1
|
Yang J, Kong L, Zou L, Liu Y. The role of synaptic protein NSF in the development and progression of neurological diseases. Front Neurosci 2024; 18:1395294. [PMID: 39498393 PMCID: PMC11532144 DOI: 10.3389/fnins.2024.1395294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
This document provides a comprehensive examination of the pivotal function of the N-ethylmaleimide-sensitive factor (NSF) protein in synaptic function. The NSF protein directly participates in critical biological processes, including the cyclic movement of synaptic vesicles (SVs) between exocytosis and endocytosis, the release and transmission of neurotransmitters, and the development of synaptic plasticity through interactions with various proteins, such as SNARE proteins and neurotransmitter receptors. This review also described the multiple functions of NSF in intracellular membrane fusion events and its close associations with several neurological disorders, such as Parkinson's disease, Alzheimer's disease, and epilepsy. Subsequent studies should concentrate on determining high-resolution structures of NSF in different domains, identifying its specific alterations in various diseases, and screening small molecule regulators of NSF from multiple perspectives. These research endeavors aim to reveal new therapeutic targets associated with the biological functions of NSF and disease mechanisms.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingyue Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Bhandari V, Van Ommen DAJ, Wong KS, Houry WA. Analysis of the Evolution of the MoxR ATPases. J Phys Chem A 2022; 126:4734-4746. [PMID: 35852937 DOI: 10.1021/acs.jpca.2c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MoxR proteins comprise a family of ATPases Associated with diverse cellular Activities (AAA+). These proteins are widespread and found across the diversity of prokaryotic species. Despite their ubiquity, members of the group remain poorly characterized. Only a few examples of MoxR proteins have been associated with cellular roles, where they have been shown to perform chaperone-like functions. A characteristic feature of MoxR proteins is their association with proteins containing the von Willebrand factor type A (VWA) domain. In an effort to understand the spread and diversity of the MoxR family, an evolutionary approach was undertaken. Phylogenetic techniques were used to define nine major subfamilies within the MoxR family. A combination of phylogenetic and genomic approaches was utilized to explore the extent of the partnership between the MoxR and VWA domain containing proteins (VWA proteins). These analyses led to the clarification of genetic linkages between MoxR and VWA proteins. A significant partnership is described here, as seven of nine MoxR subfamilies were found to be linked to VWA proteins. Available genomic data were also used to assess the intraprotein diversification of MoxR and VWA protein sequences. Data clearly indicated that, in MoxR proteins, the ATPase domain is maintained with high conservation while the remaining protein sequence evolves at a faster rate; a similar pattern was observed for the VWA domain in VWA proteins. Overall, our data present insights into the modular evolution of MoxR ATPases.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - David A J Van Ommen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Schwerter DP, Grimm I, Platta HW, Erdmann R. ATP-driven processes of peroxisomal matrix protein import. Biol Chem 2017; 398:607-624. [PMID: 27977397 DOI: 10.1515/hsz-2016-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daniel P Schwerter
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Immanuel Grimm
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| |
Collapse
|
5
|
Nucleotide-dependent assembly of the peroxisomal receptor export complex. Sci Rep 2016; 6:19838. [PMID: 26842748 PMCID: PMC4740771 DOI: 10.1038/srep19838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release.
Collapse
|
6
|
Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:828-37. [PMID: 26453804 DOI: 10.1016/j.bbamcr.2015.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Collapse
Affiliation(s)
- Immanuel Grimm
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
7
|
Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan JR, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics 2014; 290:611-22. [DOI: 10.1007/s00438-014-0944-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
|
8
|
Wolfe A, Phipps K, Weitao T. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 2014; 4:31. [PMID: 24995125 PMCID: PMC4080785 DOI: 10.1186/2045-3701-4-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 01/15/2023] Open
Abstract
DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.
