti-oxidant enzymes and phase-II metabolizing enzymes with an enhancement of xanthine oxidase activity, lipid peroxidation and hydrogen peroxide content. 2-AAF treatment also induced serum oxaloacetate and pyruvate transaminase, lactate dehydrogenase and gamma-glutamyl transpeptidase. Treatment of rats orally with tannic acid (125 and 250 mg/kg body weight) resulted in significant recovery of hepatic glutathione content, antioxidant and phase-II metabolizing enzymes. Also, significant decreases in lipid peroxidation, xanthine oxidase, hydrogen peroxide generation and liver damage marker enzymes were observed. The antiproliferative efficacy of the tannic acid was also evaluated. The promotion parameters induced (ornithine decarboxylase activity and DNA synthesis) by 2-AAF administration in the diet with partial hepatectomy (PH) were also significantly suppressed, dose dependently, by tannic acid. Hence, we propose that tannic acid might suppress the promotion stage via inhibition of oxidative stress and polyamine biosynthetic pathway.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, New Delhi, India
| | | | | |
Collapse
|
8
|
Re TA, Mooney D, Antignac E, Dufour E, Bark I, Srinivasan V, Nohynek G. Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products. Food Chem Toxicol 2009; 47:1246-54. [PMID: 19249334 DOI: 10.1016/j.fct.2009.02.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/26/2009] [Accepted: 02/14/2009] [Indexed: 11/25/2022]
Abstract
Calendula flower (Calendula officinalis) (CF) has been used in herbal medicine because of its anti-inflammatory activity. CF and C. officinalis extracts (CFE) are used as skin conditioning agents in cosmetics. Although data on dermal irritation and sensitization of CF and CFE's are available, the risk of subchronic systemic toxicity following dermal application has not been evaluated. The threshold of toxicological concern (TTC) is a pragmatic, risk assessment based approach that has gained regulatory acceptance for food and has been recently adapted to address cosmetic ingredient safety. The purpose of this paper is to determine if the safe use of CF and CFE can be established based upon the TTC class for each of its known constituents. For each constituent, the concentration in the plant, the molecular weight, and the estimated skin penetration potential were used to calculate a maximal daily systemic exposure which was then compared to its corresponding TTC class value. Since the composition of plant extracts are variable, back calculation was used to determine the maximum acceptable concentration of a given constituent in an extract of CF. This paper demonstrates the utility and practical application of the TTC concept when used as a tool in the safety evaluation of botanical extracts.
Collapse
Affiliation(s)
- T A Re
- L'Oreal USA, Research and Development, 30 Terminal Avenue, Clark, NJ 07066, United States.
| | | | | | | | | | | | | |
Collapse
|
9
|
Chandak PG, Gaikwad AB, Tikoo K. Gallotannin ameliorates the development of streptozotocin-induced diabetic nephropathy by preventing the activation of PARP. Phytother Res 2009; 23:72-7. [PMID: 18693296 DOI: 10.1002/ptr.2559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is known to be activated under conditions of oxidative stress and/or radiation exposure. The role of this enzyme has been well demonstrated in the streptozotocin (STZ) induced model of diabetes. Inhibition of PARP by specific inhibitors is known to prevent the development of STZ induced diabetic nephropathy by reduction in oxidative stress induced apoptosis. This study shows for the first time the role of poly(ADP-ribose) glycohydrolase (PARG) inhibitors as an alternative approach for inhibition of PARP. Gallotannin (20 mg/kg/day, i.p.) treatment for 4 weeks led to a significant reduction in the levels of plasma creatinine which is a well known marker for diabetic nephropathy. Treatment with gallotannin resulted in protection up to a certain level of glomerular damage, suggesting compensatory glomerular hypertrophy. As a PARG inhibitor gallotannin treatment also showed protection in PARP cleavage which is a hallmark for apoptotic cell death signifying the protective role of gallotannin in cell death signaling.
Collapse
Affiliation(s)
- Prakash Gopaldas Chandak
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) - 160 062, Punjab, India
| | | | | |
Collapse
|
10
|
Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol 2007; 222:1-16. [PMID: 17482223 DOI: 10.1016/j.taap.2007.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/27/2007] [Accepted: 03/08/2007] [Indexed: 12/24/2022]
Abstract
Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.
Collapse
Affiliation(s)
- Luis G Valerio
- Division of Biotechnology and GRAS Notice Review, US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | | | |
Collapse
|
11
|
Niho N, Shibutani M, Tamura T, Toyoda K, Uneyama C, Takahashi N, Hirose M. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem Toxicol 2001; 39:1063-70. [PMID: 11527565 DOI: 10.1016/s0278-6915(01)00054-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Subchronic toxicity of gallic acid (GA) was investigated in F344 rats by feeding diet containing 0, 0.2, 0.6, 1.7 and 5% GA for 13 weeks. Each group consisted of 10 rats of each sex. Toxicological parameters included clinical signs, body weight, food consumption, hematology, blood biochemistry, organ weights and histopathological assessment. Body weight gain in the 5% GA-treated animals of both sexes from week 1 to the end of the experiment was significantly lower than that of the untreated controls. Toxic effects following administration of 0.6% or more in males and 5% in females included reduction of hemoglobin concentration, hematocrit and red blood cell counts and increase in reticulocytes. Histopathologically, extramedullary hematopoiesis, hemosiderin deposition and congestion appeared in the spleens of 5% GA-treated animals, suggesting development of hemolytic anemia. In addition, centrilobular liver cell hypertrophy, reflected in increase in liver weight, was observed in animals of both sexes from 1.7%. In the kidney, Berlin blue-negative brown pigment deposition in the proximal tubular epithelium was observed at 5% GA. However, the severity of these pathological changes was weak. Based on the present toxicology data, 0.2% was determined to be a no-observed-adverse-effect level (NOAEL) in rats. This level was translated into 119 and 128 mg/kg/day, respectively for male and female rats.
