1
|
Phillips RS, Demidkina TV, Faleev NG. The role of substrate strain in the mechanism of the carbon-carbon lyases. Bioorg Chem 2014; 57:198-205. [PMID: 25035301 DOI: 10.1016/j.bioorg.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022]
Abstract
The carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from l-tryptophan and l-tyrosine, respectively. These PLP-dependent enzymes show high sequence homology (∼40% identity) and both form homotetrameric structures. Steady state kinetic studies with both enzymes show that an active site base is essential for activity, and α-deuterated substrates exhibit modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500nm. In the presence of phenol and indole analogues, 4-hydroxypyridine and benzimidazole, the quinonoid intermediates of TPL and TIL decay to aminoacrylate intermediates, with λmax at about 340nm. Surprisingly, there are significant kinetic isotope effects on both formation and subsequent decay of the quinonoid intermediates when α-deuterated substrates are used. The crystal structure of TPL with a bound competitive inhibitor, 4-hydroxyphenylpropionate, identified several essential catalytic residues: Tyr-71, Thr-124, Arg-381, and Phe-448. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg-381(TPL)/Ile-396 (TIL); Thr-124 (TPL)/Asp-137 (TIL), and Phe-448 (TPL)/His-463 (TIL). Mutagenesis of these residues results in dramatic decreases in catalytic activity without changing substrate specificity. The conserved tyrosine, Tyr-71 (TPL)/Tyr-74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. Mutation of Arg-381 and Thr-124 of TPL to alanine results in very low but measurable catalytic activity. Crystallography of Y71F and F448H TPL with 3-fluoro-l-tyrosine bound demonstrated that there are two quinonoid structures, relaxed and tense. In the relaxed structure, the substrate aromatic ring is in plane with the Cβ-Cγ bond, but in the tense structure, the substrate aromatic ring is about 20° out of plane with the Cβ-Cγ bond. In the tense structure, hydrogen bonds are formed between the substrate OH and the guanidinium of Arg-381 and the OH of Thr-124, and the phenyl rings of Phe-448 and 449 provide steric strain. Based on the effects of mutagenesis, the substrate strain is estimated to contribute about 10(8) to TPL catalysis. Thus, the mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Nicolai G Faleev
- Nesmeyanov Institute of Organo-Element Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| |
Collapse
|
2
|
Milić D, Demidkina TV, Faleev NG, Matković-Calogović D, Antson AA. Insights into the catalytic mechanism of tyrosine phenol-lyase from X-ray structures of quinonoid intermediates. J Biol Chem 2008; 283:29206-14. [PMID: 18715865 PMCID: PMC2662015 DOI: 10.1074/jbc.m802061200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/11/2008] [Indexed: 11/06/2022] Open
Abstract
Amino acid transformations catalyzed by a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes involve abstraction of the Calpha proton from an external aldimine formed between a substrate and the cofactor leading to the formation of a quinonoid intermediate. Despite the key role played by the quinonoid intermediates in the catalysis by PLP-dependent enzymes, limited accurate information is available about their structures. We trapped the quinonoid intermediates of Citrobacter freundii tyrosine phenol-lyase with L-alanine and L-methionine in the crystalline state and determined their structures at 1.9- and 1.95-A resolution, respectively, by cryo-crystallography. The data reveal a network of protein-PLP-substrate interactions that stabilize the planar geometry of the quinonoid intermediate. In both structures the protein subunits are found in two conformations, open and closed, uncovering the mechanism by which binding of the substrate and restructuring of the active site during its closure protect the quinonoid intermediate from the solvent and bring catalytically important residues into positions suitable for the abstraction of phenol during the beta-elimination of L-tyrosine. In addition, the structural data indicate a mechanism for alanine racemization involving two bases, Lys-257 and a water molecule. These two bases are connected by a hydrogen bonding system allowing internal transfer of the Calpha proton.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
3
|
Milić D, Matković-Calogović D, Demidkina TV, Kulikova VV, Sinitzina NI, Antson AA. Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Biochemistry 2006; 45:7544-52. [PMID: 16768450 PMCID: PMC2691550 DOI: 10.1021/bi0601858] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phenol-lyase, a tetrameric pyridoxal 5'-phosphate dependent enzyme, catalyzes the reversible hydrolytic cleavage of L-tyrosine to phenol and ammonium pyruvate. Here we describe the crystal structure of the Citrobacter freundii holoenzyme at 1.9 A resolution. The structure reveals a network of protein interactions with the cofactor, pyridoxal 5'-phosphate, and details of coordination of the catalytically important K+ ion. We also present the structure of the apoenzyme at 1.85 A resolution. Both structures were determined using crystals grown at pH 8.0, which is close to the pH of the maximal enzymatic activity (8.2). Comparison of the apoenzyme structure with the one previously determined at pH 6.0 reveals significant differences. The data suggest that the decrease of the enzymatic activity at pH 6.0 may be caused by conformational changes in the active site residues Tyr71, Tyr291, and Arg381 and in the monovalent cation binding residue Glu69. Moreover, at pH 8.0 we observe two different active site conformations: open, which was characterized before, and closed, which is observed for the first time in beta-eliminating lyases. In the closed conformation a significant part of the small domain undergoes an extraordinary motion of up to 12 A toward the large domain, closing the active site cleft and bringing the catalytically important Arg381 and Phe448 into the active site. The closed conformation allows rationalization of the results of previous mutational studies and suggests that the observed active site closure is critical for the course of the enzymatic reaction and for the enzyme's specificity toward its physiological substrate. Finally, the closed conformation allows us to model keto(imino)quinonoid, the key transition intermediate.
