1
|
Yap CK, Wong KW, Al-Shami SA, Nulit R, Cheng WH, Aris AZ, Sharifinia M, Bakhtiari AR, Okamura H, Saleem M, Chew W, Ismail MS, Al-Mutairi KA. Human Health Risk Assessments of Trace Metals on the Clam Corbicula javanica in a Tropical River in Peninsular Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010195. [PMID: 33383875 PMCID: PMC7794960 DOI: 10.3390/ijerph18010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
- Correspondence: or
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
| | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.W.W.); (R.N.)
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Sembilan 71800, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 7516989177, Iran;
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Mazandaran 46417-76489, Iran;
| | - Hideo Okamura
- Faculty of Maritime Sciences, Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan;
| | - Muhammad Saleem
- Department of Chemistry, Government Post Graduate College, Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| | - Weiyun Chew
- Centre for Pre-University Study, MAHSA University, Selangor 42610, Malaysia;
| | | | | |
Collapse
|
2
|
Sharma B, Singh S, Siddiqi NJ. Biomedical implications of heavy metals induced imbalances in redox systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:640754. [PMID: 25184144 PMCID: PMC4145541 DOI: 10.1155/2014/640754] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023]
Abstract
Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.
Collapse
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Shweta Singh
- Department of Genetics, SGPGIMS, Lucknow 226014, India
| | - Nikhat J. Siddiqi
- Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Khan FR, Bury NR, Hogstrand C. Cadmium bound to metal rich granules and exoskeleton from Gammarus pulex causes increased gut lipid peroxidation in zebrafish following single dietary exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:124-129. [PMID: 19883947 DOI: 10.1016/j.aquatox.2009.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/04/2009] [Accepted: 10/06/2009] [Indexed: 05/28/2023]
Abstract
There has been a growing interest in establishing how the sub-cellular distribution of metals in macro-invertebrate prey affects metal trophic bioavailability and toxicity. In this study, the crustacean Gammarus pulex was exposed to 300mugCdl(-1) spiked with (109)Cd for 13 days, from which the two principal metal containing sub-cellular fractions, the metallothionein-like protein (MTLP) and the metal rich granule and exoskeleton (MRG+exo) were isolated. These fractions were produced at equal metal content, incorporated into gelatin and fed to zebrafish as a single meal; assimilation efficiency (AE), carcass and gut tissue metal concentrations and gut lipid peroxidative damage measured as malondialdehyde (MDA) were assessed. The AE of cadmium bound to the MTLP fraction was 32.1+/-5.6% which was significantly greater than the AE of MRG+exo bound Cd, 13.0+/-2.1% (p<0.05). Of the metal retained by the fish at 72h post-feeding, 94% of MTLP-Cd had been incorporated into the carcass, whereas a significant proportion (46%) of MRG+exo-Cd, although assimilated, appeared to remain associated with intestinal tissue. However, this did not translate into a gut tissue concentration difference with 6.8+/-1.2ngCdg(-1) in fish fed MTLP-Cd compared to 9.5+/-1.4ngCdg(-1) in fish fed MRG+exo fraction. Both feeds led to significantly increased MDA levels compared to the control group (gelatin only feed), but MRG+exo feed caused significantly more oxidative damage than the MTLP feed (p<0.01). Thus, MTLP-Cd is more bioavailable than the cadmium bound to granules and exoskeleton, but it was the latter fraction, largely considered as having limited bioavailability, that appeared to exert a greater localised oxidative injury to the digestive tract of zebrafish.
Collapse
Affiliation(s)
- F R Khan
- Nutritional Sciences Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, United Kingdom.
| | | | | |
Collapse
|
4
|
Affiliation(s)
- Zhen Wei
- a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian, China
| | - Hong-Qiao Lan
- a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian, China
| | - Jian-Feng Zheng
- a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian, China
| | - Pei-Qiang Huang
- a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, Fujian, China
| |
Collapse
|
5
|
Petersen Shay K, Moreau RF, Smith EJ, Hagen TM. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life 2008; 60:362-7. [PMID: 18409172 DOI: 10.1002/iub.40] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemical reduction and oxidation (redox) properties of alpha-lipoic acid (LA) suggest that it may have potent antioxidant potential. A significant number of studies now show that LA and its reduced form, dihydrolipoic acid (DHLA), directly scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) species and protect cells against a host of insults where oxidative stress is part of the underlying etiology. However, owing to its limited and transient accumulation in tissues following oral intake, the efficacy of nonprotein-bound LA to function as a physiological antioxidant has been questioned. Herein, we review the evidence that the micronutrient functions of LA may be more as an effector of important cellular stress response pathways that ultimately influence endogenous cellular antioxidant levels and reduce proinflammatory mechanisms. This would promote a sustained improvement in cellular resistance to pathologies where oxidative stress is involved, which would not be forthcoming if LA solely acted as a transient ROS scavenger.
