Deguchi H, Yegneswaran S, Griffin JH. Sphingolipids as Bioactive Regulators of Thrombin Generation.
J Biol Chem 2004;
279:12036-42. [PMID:
14722105 DOI:
10.1074/jbc.m302531200]
[Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids contribute to modulation of two opposing cell processes, cell growth and apoptotic cell death; ceramide and sphingosine promote the latter and sphingosine-1-phosphate triggers the former. Thrombin, a pro-inflammatory protease that is regulated by the blood coagulation cascade, exerts similar effects depending on cell type. Here we report a new mechanism for cross-talk between sphingolipid metabolism and thrombin generation. Sphingosine and sphinganine, but not ceramide or sphingosine-1-phosphate, down-regulated thrombin generation on platelet surfaces (IC(50) = 2.4 and 1.4 microm for sphingosine and sphinganine, respectively) as well as in whole plasma clotting assays. Thrombin generation was also inhibited by glucosylsphingosine, lysosphingomyelin, phytosphingosine, and primary alkylamines with >10 carbons. Acylation of the amino group ablated anticoagulant activities. Factor Va was required for the anticoagulant property of sphingosine because prothrombin activation was inhibited by sphingosine, sphinganine, and stearylamine in the presence but not in the absence of factor Va. Sphingosine did not inhibit thrombin generation when Gla-domainless factor Xa was used in prothrombinase assays, whereas sphingosine inhibited activation of Gla-domainless prothrombin by factor Xa/factor Va in the absence of phospholipids (IC(50) = 0.49 microm). Fluorescence spectroscopy studies showed that sphingosine binds to fluorescein-labeled factor Xa and that this interaction required the Gla domain. These results imply that sphingosine disrupts interactions between factor Va and the Gla domain of factor Xa in the prothrombinase complex. Thus, certain sphingolipids may be bioactive lipid mediators of thrombin generation such that certain sphingolipid metabolites may modulate proteases that affect cell growth and death, blood coagulation, and inflammation.
Collapse