Collapse
Affiliation(s)
- Dalibor Milić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
4
|
Demidkina TV, Faleev NG, Papisova AI, Bazhulina NP, Kulikova VV, Gollnick PD, Phillips RS. Aspartic acid 214 in Citrobacter freundii tyrosine phenol-lyase ensures sufficient C–H-acidity of the external aldimine intermediate and proper orientation of the cofactor at the active site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1268-76. [PMID: 16793353 DOI: 10.1016/j.bbapap.2006.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/28/2006] [Accepted: 05/09/2006] [Indexed: 11/29/2022]
Abstract
In the X-ray structure of tyrosine phenol-lyase (TPL) Asp214 is located at H-bonding distance from the N1 atom of the cofactor. This residue has been replaced with Ala and Asn and the properties of the mutant enzymes have been studied. The substitutions result in a decrease in the cofactor affinity of about four orders of magnitude. D214A and D214N TPLs do not catalyze the decomposition of l-Tyr and 3-fluoro-l-Tyr. They decompose substrates, containing better leaving groups with rates reduced by one or two orders of magnitude. Lognormal resolution of the spectra of the mutant enzymes revealed that the N1 atom of the cofactor is deprotonated. Spectral characteristics of internal and external aldimines of the mutant TPLs and the data on their interaction with quasisubstrates demonstrate that replacements of Asp214 lead to alteration of active site conformations. The mutant enzymes do not form noticeable amounts of a quinonoid upon interaction with inhibitors, but catalyze isotope exchange of C-alpha-proton of a number of amino acids for deuterium in (2)H(2)O. The k(ex) values for the isotope exchange of l-phenylalanine and 3-fluoro-l-tyrosine are close to the k(cat) values for reacting substrates. Thus, for the mutant TPLs the stage of C-alpha-proton abstraction may be considered as a rate-limiting for the whole reaction.
Collapse
Affiliation(s)
- T V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Schnackerz KD, Keller J, Phillips RS, Toney MD. Ionization state of pyridoxal 5′-phosphate in d-serine dehydratase, dialkylglycine decarboxylase and tyrosine phenol-lyase and the influence of monovalent cations as inferred by 31P NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:230-8. [PMID: 16290167 DOI: 10.1016/j.bbapap.2005.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 10/10/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
The 31P NMR spectroscopy of three pyridoxal 5'-phosphate-dependent enzymes, monomeric D-serine dehydratase, tetrameric dialkylglycine decarboxylase and tetrameric tyrosine phenol-lyase, whose enzymatic activities are dependent on alkali metal ions, was studied. 31P NMR spectra of the latter two enzymes have never been reported, their 3D-structures, however, are available. The cofactor phosphate chemical shift of all three enzymes changes by approximately 3 ppm as a function of pH, indicating that the phosphate group changes from being monoanionic at low pH to dianionic at high pH. The 31P NMR signal of the phosphate group of pyridoxal 5'-phosphate provides a measure of the active site changes that occur when various alkali metal ions are bound. Structural information is used to assist in the interpretation of the chemical shift changes observed. For D-serine dehydratase, no structural data are available but nevertheless the metal ion arrangement in the PLP binding site can be predicted from 31P NMR data.