Collapse
Affiliation(s)
- Annie Wolfe
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Kara Phipps
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- Biology Department, College of Science and Mathematics, Southwest Baptist University, 1600 University Ave, Bolivar, Missouri 65613, USA
| |
Collapse
|
9
|
Cui G, Wang Y, Yu S, Yang L, Li B, Wang W, Zhou P, Wu J, Lu T, Chen D. The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. Cell Mol Neurobiol 2014; 34:83-94. [PMID: 24077878 DOI: 10.1007/s10571-013-9989-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022]
Abstract
Vacuolar protein sorting 4 (VPS4), is a member of ATPases associated with diverse cellular activities protein family. VPS4 is composed of VPS4A and VPS4B, VPS4B plays an important role in the lysosomal degradation pathway, intracellular protein trafficking, virus budding and abscission of cytokinesis. However, information regarding its distribution and possible function in the central nervous system is limited. Therefore, we performed a middle cerebral artery occlusion (MCAO) in adult rats and detected the dynamic changes of VPS4B in hippocampus CA1 subregion. We found that the VPS4B expression was increased strongly after MCAO and reached the peak after 3 days. VPS4B mainly located in the cytoplasm of neurons, but not astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. In vitro studies indicated that the up-regulation of VPS4B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knock-down of VPS4B in cultured differentiated PC12 cells by siRNA showed that VPS4B promoted the expression of active caspase-3. Collectively, all these results and MTT assay suggested that the up-regulation of VPS4B played an important role in the pathophysiology after MCAO, and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
10
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
11
|
Saffian D, Grimm I, Girzalsky W, Erdmann R. ATP-dependent assembly of the heteromeric Pex1p-Pex6p-complex of the peroxisomal matrix protein import machinery. J Struct Biol 2012; 179:126-32. [PMID: 22710083 DOI: 10.1016/j.jsb.2012.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/01/2012] [Accepted: 06/07/2012] [Indexed: 01/27/2023]
Abstract
The peroxisomal matrix protein import is facilitated by soluble receptor molecules which cycle between cytosol and the peroxisomal membrane. At the end of the receptor cycle, the import receptors are exported back to the cytosol in an ATP-dependent manner catalyzed by Pex1p and Pex6p, two AAA (ATPases associated with various cellular activities) type ATPases. Pex1p and Pex6p interact and form a heteromeric complex. In order to gain more insight into the stoichiometry and mechanism of assembly of the complex, we heterologously expressed and purified Saccharomyces cerevisiae Pex1p and Pex6p. Size exclusion chromatography studies of the recombinant proteins demonstrate that they form a hexameric complex in a one-to-one ratio of both AAA-proteins. The recombinant AAA-complex exhibits an ATPase activity with a k(m) of 0.17 mM and V(max) of 0.35 nmol min(-1) μg(-1). In the presence of N-ethylmaleimide, ATPase activity of the peroxisomal AAA-complex is drastically decreased and the complex dissociates. Disassembly of the complex into its Pex1p and Pex6p subunits is also observed upon ATP-depletion, indicating that formation of the Pex1p/Pex6p-complex requires the presence of ATP.
Collapse
Affiliation(s)
- Delia Saffian
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
FtsHs are a well-characterized family of membrane bound proteases containing an AAA (ATPase associated with various cellular activities) and a Zn(2+) metalloprotease domain. FtsH proteases are found in eubacteria, animals and plants and are known to have a crucial role in housekeeping proteolysis of membrane proteins. In Arabidopsis thaliana, 12 FtsH family members are present (FtsH 1-12) and their subcellular localization is restricted to mitochondria and chloroplasts. In addition, five genes coding for proteins homologous to FtsH (FtsHi 1-5) have been detected in the genome, lacking the conserved zinc-binding motif HEXXH, which presumably renders them inactive for proteolysis. These inactive FtsHs as well as nine of the active FtsHs are thought to be localized in the chloroplast. In this article, we shortly summarize the recent findings on plastidic FtsH proteases in text and figures. We will mainly focus on FtsH 1, 2, 5 and 8 localized in the thylakoid membrane and known for their importance in photosynthesis.
Collapse
Affiliation(s)
- Raik Wagner
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
13
|
|
14
|
Grimm I, Saffian D, Platta HW, Erdmann R. The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:150-8. [DOI: 10.1016/j.bbamcr.2011.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 12/25/2022]
|
15
|
Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:159-71. [PMID: 21689688 DOI: 10.1016/j.bbamcr.2011.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/23/2011] [Accepted: 06/06/2011] [Indexed: 12/23/2022]
Abstract
The N-ethylmaleimide-Sensitive Factor (NSF) was one of the initial members of the ATPases Associated with various cellular Activities Plus (AAA(+)) family. In this review, we discuss what is known about the mechanism of NSF action and how that relates to the mechanisms of other AAA(+) proteins. Like other family members, NSF binds to a protein complex (i.e., SNAP-SNARE complex) and utilizes ATP hydrolysis to affect the conformations of that complex. SNAP-SNARE complex disassembly is essential for SNARE recycling and sustained membrane trafficking. NSF is a homo-hexamer; each protomer is composed of an N-terminal domain, NSF-N, and two adjacent AAA-domains, NSF-D1 and NSF-D2. Mutagenesis analysis has established specific roles for many of the structural elements of NSF-D1, the catalytic ATPase domain, and NSF-N, the SNAP-SNARE binding domain. Hydrodynamic analysis of NSF, labeled with (Ni(2+)-NTA)(2)-Cy3, detected conformational differences in NSF, in which the ATP-bound conformation appears more compact than the ADP-bound form. This indicates that NSF undergoes significant conformational changes as it progresses through its ATP-hydrolysis cycle. Incorporating these data, we propose a sequential mechanism by which NSF uses NSF-N and NSF-D1 to disassemble SNAP-SNARE complexes. We also illustrate how analytical centrifugation might be used to study other AAA(+) proteins.