Collapse
Affiliation(s)
- N Niho
- Division of Pathology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen SC, Chung KT. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food Chem Toxicol 2000; 38:1-5. [PMID: 10685008 DOI: 10.1016/s0278-6915(99)00114-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tannic acid and its hydrolysed products such as ellagic acid, gallic acid and propyl gallate were tested for mutagenicities using Ames Salmonella tester strains TA98 and TA100. Also, the antimutagenic activities of these compounds against a number of direct mutagens including 2-nitrofluorene (2-NF), 4,4'-dinitro-2-biphenylamine, 1-nitropyrene, 1,3-dinitropyrene, 2-nitro-p-phenylenediamine, 3-nitro-o-phenylenediamine, 4-nitro-o-phenylenediamine were tested. None of these tannic acid compounds was mutagenic. They also failed to show antimutagenic activity towards the tested direct mutagens. However, tannic acid at non-growth inhibitory concentrations reduced the revertant numbers of TA98 in the presence of S9 mix when benzidine, 3,3'-4,4'-tetraminobiphenyl, 4-aminobiphenyl, and N,N-N', N'-tetramethylbenzidine were used as the mutagens. These results suggest that tannic acid, but not its hydrolytic products, affects the metabolic activation of these mutagens.
Collapse
Affiliation(s)
- S C Chen
- Department of Medical Technology, Fooyin Institute of Technology, Kaosiung, Taiwan 830, People's Republic of China
| | | |
Collapse
|
13
|
Nepka C, Sivridis E, Antonoglou O, Kortsaris A, Georgellis A, Taitzoglou I, Hytiroglou P, Papadimitriou C, Zintzaras I, Kouretas D. Chemopreventive activity of very low dose dietary tannic acid administration in hepatoma bearing C3H male mice. Cancer Lett 1999; 141:57-62. [PMID: 10454243 DOI: 10.1016/s0304-3835(99)00145-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tannins are plant polyphenols comprising a heterogeneous group of compounds. Tannic acid is a common tannin found in tea, coffee, immature fruits, etc. and it has also been used as a food additive. An increasing body of experimental evidence supports the hypothesis that tannins exert anticarcinogenic activity in chemically induced cancers in animal models. In the present study, tannic acid was administered in very low doses in the drinking water of C3H male mice divided into three groups (75 mg/l, 150 mg/l and 300 mg/l). These animals carry a genetic defect and show a high incidence of spontaneous liver tumors (> 50%) at an age older than 12 months. The results showed a decrease in the overall incidence of hepatic neoplasms (adenomas plus carcinomas): 53.3% of animals in the control group developed hepatic neoplasms versus 33.3% in the group given a low dose of tannic acid, 26.6% in the group given a medium dose and 13.3% in the high dosage group. The difference was more pronounced in the animals with carcinomas: 4.44% of mice who received tannic acid developed carcinomas versus 33.3% of those in the control group. Tannic acid administration did not affect the PCNA labeling index of normal hepatocytes. It is concluded that tannic acid dietary intake in low doses can exert a strong dose-dependent chemoprotective activity against spontaneous hepatic neoplasm development in C3H male mice, most probably through antipromoting mechanisms.
Collapse
Affiliation(s)
- C Nepka
- Cytopathology Laboratory, Serres, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nepka C, Asprodini E, Kouretas D. Tannins, xenobiotic metabolism and cancer chemoprevention in experimental animals. Eur J Drug Metab Pharmacokinet 1999; 24:183-9. [PMID: 10510748 DOI: 10.1007/bf03190367] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tannins are plant polyphenolic compounds that are contained in large quantities in food and beverages (tea, red wine, nuts, etc.) consumed by humans daily. It has been shown that various tannins exert broad cancer chemoprotective activity in a number of animal models. This review summarizes the recent literature regarding both the mechanisms involved, and the specific organ cancer models used in laboratory animals. An increasing body of evidence demonstrates that tannins act as both anti-initiating and antipromoting agents. In view of the fact that tannins may be of valid medicinal efficacy in human clinical trials, the present review attempts to integrate results from animal studies, and considers their possible application in humans.
Collapse
Affiliation(s)
- C Nepka
- Cytopathology Laboratory, Serres, Greece
| | | | | |
Collapse
|
15
|
|
16
|
Takegawa K, Mitsumori K, Onodera H, Yasuhara K, Kitaura K, Shimo T, Takahashi M. Induction of squamous cell carcinomas in the salivary glands of rats by potassium iodide. Jpn J Cancer Res 1998; 89:105-9. [PMID: 9548435 PMCID: PMC5921766 DOI: 10.1111/j.1349-7006.1998.tb00536.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In a 2-year carcinogenicity study of potassium iodide (KI) in F344/DuCrj rats, squamous cell carcinomas (SCCs) were observed in the salivary glands of 4/40 males and 3/40 females receiving 1000 ppm KI in the drinking water. Ductular proliferation with lobular atrophy was observed at high incidence in the submandibular glands of the high-dose animals, and squamous metaplasia was frequently evident within the proliferative ductules and the larger interlobular ducts. A transition from metaplasia to SCC was apparent. The results suggest that squamous metaplasia in proliferative ductules, occurring secondarily to lobular impairment induced by KI, may develop into SCCs via a non-genotoxic, proliferation-dependent mechanism.
Collapse
Affiliation(s)
- K Takegawa
- Division of Pathology, National Institute of Health Sciences, Tokyo
| | | | | | | | | | | | | |
Collapse
|