Collapse
Affiliation(s)
- Klaus D Schnackerz
- Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
6
|
Ro HS. Effects of salts on the conformation and catalytic properties of d-amino acid aminotransferase. BMB Rep 2002; 35:306-12. [PMID: 12297014 DOI: 10.5483/bmbrep.2002.35.3.306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of salts on the biochemical properties of D-amino acid aminotransferase from Bacillus sp. YM-1 have been studied to elucidate both the inhibitory effects of salts on the activity and the protective effects of salts on the substrate-induced inactivation. The results from UV-visible spectroscopy studies on the reaction of the enzyme with D-serine revealed that salt significantly reduced the rate of the formation of the quinonoid intermediate and its accumulation. The kinetic and spectroscopy studies of the reaction with alpha-[(2)H]-DL-serine in different concentrations of NaCl provided evidence that the rate-limiting step was changed from the deprotonation of the external aldimine to another step(s), presumably to the hydrolysis of the ketimine. Gel filtration chromatography data in the presence of NaCl showed that the enzyme volume was reduced sharply with the increasing NaCl concentration, up to 100 mM. An additional increase of the NaCl concentration did not affect the elution volume, which suggests that the enzyme has a limited number of salt-binding groups. These results provide detailed mechanistic evidence for the way salts inhibit the catalytic activity of Damino acid aminotransferase
Collapse
Affiliation(s)
- Hyeon-Su Ro
- Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
| |
Collapse
|
7
|
Phillips RS, Demidkina TV, Zakomirdina LN, Bruno S, Ronda L, Mozzarelli A. Crystals of tryptophan indole-lyase and tyrosine phenol-lyase form stable quinonoid complexes. J Biol Chem 2002; 277:21592-7. [PMID: 11934889 DOI: 10.1074/jbc.m200216200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Bazhulina NP, Morozov YV, Papisova AI, Demidkina TV. Pyridoxal 5'-phoshate schiff base in Citrobacter freundii tyrosinephenol-lyase. Ionic and tautomeric equilibria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1830-6. [PMID: 10712616 DOI: 10.1046/j.1432-1327.2000.01185.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spectral properties of the internal Schiff base in tyrosine phenol-lyase have been investigated in the presence of an activating cation K+ and a cation-inhibitor Na+. The holoenzyme absorption spectra in the pH range 6.5-8.7 were recorded in the presence of K+. No apparent pKa value of the coenzyme chromophore was found in this pH range, indicating that the internal Schiff base does not change its ionic form on going from pH 6.5 to 8.7. To determine the ionic state and tautomeric composition of the Schiff base in tyrosine phenol-lyase, the absorption and circular dichroism spectra were analyzed using lognormal distribution curves. The predominant form of the internal Schiff base is that with protonated pyridinium and aldimine nitrogen atoms and deprotonated 3'-hydroxy group, i.e. the ketoenamine. This form is in prototropic equilibrium with its enolimine tautomer. The internal aldimine ionic form is changed upon replacement of K+ with Na+. This replacement leads to a significant decrease in the pKa value of pyridinium nitrogen of the pyridoxal-P.
Collapse
Affiliation(s)
- N P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
9
|
Davoodi J, Drown PM, Bledsoe RK, Wallin R, Reinhart GD, Hutson SM. Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. J Biol Chem 1998; 273:4982-9. [PMID: 9478945 DOI: 10.1074/jbc.273.9.4982] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have developed overexpression systems for the human branched-chain aminotransferase isoenzymes. The enzymes function as dimers and have substrate specificity comparable with the rat enzymes. The human cytosolic enzyme appears to turn over 2-5 times faster than the mitochondrial enzyme, and there may be anion and cation effects on the kinetics of both enzymes. The two proteins demonstrate similar absorption profiles, and the far UV circular dichroism spectra show that no global structural changes occur when the proteins are converted from the pyridoxal to pyridoxamine form. On the other hand, the near UV circular dichroism spectra suggest differences in the local environment surrounding tyrosines within these proteins. Both enzymes require a reducing environment for maximal activity, but the mitochondrial enzyme can be inhibited by nickel ions in the presence of reducing agents, while the cytosolic enzyme is unaffected. Chemical denaturation profiles of the proteins show that there are differences in structural stability. Titration of -SH groups with 5,5'-dithiobis(2-nitrobenzoic acid) suggests that no disulfide bonds are present in the mitochondrial enzyme and that at least two disulfide bonds are present in the cytosolic enzyme. Two -SH groups are titrated in the native form of the mitochondrial enzyme, leading to complete inhibition of activity, while only one -SH group is titrated in the cytosolic enzyme with no effect on activity. Although these proteins share 58% identity in primary amino acid sequence, the local environment surrounding the active site appears unique for each isoenzyme.