Collapse
|
16
|
Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity. Proc Natl Acad Sci U S A 2010; 107:22499-504. [PMID: 21148420 DOI: 10.1073/pnas.1009092107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MoxR family of AAA+ ATPases is widespread throughout bacteria and archaea but remains poorly characterized. We recently found that the Escherichia coli MoxR protein, RavA (Regulatory ATPase variant A), tightly interacts with the inducible lysine decarboxylase, LdcI/CadA, to form a unique cage-like structure. Here, we present the X-ray structure of RavA and show that the αβα and all-α subdomains in the RavA AAA+ module are arranged as in magnesium chelatases rather than as in classical AAA+ proteins. RavA structure also contains a discontinuous triple-helical domain as well as a β-barrel-like domain forming a unique fold, which we termed the LARA domain. The LARA domain was found to mediate the interaction between RavA and LdcI. The RavA structure provides insights into how five RavA hexamers interact with two LdcI decamers to form the RavA-LdcI cage-like structure.
Collapse
|
17
|
Zhang X, Wigley DB. The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 2008; 15:1223-7. [PMID: 18849995 PMCID: PMC2806578 DOI: 10.1038/nsmb.1501] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 09/23/2008] [Indexed: 11/25/2022]
Abstract
AAA+ proteins carry out diverse functions in cells. In most cases, their ATPase activity is tightly regulated by protein partners and target ligands, but the mechanism for this control has remained unclear. We have identified a conserved link between the ligand binding and ATPase sites in AAA+ proteins. This link, which we call the 'glutamate switch', regulates ATPase activity directly in response to the binding of target ligands by controlling the orientation of the conserved glutamate residue in the DExx motif, switching it between active and inactive conformations. The reasons for this level of control of the ATPase activity are discussed in the context of the biological processes catalyzed by AAA+ proteins.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Division of Molecular Biosciences, Centre for Structural Biology, Dept. of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Dale B. Wigley
- Cancer Research UK Clare Hall Laboratories, The London Research Institute, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3LD,U.K
| |
Collapse
|
18
|
Rieder SE, Emr SD. Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.8. [PMID: 18228360 DOI: 10.1002/0471143030.cb0308s08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit presents detailed protocols for a range of centrifugation-based subcellular fractionation procedures for the yeast Saccharomyces cerevisiae. Techniques include spheroplast preparation, glass-bead lysis, differential centrifugation, and several density gradient procedures using a variety of gradient media. There are analytical procedures that are primarily designed to evaluate the association of proteins with organelles in the exocytic and endocytic pathways. Additionally, there are preparative protocols for isolation of yeast nuclei, vacuoles, mitochondria, peroxisomes, endoplasmic reticulum, plasma membrane, and cytosol. The unit also contains a table, with references, for alternative approaches to isolation of these organelles and fractions.
Collapse
Affiliation(s)
- S E Rieder
- The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
19
|
Abstract
The AAA+ (ATPases associated with various cellular activities) superfamily of proteins represents a distinct lineage of the larger class of P-loop NTPases. Members of this superfamily use the power of nucleotide binding and hydrolysis to direct molecular remodelling events. All AAA+ proteins share a common core architecture, which, through various sequence and structural modifications, has been adapted for use in a remarkably diverse range of functions. The following mini-review provides a concise description of the major structural elements common to all AAA+ proteins in the context of their mechanistic roles. In addition, the evolutionary and functional diversity of this superfamily is described on the basis of recent classification studies.
Collapse
|
20
|
The AAA peroxins Pex1p and Pex6p function as dislocases for the ubiquitinated peroxisomal import receptor Pex5p. Biochem Soc Trans 2008; 36:99-104. [DOI: 10.1042/bst0360099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of the peroxisomal ATPase Pex1p triggered the beginning of the research on AAA (ATPase associated with various cellular activities) proteins and the genetic dissection of peroxisome biogenesis. Peroxisomes are virtually ubiquitous organelles, which are connected to diverse cellular functions. The highly diverse and adaptive character of peroxisomes is accomplished by modulation of their enzyme content, which is mediated by dynamically operating protein-import machineries. The import of matrix proteins into the peroxisomal lumen has been described as the ATP-consuming step, but the corresponding reaction, as well as the ATPase responsible, had been obscure for nearly 15 years. Recent work using yeast and human fibroblast cells has identified the peroxisomal AAA proteins Pex1p and Pex6p as mechano-enzymes and core components of a complex which dislocates the cycling import receptor Pex5p from the peroxisomal membrane back to the cytosol. This AAA-mediated process is regulated by the ubiquitination status of the receptor. Pex4p [Ubc10p (ubiquitin-conjugating enzyme 10)]-catalysed mono-ubiquitination of Pex5p primes the receptor for recycling, thereby enabling further rounds of matrix protein import, whereas Ubc4p-catalysed polyubiquitination targets Pex5p to proteasomal degradation.