Collapse
Affiliation(s)
- Kate Petersen Shay
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
6
|
Zempleni J, Mock DM. Biotin biochemistry and human requirements. J Nutr Biochem 2005; 10:128-38. [PMID: 15539280 DOI: 10.1016/s0955-2863(98)00095-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1998] [Accepted: 11/10/1998] [Indexed: 11/22/2022]
Abstract
Human biotin turnover and requirements can be estimated on the basis of (1) concentrations of biotin and metabolites in body fluids, (2) activities of biotin-dependent carboxylases, and (3) the urinary excretion of organic acids that are formed at increased rates if carboxylase activities are reduced. Recent studies suggest that the urinary excretions of biotin and its metabolite bisnorbiotin, activities of propionyl-CoA carboxylase and beta-methylcrotonyl-CoA carboxylase in lymphocytes, and urinary excretion of 3-hydroxyisovaleric acid are good indicators of marginal biotin deficiency. On the basis of studies using these indicators of biotin deficiency, an adequate intake of 30 microg (123 nmoles) of biotin per day is currently recommended for adults. The dietary biotin intake in Western populations has been estimated to be 35 to 70 microg/d (143-287 nmol/d). Recent studies suggest that humans absorb biotin nearly completely. Conditions that may increase biotin requirements in humans include pregnancy, lactation, and therapy with anticonvulsants or lipoic acid.
Collapse
Affiliation(s)
- J Zempleni
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202-3591, USA
| | | |
Collapse
|
7
|
Varalakshmi P, Sandhya S, Malarkodi KP. Evaluation of the effect of lipoic acid administered along with gentamicin in rats rendered bacteremic. Mol Cell Biochem 2003; 248:35-40. [PMID: 12870652 DOI: 10.1023/a:1024141128546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gentamicin is an aminoglycosidic antibiotic widely used in the treatment of many gram-negative bacterial infections. The present study was designed to investigate the extent of nephrotoxicity and the degree of protection afforded by lipoic acid under E. coli infected conditions and to note its effect on the antimicrobial activity of gentamicin. The study was carried out with adult male albino rats of Wistar strain. Group I animals served as controls. Group II animals were injected intraperitoneally for 2 successive days with 0.2 ml inoculum containing 10(10)) colony forming units of E. coli. Group III animals were injected E. coli as those in group II, in addition gentamicin 100 mg kg(-1) was administered intraperitoneally for 10 successive days. Group IV animals received intraperitoneal injections of E. coli as above plus gentamicin and also received lipoic acid (25 mg kg(-1)) for 10 days by oral gavage. Rats subjected to E. coli administration showed a decline in the thiol content of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase and glutathione peroxidase with an added effect observed when gentamicin was administered along with it. The extent of nephrotoxicity induced by gentamicin was clearly evident with the decline in the activities of lactate dehydrogenase, alkaline phosphatase and N-acetyl-beta-D-glucosaminidase in the rat renal tissues. A significant decrease was also observed in the activities of the transmembrane enzymes upon gentamicin administration. Treatment with lipoic acid decreased lipid peroxidation thereby maintaining the antioxidant status of the cell. The activities of the renal and transmembrane enzymes were also restored on lipoic acid treatment. The study has highlighted the beneficial effects of lipoic acid against experimental aminoglycoside toxicity in rats rendered bacteremic.
Collapse
Affiliation(s)
- Palaninathan Varalakshmi
- Department of Medical Biochemistry, Dr. A.L Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India.