Collapse
Affiliation(s)
- J Davoodi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
10
|
Isupov MN, Antson AA, Dodson EJ, Dodson GG, Dementieva IS, Zakomirdina LN, Wilson KS, Dauter Z, Lebedev AA, Harutyunyan EH. Crystal structure of tryptophanase. J Mol Biol 1998; 276:603-23. [PMID: 9551100 DOI: 10.1006/jmbi.1997.1561] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structure of tryptophanase (Tnase) reveals the interactions responsible for binding of the pyridoxal 5'-phosphate (PLP) and atomic details of the K+ binding site essential for catalysis. The structure of holo Tnase from Proteus vulgaris (space group P2(1)2(1)2(1) with a = 115.0 A, b = 118.2 A, c = 153.7 A) has been determined at 2.1 A resolution by molecular replacement using tyrosine phenol-lyase (TPL) coordinates. The final model of Tnase, refined to an R-factor of 18.7%, (Rfree = 22.8%) suggests that the PLP-enzyme from observed in the structure is a ketoenamine. PLP is bound in a cleft formed by both the small and large domains of one subunit and the large domain of the adjacent subunit in the so-called "catalytic" dimer. The K+ cations are located on the interface of the subunits in the dimer. The structure of the catalytic dimer and mode of PLP binding in Tnase resemble those found in aspartate amino-transferase, TPL, omega-amino acid pyruvate aminotransferase, dialkylglycine decarboxylase (DGD), cystathionine beta-lyase and ornithine decarboxylase. No structural similarity has been detected between Tnase and the beta 2 dimer of tryptophan synthase which catalyses the same beta-replacement reaction. The single monovalent cation binding site of Tnase is similar to that of TPL, but differs from either of those in DGD.
Collapse
Affiliation(s)
- M N Isupov
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sundararaju B, Antson AA, Phillips RS, Demidkina TV, Barbolina MV, Gollnick P, Dodson GG, Wilson KS. The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4'-hydroxyphenyl)propionic acid, together with site-directed mutagenesis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity. Biochemistry 1997; 36:6502-10. [PMID: 9174368 DOI: 10.1021/bi962917+] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The X-ray structure of tyrosine phenol-lyase (TPL) complexed with a substrate analog, 3-(4'-hydroxyphenyl)propionic acid, shows that Arg 381 is located in the substrate binding site, with the side-chain NH1 4.1 A from the 4'-OH of the analog. The structure has been deduced at 2.5 A resolution using crystals that belong to the P2(1)2(1)2 space group with a = 135.07 A, b = 143.91 A, and c = 59.80 A. To evaluate the role of Arg 381 in TPL catalysis, we prepared mutant proteins replacing arginine with alanine (R381A), with isoleucine (R381I), and with valine (R381V). The beta-elimination activity of R381A TPL has been reduced by 10(-4)-fold compared to wild type, whereas R381I and R381V TPL exhibit no detectable beta-elimination activity with L-tyrosine as substrate. However, R381A, R381I, and R381V TPL react with S-(o-nitrophenyl)-L-cysteine, beta-chloro-L-alanine, O-benzoyl-L-serine, and S-methyl-L-cysteine and exhibit k(cat) and k(cat)/Km values comparable to those of wild-type TPL. Furthermore, the Ki values for competitive inhibition by L-tryptophan and L-phenylalanine are similar for wild-type, R381A, and R381I TPL. Rapid-scanning-stopped flow spectroscopic analyses also show that wild-type and mutant proteins can bind L-tyrosine and form quinonoid complexes with similar rate constants. The binding of 3-(4'-hydroxyphenyl)propionic acid to wild-type TPL decreases at high pH values with a pKa of 8.4 and is thus dependent on an acidic group, possibly Arg404, which forms an ion pair with the analog carboxylate, or the pyridoxal 5'-phosphate Schiff base. R381A TPL shows only a small decrease in k(cat)/Km for tyrosine at lower pH, in contrast to wild-type TPL, which shows two basic pKas with an average value of about 7.8. Thus, it is possible that Arg 381 is one of the catalytic bases previously observed in the pH dependence of k(cat)/Km of TPL with L-tyrosine [Kiick, D. M., & Phillips. R. S. (1988) Biochemistry 27, 7333-7338], and hence Arg 381 is at least partially responsible for the substrate specificity of TPL.