Collapse
|
21
|
Grigoroudis AI, Panagiotidis CA, Lioliou EE, Vlassi M, Kyriakidis DA. Molecular modeling and functional analysis of the AtoS–AtoC two-component signal transduction system of Escherichia coli. Biochim Biophys Acta Gen Subj 2007; 1770:1248-58. [PMID: 17537579 DOI: 10.1016/j.bbagen.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/02/2007] [Accepted: 04/06/2007] [Indexed: 12/01/2022]
Abstract
The AtoS-AtoC two-component signal transduction system positively regulates the expression of the atoDAEB operon in Escherichia coli. Upon acetoacetate induction, AtoS sensor kinase autophosphorylates and subsequently phosphorylates, thereby activating, the response regulator AtoC. In a previous work we have shown that AtoC is phosphorylated at both aspartate 55 and histidine73. In this study, based on known three-dimensional structures of other two component regulatory systems, we modeled the 3D-structure of the receiver domain of AtoC in complex with the putative dimerization/autophosphorylation domain of the AtoS sensor kinase. The produced structural model indicated that aspartate 55, but not histidine 73, of AtoC is in close proximity to the conserved, putative phosphate-donor, histidine (H398) of AtoS suggesting that aspartate 55 may be directly involved in the AtoS-AtoC phosphate transfer. Subsequent biochemical studies with purified recombinant proteins showed that AtoC mutants with alterations of aspartate 55, but not histidine 73, were unable to participate in the AtoS-AtoC phosphate transfer in support of the modeling prediction. In addition, these AtoC mutants displayed reduced DNA-dependent ATPase activity, although their ability to bind their target DNA sequences in a sequence-specific manner was found to be unaltered.
Collapse
Affiliation(s)
- A I Grigoroudis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | | | | | | |
Collapse
|
22
|
Fujiki Y, Okumoto K, Kinoshita N, Ghaedi K. Lessons from peroxisome-deficient Chinese hamster ovary (CHO) cell mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1374-81. [PMID: 17045664 DOI: 10.1016/j.bbamcr.2006.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
23
|
Abstract
Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
Collapse
Affiliation(s)
- Jan P Erzberger
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
24
|
Vineyard D, Patterson-Ward J, Lee I. Single-turnover kinetic experiments confirm the existence of high- and low-affinity ATPase sites in Escherichia coli Lon protease. Biochemistry 2006; 45:4602-10. [PMID: 16584195 PMCID: PMC2515378 DOI: 10.1021/bi052377t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lon is an ATP-dependent serine protease that degrades damaged and certain regulatory proteins in vivo. Lon exists as a homo-oligomer and represents one of the simplest ATP-dependent proteases because both the protease and ATPase domains are located within each monomeric subunit. Previous pre-steady-state kinetic studies revealed functional nonequivalency in the ATPase activity of the enzyme [Vineyard, D., et al. (2005) Biochemistry 44, 1671-1682]. Both a high- and low-affinity ATPase site has been previously reported for Lon [Menon, A. S., and Goldberg, A. L. (1987) J. Biol. Chem. 262, 14921-14928]. Because of the differing affinities for ATP, we were able to monitor the activities of the sites separately and determine that they were noninteracting. The high-affinity sites hydrolyze ATP very slowly (k(obs) = 0.019 +/- 0.002 s(-1)), while the low-affinity sites hydrolyze ATP quickly at a rate of 17.2 +/- 0.09 s(-1), which is comparable to the previously observed burst rate. Although the high-affinity sites hydrolyze ATP slowly, they support multiple rounds of peptide hydrolysis, indicating that ATP and peptide hydrolysis are not stoichiometrically linked. However, ATP binding and hydrolysis at both the high- and low-affinity sites are necessary for optimal peptide cleavage and the stabilization of the conformational change associated with nucleotide binding.
Collapse
Affiliation(s)
| | | | - Irene Lee
- *Corresponding author, Phone: 216-368-6001, , fax: 216-368-3006
| |
Collapse
|
25
|
Lee TJ, Guo P. Interaction of gp16 with pRNA and DNA for Genome Packaging by the Motor of Bacterial Virus phi29. J Mol Biol 2006; 356:589-99. [PMID: 16376938 DOI: 10.1016/j.jmb.2005.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Pathobiology, Weldon School of Biomedical Engineering, and Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
26
|
Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA. Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase. J Biol Chem 2005; 281:1532-46. [PMID: 16301313 DOI: 10.1074/jbc.m511172200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AAA+ ATPases are ubiquitous proteins that employ the energy obtained from ATP hydrolysis to remodel proteins, DNA, or RNA. The MoxR family of AAA+ proteins is widespread throughout bacteria and archaea but is largely uncharacterized. Limited work with specific members has suggested a potential role as molecular chaperones involved in the assembly of protein complexes. As part of an effort aimed at determining the function of novel AAA+ chaperones in Escherichia coli, we report the characterization of a representative member of the MoxR family, YieN, which we have renamed RavA (regulatory ATPase variant A). We show that the ravA gene exists on an operon with another gene encoding a protein, YieM, of unknown function containing a Von Willebrand Factor Type A domain. RavA expression is under the control of the sigmaS transcription factor, and its levels increase toward late log/early stationary phase, consistent with its possible role as a general stress-response protein. RavA functions as an ATPase and forms hexameric oligomers. Importantly, we demonstrate that RavA interacts strongly with inducible lysine decarboxylase (LdcI or CadA) forming a large cage-like structure consisting of two LdcI decamers linked by a maximum of five RavA oligomers. Surprisingly, the activity of LdcI does not appear to be affected by binding to RavA in a number of in vitro and in vivo assays, however, complex formation results in the stimulation of RavA ATPase activity. Data obtained suggest that the RavA-LdcI interaction may be important for the regulation of RavA activity against its targets.