| | | | | |
Collapse
|
8
|
Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. GENERAL PHARMACOLOGY 1997; 29:315-31. [PMID: 9378235 DOI: 10.1016/s0306-3623(96)00474-0] [Citation(s) in RCA: 544] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Lipoic acid is an example of an existing drug whose therapeutic effect has been related to its antioxidant activity. 2. Antioxidant activity is a relative concept: it depends on the kind of oxidative stress and the kind of oxidizable substrate (e.g., DNA, lipid, protein). 3. In vitro, the final antioxidant activity of lipoic acid is determined by its concentration and by its antioxidant properties. Four antioxidant properties of lipoic acid have been studied: its metal chelating capacity, its ability to scavenge reactive oxygen species (ROS), its ability to regenerate endogenous antioxidants and its ability to repair oxidative damage. 4. Dihydrolipoic acid (DHLA), formed by reduction of lipoic acid, has more antioxidant properties than does lipoic acid. Both DHLA and lipoic acid have metal-chelating capacity and scavenge ROS, whereas only DHLA is able to regenerate endogenous antioxidants and to repair oxidative damage. 5. As a metal chelator, lipoic acid was shown to provide antioxidant activity by chelating Fe2+ and Cu2+; DHLA can do so by chelating Cd2+. 6. As scavengers of ROS, lipoic acid and DHLA display antioxidant activity in most experiments, whereas, in particular cases, pro-oxidant activity has been observed. However, lipoic acid can act as an antioxidant against the pro-oxidant activity produced by DHLA. 7. DHLA has the capacity to regenerate the endogenous antioxidants vitamin E, vitamin C and glutathione. 8. DHLA can provide peptide methionine sulfoxide reductase with reducing equivalents. This enhances the repair of oxidatively damaged proteins such as alpha-1 antiprotease. 9. Through the lipoamide dehydrogenase-dependent reduction of lipoic acid, the cell can draw on its NADH pool for antioxidant activity additionally to its NADPH pool, which is usually consumed during oxidative stress. 10. Within drug-related antioxidant pharmacology, lipoic acid is a model compound that enhances understanding of the mode of action of antioxidants in drug therapy.
Collapse
Affiliation(s)
- G P Biewenga
- Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, Department of Pharmacochemistry, The Netherlands
| | | | | |
Collapse
|
9
|
Zempleni J, Trusty TA, Mock DM. Lipoic acid reduces the activities of biotin-dependent carboxylases in rat liver. J Nutr 1997; 127:1776-81. [PMID: 9278559 DOI: 10.1093/jn/127.9.1776] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the past, lipoic acid has been administered to patients and test animals as therapy for diabetic neuropathy and various intoxications. Lipoic acid and the vitamin biotin have structural similarities. We sought to determine whether the chronic administration of lipoic acid affects the activities of biotin-dependent carboxylases. For 28 d, rats received daily intraperitoneal injections of one of the following: 1) a small dose of lipoic acid [4.3 micromol/( kg.d)]; 2) a large dose of lipoic acid [15.6 micromol/(kg.d)]; or 3) a large dose of lipoic acid plus biotin [15.6 and 2.0 micromol/(kg.d), respectively]. Another group received n-hexanoic acid [14.5 micromol/(kg.d)], which has structural similarities to lipoic acid and biotin and thus served as a control for the specificity of lipoic acid. A fifth group received phosphatidylcholine in saline injections and served as the vehicle control. The rat livers were assayed for the activities of acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and beta-methylcrotonyl-CoA carboxylase. Urine was analyzed for lipoic acid; serum was analyzed for indicators of liver damage and metabolic aberrations. The mean activities of pyruvate carboxylase and beta-methylcrotonyl-CoA carboxylase were 28-36% lower in the lipoic acid-treated rats compared with vehicle controls (P < 0.05). Rats treated with lipoic acid plus biotin had normal carboxylase activities. Carboxylase activities in livers of n-hexanoic acid-treated rats were normal despite some evidence of liver injury. Propionyl-CoA carboxylase and acetyl-CoA carboxylase were not significantly affected by administration of lipoic acid. This study provides evidence consistent with the hypothesis that chronic administration of lipoic acid lowers the activities of pyruvate carboxylase and beta-methylcrotonyl-CoA carboxylase in vivo by competing with biotin.
