Hatchikian EC, Forget N, Fernandez VM, Williams R, Cammack R. Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1992;
209:357-65. [PMID:
1327776 DOI:
10.1111/j.1432-1033.1992.tb17297.x]
[Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans ATCC 7757, previously reported to be a single-subunit protein [Glick, B. R., Martin, W. G., and Martin, S. M. (1980) Can. J. Microbiol. 26, 1214-1223] were reinvestigated. The pure enzyme exhibited a molecular mass of 53.5 kDa as measured by analytical ultracentrifugation and was found to comprise two different subunits of 42.5 kDa and 11 kDa, with serine and alanine as N-terminal residues, respectively. The N-terminal amino acid sequences of its large and small subunits, determined up to 25 residues, were identical to those of the Desulfovibrio vulgaris Hildenborough [Fe]-hydrogenase. D. desulfuricans ATCC 7757 hydrogenase was free of nickel and contained 14.0 atoms of iron and 14.4 atoms of acid-labile sulfur/molecule and had E400, 52.5 mM-1.cm-1. The purified hydrogenase showed a specific activity of 62 kU/mg of protein in the H2-uptake assay, and the H2-uptake activity was higher than H2-evolution activity. The enzyme isolated under aerobic conditions required incubation under reducing conditions to express its maximum activity both in the H2-uptake and 2H2/1H2 exchange reaction. The ratio of the activity of activated to as-isolated hydrogenase was approximately 3. EPR studies allowed the identification of two ferredoxin-type [4Fe-4S]1+ clusters in hydrogenase samples reduced by hydrogen. In addition, an atypical cluster exhibiting a rhombic signal (g values 2.10, 2.038, 1.994) assigned to the H2-activating site in other [Fe]-hydrogenases was detected in partially reduced samples. Molecular properties, EPR spectroscopy, catalytic activities with different substrates and sensitivity to hydrogenase inhibitors indicated that D. desulfuricans ATCC 7757 periplasmic hydrogenase is a [Fe]-hydrogenase, similar in most respects to the well characterized [Fe]-hydrogenase from D. vulgaris Hildenborough.
Collapse