Collapse
Affiliation(s)
- Jamie Snider
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
28
|
Smith GR, Contreras-Moreira B, Zhang X, Bates PA. A link between sequence conservation and domain motion within the AAA+ family. J Struct Biol 2004; 146:189-204. [PMID: 15037250 DOI: 10.1016/j.jsb.2003.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 10/10/2003] [Indexed: 11/21/2022]
Abstract
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.
Collapse
Affiliation(s)
- Graham R Smith
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
29
|
Yu F, Park S, Rodermel SR. The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:864-76. [PMID: 14996218 DOI: 10.1111/j.1365-313x.2003.02014.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis At filamentation temperature sensitive (FtsH) metalloprotease gene family comprises 12 members (AtFtsH1-AtFtsH12), including three pairs of closely related genes that are targeted to chloroplasts (AtFtsH2 and AtFtsH8; AtFtsH1 and AtFtsH5; and AtFtsH7 and AtFtsH9). Mutations in AtFtsH5 (var1) and AtFtsH2 (var2) give rise to variegated plants with green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors are blocked in chloroplast biogenesis. A major question is how chloroplasts arise in cells that have a mutant genotype. We have found by two-dimensional (2-D) green gel and gel filtration analyses that AtFtsH2/VAR2 forms oligomeric complexes. Two bands in the 2-D green gels that correspond to AtFtsH5/VAR1 + AtFtsH1 and AtFtsH2/VAR2 + AtFtsH8 have been identified, and these bands are coordinately reduced in amount in var1 and var2 thylakoids that lack AtFtsH5/VAR1 and AtFtsH2/VAR2, respectively. These reductions are not because of alterations in transcript abundance. Overexpression of AtFtsH8 in var2-4 (a putative null allele) normalizes the variegation phenotype of the mutant and restores the two bands to their wild-type levels. These results suggest that AtFtsH8 is interchangeable with AtFtsH2/VAR2 in AtFtsH-containing oligomers, and that the two proteins have redundant functions. Consistent with this hypothesis, AtFtsH2 and AtFtsH8 have similar expression patterns, as monitored by promoter-beta-glucuronidase (GUS) fusion and RT-PCR experiments. Based on our findings, we propose that AtFtsH1, AtFtsH2/VAR2, AtFtsH5/VAR1, and AtFtsH8 interact to form oligomeric structures, and that subunit stoichiometry is controlled post-transcriptionally in var1 and var2, perhaps by turnover. A threshold model is presented to explain the pattern of variegation in var2 in which AtFtsH8 provides a compensating activity in the green sectors of the mutant.
Collapse
Affiliation(s)
- Fei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
30
|
Birschmann I, Stroobants AK, van den Berg M, Schäfer A, Rosenkranz K, Kunau WH, Tabak HF. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell 2003; 14:2226-36. [PMID: 12808025 PMCID: PMC194873 DOI: 10.1091/mbc.e02-11-0752] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 02/04/2003] [Accepted: 02/11/2003] [Indexed: 11/11/2022] Open
Abstract
The gene products (peroxins) of at least 29 PEX genes are known to be necessary for peroxisome biogenesis but for most of them their precise function remains to be established. Here we show that Pex15p, an integral peroxisomal membrane protein, in vivo and in vitro binds the AAA peroxin Pex6p. This interaction functionally interconnects these two hitherto unrelated peroxins. Pex15p provides the mechanistic basis for the reversible targeting of Pex6p to peroxisomal membranes. We could demonstrate that the N-terminal part of Pex6p contains the binding site for Pex15p and that the two AAA cassettes D1 and D2 of Pex6p have opposite effects on this interaction. A point mutation in the Walker A motif of D1 (K489A) decreased the binding of Pex6p to Pex15p indicating that the interaction of Pex6p with Pex15p required binding of ATP. Mutations in Walker A (K778A) and B (D831Q) motifs of D2 abolished growth on oleate and led to a considerable larger fraction of peroxisome bound Pex6p. The nature of these mutations suggested that ATP-hydrolysis is required to disconnect Pex6p from Pex15p. On the basis of these results, we propose that Pex6p exerts at least part of its function by an ATP-dependent cycle of recruitment and release to and from Pex15p.