Collapse
Affiliation(s)
- J Zempleni
- Department of Pediatrics, University of Arkansas for Medical Sciences and the Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA
| | | | | |
Collapse
|
10
|
Haramaki N, Han D, Handelman GJ, Tritschler HJ, Packer L. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic Biol Med 1997; 22:535-42. [PMID: 8981046 DOI: 10.1016/s0891-5849(96)00400-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In cellular, tissue, and organismal systems, exogenously supplied alpha-lipoic acid (thioctic acid) has a variety of significant effects, including direct radical scavenging, redox modulation of cell metabolism, and potential to inhibit oxidatively-induced injury. Because reduction of lipoate to dihydrolipoate is a crucial step in many of these processes, we investigated mechanisms of its reduction. The mitochondrial NADH-dependent dihydrolipoamide dehydrogenase exhibits a marked preference for R(+)-lipoate, whereas NADPH-dependent glutathione reductase shows slightly greater activity toward the S(-)-lipoate stereoisomer. Rat liver mitochondria also reduced exogenous lipoic acid. The rate of reduction was stimulated by substrates which increased the NADH content of the mitochondria, and was inhibited by methoxyindole-2-carboxylic acid, a dihydrolipoamide dehydrogenase inhibitor. In rat liver cytosol, NADPH-dependent reduction was greater than NADH, and lipoate reduction was inhibited by glutathione disulfide. In rat heart, kidney, and brain whole cell-soluble fractions, NADH contributed more to reduction (70-90%) than NADPH, whereas with liver, NADH and NADPH were about equally active. An intact organ, the isolated perfused rat heart, reduced R-lipoate six to eight times more rapidly than S-lipoate, consistent with high mitochondrial dihydrolipoamide dehydrogenase activity and results with isolated cardiac mitochondria. On the other hand, erythrocytes, which lack mitochondria, somewhat more actively reduced S- than R-lipoate. These results demonstrate differing stereospecific reduction by intact cells and tissues. Thus, mechanisms of reduction of alpha-lipoate are highly tissue-specific and effects of exogenously supplied alpha-lipoate are determined by tissue glutathione reductase and dihydrolipoamide dehydrogenase activity.
Collapse
Affiliation(s)
- N Haramaki
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3200, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- M Sugiyama
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| |
Collapse
|
12
|
Kataoka H, Hirabayashi N, Makita M. Analysis of lipoic acid in biological samples by gas chromatography with flame photometric detection. JOURNAL OF CHROMATOGRAPHY 1993; 615:197-202. [PMID: 8335698 DOI: 10.1016/0378-4347(93)80333-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A selective and sensitive gas chromatographic method for the analysis of lipoic acid in biological samples has been developed. After base hydrolysis of the sample, the liberated lipoic acid was converted into its S,S-diethoxycarbonyl methyl ester derivative and measured by gas chromatography using a DB-210 capillary column and a flame photometric detector. The calibration curve was linear in the range 20-500 ng, and the detection limit was ca. 50 pg injected. The best hydrolysis conditions for the biological samples were obtained by using 2 M potassium hydroxide containing 4% bovine serum albumin at 110 degrees C for 3 h. Using this method, lipoic acid in the hydrolysate could be selectively determined without any interference from matrix substances. Analytical results for the determination of lipoic acid in the mouse tissue and bacterial cell samples are presented.
Collapse
Affiliation(s)
- H Kataoka
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | |
Collapse
|
13
|
Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L. Dihydrolipoic acid--a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmacol 1992; 44:1637-49. [PMID: 1417985 DOI: 10.1016/0006-2952(92)90482-x] [Citation(s) in RCA: 283] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thioctic (lipoic) acid is used as a therapeutic agent in a variety of diseases in which enhanced free radical peroxidation of membrane phospholipids has been shown to be a characteristic feature. It was suggested that the antioxidant properties of thioctic acid and its reduced form, dihydrolipoic acid, are at least in part responsible for the therapeutic potential. The reported results on the antioxidant efficiency of thioctic and dihydrolipoic acids obtained in oxidation models with complex multicomponent initiation systems are controversial. In the present work we used relatively simple oxidation systems to study the antioxidant effects of dihydrolipoic and thioctic acids based on their interactions with: (1) peroxyl radicals which are essential for the initiation of lipid peroxidation, (2) chromanoxyl radicals of vitamin E, and (3) ascorbyl radicals of vitamin C, the two major lipid- and water-soluble antioxidants, respectively. We demonstrated that: (1) dihydrolipoic acid (but not thioctic acid) was an efficient direct scavenger of peroxyl radicals generated in the aqueous phase by the water-soluble azoinitiator 2,2'-azobis(2-amidinopropane)-dihydrochloride, and in liposomes or in microsomal membranes by the lipid-soluble azoinitiator 2,2'-azobis(2,4-dimethylvaleronitrile); (2) both dihydrolipoic acid and thioctic acid did not interact directly with chromanoxyl radicals of vitamin E (or its synthetic homologues) generated in liposomes or in the membranes by three different ways: UV-irradiation, peroxyl radicals of 2,2'-azobis(2,4-dimethylvaleronitrile), or peroxyl radicals of linolenic acid formed by the lipoxygenase-catalyzed oxidation; and (3) dihydrolipoic acid (but not thioctic acid) reduced ascorbyl radicals (and dehydroascorbate) generated in the course of ascorbate oxidation by chromanoxyl radicals. This interaction resulted in ascorbate-mediated dihydrolipoic acid-dependent reduction of the vitamin E chromanoxyl radicals, i.e. vitamin E recycling. We conclude that dihydrolipoic acid may act as a strong direct chain-breaking antioxidant and may enhance the antioxidant potency of other antioxidants (ascorbate and vitamin E) in both the aqueous and the hydrophobic membraneous phases.