Collapse
Affiliation(s)
- B Sundararaju
- Department of Chemistry, Center for Metalloenzyme Studies, University of Georgia, Athens 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Peracchi A, Mozzarelli A, Rossi GL. Monovalent cations affect dynamic and functional properties of the tryptophan synthase alpha 2 beta 2 complex. Biochemistry 1995; 34:9459-65. [PMID: 7626616 DOI: 10.1021/bi00029a022] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monovalent cations affect both conformational and catalytic properties of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Their influence on the dynamic properties of the enzyme was probed by monitoring the phosphorescence decay of the unique Trp-177 beta, a residue located near the beta-active site, at the interface between alpha- and beta-subunits. In the presence of either Li+, Na+, Cs+, or NH4+, the phosphorescence decay is biphasic and the average lifetime increases indicating a decrease in the flexibility of the N-terminal domain of the beta-subunit. Since amplitudes but not lifetimes are affected, cations appear to shift the equilibrium between preexisting enzyme conformations. The effect on the reaction between indole and L-serine was studied by steady state kinetic methods at room temperature. We found that cations: (i) bind to the L-serine--enzyme derivatives with an apparent dissociation constant, measured as the concentration of cation corresponding to one-half of the maximal activity, that is in the millimolar range and decreases with ion size; (ii) increase kcat with the order of efficacy Cs+ > K+ > Li+ > Na+; (iii) decrease KM for indole, Na+ being the most effective and causing a 30-fold decrease; and (iv) cause an increase of the kcat/KM ratio by 20-40-fold. The influence on the equilibrium distribution between the external aldimine and the alpha-aminoacrylate, intermediates in the reaction of L-serine with the beta-subunits of the enzyme, was found to be cation-specific.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Peracchi
- Istituto di Scienze Biochimiche, Università di Parma, Italy
| | | | | |
Collapse
|
13
|
Ruvinov SB, Ahmed SA, McPhie P, Miles EW. Monovalent cations partially repair a conformational defect in a mutant tryptophan synthase alpha 2 beta 2 complex (beta-E109A). J Biol Chem 1995; 270:17333-8. [PMID: 7615535 DOI: 10.1074/jbc.270.29.17333] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We are using the tryptophan synthase alpha 2 beta 2 complex as a model system to investigate how ligands, protein-protein interaction, and mutations regulate enzyme activity, reaction specificity, and substrate specificity. The rate of conversion of L-serine and indole to L-tryptophan by the beta 2 subunit alone is quite low, but is activated by certain monovalent cations or by association with alpha subunit to form an alpha 2 beta 2 complex. Since monovalent cations and alpha subunit appear to stabilize an active conformation of the beta 2 subunit, we have investigated the effects of monovalent cations on the activities and spectroscopic properties of a mutant form of alpha 2 beta 2 complex having beta 2 subunit glutamic acid 109 replaced by alanine (E109A). The E109A alpha 2 beta 2 complex is inactive in reactions with L-serine but active in reactions with beta-chloro-L-alanine. Parallel experiments show effects of monovalent cations on the properties of wild type beta 2 subunit and alpha 2 beta 2 complex. We find that CsCl stimulates the activity of the E109A alpha 2 beta 2 complex and of wild type beta 2 subunit with L-serine and indole and alters the equilibrium distribution of L-serine reaction intermediates. The results indicate that CsCl partially repairs the deleterious effects of the E109A mutation on the activity of the alpha 2 beta 2 complex by stabilizing a conformation with catalytic properties more similar to those of the wild type alpha 2 beta 2 complex. This conclusion is consistent with observations that monovalent cations alter the catalytic and spectroscopic properties of several pyridoxal phosphate-dependent enzymes by stabilizing alternative conformations.
Collapse
Affiliation(s)
- S B Ruvinov
- Laboratory of Biochemical Pharmacology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- A Ghosh
- Department of Botany, University of Calcutta, India
| | | | | |
Collapse
|
15
|
Antson AA, Strokopytov BV, Murshudov GN, Isupov MN, Harutyunyan EH, Demidkina TV, Vassylyev DG, Dauter Z, Terry H, Wilson KS. The polypeptide chain fold in tyrosine phenol-lyase, a pyridoxal-5'-phosphate-dependent enzyme. FEBS Lett 1992; 302:256-60. [PMID: 1601133 DOI: 10.1016/0014-5793(92)80454-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tyrosine phenol lyase (EC 4.1.99.2) from Citrobacter intermedius has been crystallised in the apo form by vapour diffusion. The space group is P2(1)2(1)2. The unit cell has dimensions a = 76.0 A, b = 138.3 A, c = 93.5 A and it contains two subunits of the tetrameric molecule in the asymmetric unit. Diffraction data for the native enzyme and two heavy atom derivatives have been collected with synchrotron radiation and an image plate scanner. The structure has been solved at 2.7 A resolution by isomorphous replacement with subsequent modification of the phases by averaging the density around the non-crystallographic symmetry axis. The electron density maps clearly show the relative orientation of the subunits and most of the trace of the polypeptide chain. Each subunit consists of two domains. The topology of the large domain appears to be similar to that of the aminotransferases.
Collapse
Affiliation(s)
- A A Antson
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|