Collapse
Affiliation(s)
- Ingvild Birschmann
- Abteilung für Zellbiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
James TC, Campbell S, Donnelly D, Bond U. Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 2003; 94:432-48. [PMID: 12588552 DOI: 10.1046/j.1365-2672.2003.01849.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Yeast strains, used in the brewing industry, experience distinctive physiological conditions. During a brewing fermentation, yeast are exposed to anaerobic conditions, high pressure, high specific gravity and low temperatures. The purpose of this study was to examine the global gene expression profile of yeast subjected to brewing stress. METHODS AND RESULTS We have carried out a microarray analysis of a typical brewer's yeast during the course of an 8-day fermentation in 15 degrees P wort. We used the probes derived from Saccharomyces cerevisiae genomic DNA on the chip and RNA isolated from three stages of brewing. This analysis shows a high level of expression of genes involved in fatty acid and ergosterol biosynthesis early in fermentation. Furthermore, genes involved in respiration and mitochondrial protein synthesis also show higher levels of expression. CONCLUSIONS Surprisingly, we observed a complete repression of many stress response genes and genes involved in protein synthesis throughout the 8-day period compared with that at the start of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY This microarray data set provides an analysis of gene expression under brewing fermentation conditions. The data provide an insight into the various metabolic processes altered or activated by brewing conditions of growth. This study leads to future experiments whereby selective alterations in brewing conditions could be introduced to take advantage of the changing transcript profile to improve the quality of the brew.
Collapse
Affiliation(s)
- T C James
- Moyne Institute for Preventive Medicine, Microbiology Department, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
32
|
Herrmann U, Soppa J. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol Microbiol 2002; 46:395-409. [PMID: 12406217 DOI: 10.1046/j.1365-2958.2002.03181.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of Halobacterium salinarum encodes four proteins of the structural maintenance of chromosomes (SMC) protein superfamily. Two proteins form a novel subfamily and are named 'SMC-like proteins of H. salinarum' (Sph1 and Sph2). Northern blot analyses revealed that sph1 and hp24, the adjacent gene, are solely transcribed in exponentially growing, but not in stationary phase, cells. A synchronization procedure was developed, which makes use of the DNA polymerase inhibitor aphidicolin and leads to highly synchronous cultures. It allowed us for the first time to study cell cycle-dependent transcription in an archaeon. The sph1 transcript was found to be highly cell cycle regulated, with its maximal accumulation around the time of septum formation. The Sph1 protein level was also elevated at that time, but a basal protein level was found throughout the cell cycle. The hp24 transcript was sharply upregulated about 1 h before sph1 and had already declined at the time of sph1 induction. These and additional transcript patterns revealed that precisely controlled transcriptional regulation is involved in haloarchaeal cell cycle progression. A DNA staining protocol was developed, which opened the possibility of following the dynamic intracellular localization of haloarchaeal nucleoids using synchronized cultures. After an initial dispersed localization, the nucleoid is condensed at mid-cell. Subsequently, DNA is rapidly transported to the 1/4 and 3/4 positions. All staining patterns were also observed in untreated exponentially growing cells, excluding synchronization artifacts. The Sph1 concentration is elevated when segregation of the new chromosomes is nearly complete; therefore, it is proposed to play a role in a late step of replication, e.g. DNA repair, similar to eukaryotic Rad18 proteins.
Collapse
Affiliation(s)
- Ute Herrmann
- J W Goethe-Universität, Biozentrum Niederusel, Institut für Mikrobiologie, Frankfurt, Germany
| | | |
Collapse
|
33
|
McDonald HB, Helfant AH, Mahony EM, Khosla SK, Goetsch L. Mutational analysis reveals a role for the C terminus of the proteasome subunit Rpt4p in spindle pole body duplication in Saccharomyces cerevisiae. Genetics 2002; 162:705-20. [PMID: 12399382 PMCID: PMC1462277 DOI: 10.1093/genetics/162.2.705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles.