Collapse
Affiliation(s)
- V E Kagan
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The liver's pivotal role in the homeostasis of essential trace metals and detoxification of exogenous metals is attributed to its ability to efficiently extract metals from plasma, metabolize, store, and redistribute them in various forms either into bile or back into the bloodstream. Bidirectional transport across the sinusoidal plasma membrane allows the liver to control plasma concentrations and therefore availability to other tissues. In contrast, transport across the canalicular membrane is largely, but not exclusively, unidirectional and is a major excretory pathway. Although each metal has relatively distinct hepatic transport characteristics, some generalizations can be made. First, movement of metals from plasma to bile follows primarily a transcellular route. The roles of the paracellular pathway and of ductular secretion appear minimal. Second, intracellular binding proteins and in particular metallothionein play only indirect roles in transmembrane flux. The amounts of metallothionein normally secreted into plasma and bile are quite small and cannot account for total metal efflux. Third, metals traverse liver cell plasma membranes largely by facilitated diffusion, and by fluid-phase, adsorptive, and receptor-mediated endocytosis/exocytosis. There is currently no evidence for primary active transport. Because of the high rate of hepatocellular membrane turnover, metal transport via endocytic vesicles probably makes a larger contribution than previously recognized. Finally, there is significant overlap in substrate specificity on the putative membrane carriers for the essential trace metals. For example, zinc and copper share many transport characteristics and apparently compete for at least one common transport pathway. Similarly, canalicular transport of five of the metals discussed in this overview (Cu, Zn, Cd, Hg, and Pb) is linked to biliary GSH excretion. These metals may be transported as GSH complexes by the canalicular glutathione transport system(s). Unfortunately, none of the putative membrane carrier proteins have been studied at the subcellular or molecular level. Our knowledge of their biochemical properties is rudimentary and rests almost entirely on indirect evidence obtained in vivo or in intact cell systems. The challenge for the future is to isolate and characterize these putative metal carriers, and to determine how they are functionally regulated.
Collapse
Affiliation(s)
- N Ballatori
- Department of Biophysics, University of Rochester School of Medicine, New York 14642
| |
Collapse
|
15
|
Müller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1052:386-91. [PMID: 2112957 DOI: 10.1016/0167-4889(90)90147-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipoate (thioctic acid) is presently used in therapy of a variety of diseases such as liver and neurological disorders. However, nothing is known about the efficacy of lipoate and its reduced form dihydrolipoate in acute cadmium (Cd2+) toxicity which involves severe liver disturbances. Therefore, we investigated the effects of these redox compounds on Cd2(+)-induced injuries in isolated rat hepatocytes. The cells were coincubated with 150 microM Cd2+ and either 1.5-6.0 mM lipoate or 17-89 microM dihydrolipoate for up to 90 min and Cd2+ uptake as well as viability criteria were monitored. Both exposure regimens diminished Cd2+ uptake in correspondence to time and concentration. They also ameliorated Cd2(+)-induced cell deterioration as reflected by the decrease in Cd2(+)-induced membrane damage (leakage of aspartate aminotransferase), by the lessening of the Cd2(+)-stimulated lipid peroxidation (TBA-reactants) and by the increase in Cd2(+)-depleted cellular glutathione (GSH + 2 GSSG). Half-maximal protection was achieved at molar ratios of 9.9 to 19 (lipoate vs. Cd2+) and 0.25 to 0.74 (dihydrolipoate vs. Cd2+), indicating a 19.5 to 50.6 lower protective efficacy of lipoate as compared to dihydrolipoate. Lipoate induced an increase in extracellular acid-soluble thiols different from glutathione. It is suggested that dihydrolipoate primarily protects cells by extracellular chelation of Cd2+, whereas intracellular reduction of lipoate to the dihydro-compound followed by complexation of both intra- and extracellular Cd2+ contributes to the amelioration provided by lipoate.
Collapse
Affiliation(s)
- L Müller
- Institute of Toxicology, University of Düsseldorf, F.R.G
| | | |
Collapse
|