Collapse
Affiliation(s)
- Heather B McDonald
- Department of Biology, Colgate University, Hamilton, New York 13346, USA.
| | | | | | | | | |
Collapse
|
34
|
Rockel B, Jakana J, Chiu W, Baumeister W. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J Mol Biol 2002; 317:673-81. [PMID: 11955016 DOI: 10.1006/jmbi.2002.5448] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VAT (valosine containing protein-like ATPase from Thermoplasma acidophilum), an archaeal member of the AAA-family (ATPases associated with a variety of cellular activities) that possesses foldase as well as unfoldase-activity, forms homo-hexameric rings like its eukaryotic homologues p97 and CDC48. The VAT-monomer exhibits the tripartite domain architecture typical for type II AAA-ATPases: N-D1-D2, whereby N is the substrate binding N-terminal domain preceding domains D1 and D2, both containing AAA-modules. Recent 3-D reconstructions of VAT and p97 as obtained by electron microscopy suffer from weakly represented N-domains, probably a consequence of their flexible linkage to the hexameric core. Here we used electron cryo-microscopy and 3-D reconstruction of single particles in order to generate a 3-D model of VAT at 2.3 nm resolution. The hexameric core of the VAT-complex (diameter 13.2 nm, height 8.4 nm) encloses a central cavity and the substrate-binding N-domains are clearly arranged in the upper periphery. Comparison with the p97 3-D reconstruction and the recently determined crystal structure of p97-N-D1 suggests a tail-to-tail arrangement of D1 and D2 in VAT.
Collapse
Affiliation(s)
- Beate Rockel
- Max-Planck-Institut für Biochemie, Abteilung Molekulare Strukturbiologie, Am Klopferspitz 18 a, 82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
35
|
Bullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS. A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex. J Biol Chem 2002; 277:13246-56. [PMID: 11809766 DOI: 10.1074/jbc.m108708200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.
Collapse
|
36
|
Abstract
The PEX11 peroxisomal membrane proteins are the only factors known to promote peroxisome division in multiple species. It has been proposed that PEX11 proteins have a direct role in peroxisomal fatty acid oxidation, and that they only affect peroxisome abundance indirectly. Here we show that PEX11 proteins are unique in their ability to promote peroxisome division, and that PEX11 overexpression promotes peroxisome division in the absence of peroxisomal metabolic activity. We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation. Based on these and other observations, we propose that PEX11 proteins act directly in peroxisome division, and that their loss has indirect effects on peroxisome metabolism.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
37
|
Hashiguchi N, Kojidani T, Imanaka T, Haraguchi T, Hiraoka Y, Baumgart E, Yokota S, Tsukamoto T, Osumi T. Peroxisomes are formed from complex membrane structures in PEX6-deficient CHO cells upon genetic complementation. Mol Biol Cell 2002; 13:711-22. [PMID: 11854424 PMCID: PMC65661 DOI: 10.1091/mbc.01-10-0479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pex6p belongs to the AAA family of ATPases. Its CHO mutant, ZP92, lacks normal peroxisomes but contains peroxisomal membrane remnants, so called peroxisomal ghosts, which are detected with anti-70-kDa peroxisomal membrane protein (PMP70) antibody. No peroxisomal matrix proteins were detected inside the ghosts, but exogenously expressed green fluorescent protein (GFP) fused to peroxisome targeting signal-1 (PTS-1) accumulated in the areas adjacent to the ghosts. Electron microscopic examination revealed that PMP70-positive ghosts in ZP92 were complex membrane structures, rather than peroxisomes with reduced matrix protein import ability. In a typical case, a set of one central spherical body and two layers of double-membraned loops were observed, with endoplasmic reticulum present alongside the outer loop. In the early stage of complementation by PEX6 cDNA, catalase and acyl-CoA oxidase accumulated in the lumen of the double-membraned loops. Biochemical analysis revealed that almost all the peroxisomal ghosts were converted into peroxisomes upon complementation. Our results indicate that 1) Peroxisomal ghosts are complex membrane structures; and 2) The complex membrane structures become import competent and are converted into peroxisomes upon complementation with PEX6.
Collapse
Affiliation(s)
- Noriyo Hashiguchi
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Steven Rodermel
- Department of Genetics, Development and Cell Biology, 353 Bessey Hall, Iowa State University, Ames, IA 50014, Tel: 515 294-8890, fax: 294-1337,
| |
Collapse
|
39
|
Marbach PAS, Coelho ASG, Silva-Filho MC. Mitochondrial and chloroplast localization of FtsH-like proteins in sugarcane based on their phylogenetic profile. Genet Mol Biol 2001. [DOI: 10.1590/s1415-47572001000100025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Albertini M, Girzalsky W, Veenhuis M, Kunau WH. Pex12p of Saccharomyces cerevisiae is a component of a multi-protein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 2001; 80:257-70. [PMID: 11370741 DOI: 10.1078/0171-9335-00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.
Collapse
Affiliation(s)
- M Albertini
- Abteilung für Zellbiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
41
|
Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 2001; 311:111-22. [PMID: 11469861 DOI: 10.1006/jmbi.2001.4834] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In chlorophyll biosynthesis, insertion of Mg(2+) into protoporphyrin IX is catalysed in an ATP-dependent reaction by a three-subunit (BchI, BchD and BchH) enzyme magnesium chelatase. In this work we present the three-dimensional structure of the ATP-binding subunit BchI. The structure has been solved by the multiple wavelength anomalous dispersion method and refined at 2.1 A resolution to the crystallographic R-factor of 22.2 % (R(free)=24.5 %). It belongs to the chaperone-like "ATPase associated with a variety of cellular activities" (AAA) family of ATPases, with a novel arrangement of domains: the C-terminal helical domain is located behind the nucleotide-binding site, while in other known AAA module structures it is located on the top. Examination by electron microscopy of BchI solutions in the presence of ATP demonstrated that BchI, like other AAA proteins, forms oligomeric ring structures. Analysis of the amino acid sequence of subunit BchD revealed an AAA module at the N-terminal portion of the sequence and an integrin I domain at the C terminus. An acidic, proline-rich region linking these two domains is suggested to contribute to the association of BchI and BchD by binding to a positively charged cleft at the surface of the nucleotide-binding domain of BchI. Analysis of the amino acid sequences of BchI and BchH revealed integrin I domain-binding sequence motifs. These are proposed to bind the integrin I domain of BchD during the functional cycle of magnesium chelatase, linking porphyrin metallation by BchH to ATP hydrolysis by BchI. An integrin I domain and an acidic and proline-rich region have been identified in subunit CobT of cobalt chelatase, clearly demonstrating its homology to BchD. These findings, for the first time, provide an insight into the subunit organisation of magnesium chelatase and the homologous colbalt chelatase.
Collapse
Affiliation(s)
- M N Fodje
- Department of Molecular Biophysics, Lund University, Lund, 221 00, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Ghenea S, Takeuchi M, Motoyama J, Sasamoto K, Kunau WH, Kamiryo T, Bun-ya M. The cDNA Sequence and Expression of the AAA-family Peroxin Genespex-1andpex-6from the Nematode Caenorhabditis elegans. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Cancio I, Cajaraville MP. Cell biology of peroxisomes and their characteristics in aquatic organisms. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 199:201-93. [PMID: 10874580 DOI: 10.1016/s0074-7696(00)99005-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The general characteristics of peroxisomes in different organisms, including aquatic organisms such as fish, crustaceans, and mollusks, are reviewed, with special emphasis on different aspects of the organelle biogenesis and mechanistic aspects of peroxisome proliferation. Peroxisome proliferation and peroxisomal enzyme inductions elicited by xenobiotics or physiological conditions have become useful tools to study the mechanisms of peroxisome biogenesis. During peroxisome proliferation, the induction of peroxisomal proteins is heterogeneous, enzymes that show increased activity being involved in different aspects of lipid homeostasis. The process of peroxisome biogenesis is coordinately triggered by a whole array of structurally dissimilar compounds known as peroxisome proliferators, and investigating the effect of some of these compounds that commonly appear as pollutants in the environment on the peroxisomes of aquatic animals inhabiting marine and estuarine habitats seems interesting. It is also important to determine whether peroxisome proliferation in these animals is a phenomenon that might occur under normal physiological or season-related conditions and plays a metabolic or functional role. This would help set the basis for understanding the process of peroxisome biogenesis in aquatic animals.
Collapse
Affiliation(s)
- I Cancio
- Zoologia eta Animali Zelulen Dinamika Saila, Euskal Herriko Unibertsitatea, Bilbo/Basque Country, Spain
| | | |
Collapse
|
44
|
Liu Y, Black J, Kisiel N, Kulesz-Martin MF. SPAF, a new AAA-protein specific to early spermatogenesis and malignant conversion. Oncogene 2000; 19:1579-88. [PMID: 10734318 DOI: 10.1038/sj.onc.1203442] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel spermatogenesis associated factor (SPAF) was found to be aberrantly expressed at the malignant conversion stage in a clonal epidermal model of chemical carcinogenesis. Sequence analysis revealed two ATPase modules, classifying this gene as a new member of the AAA-protein family (ATPase associated with diverse activities). Immunohistochemical staining of mouse testis sections with SPAF antibody localized expression to spermatogonia and early spermatocytes in the basal compartment of the seminiferous tubules. Northern and Western analysis of SPAF expression in testes of mice at different developmental stages confirmed its expression at early stages of spermatogenesis. In view of a mitochondrial-localization-like signal, sequence similarities to membrane-associated proteins, ATP binding properties, and intracellular expression patterns in testis, we speculate that SPAF protein may be involved in morphological and functional mitochondrial transformations during spermatogenesis. Ectopic expression of the SPAF gene in malignant epidermal cells may signify adoption of an early germ cell-like phenotype advantageous in malignant conversion.
Collapse
Affiliation(s)
- Y Liu
- Program of Biochemistry and Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, New York, NY 14263, USA
| | | | | | | |
Collapse
|
45
|
Makino S, Makino T, Abe K, Hashimoto J, Tatsuta T, Kitagawa M, Mori H, Ogura T, Fujii T, Fushinobu S, Wakagi T, Matsuzawa H, Makinoa T. Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. FEBS Lett 1999; 460:554-8. [PMID: 10556534 DOI: 10.1016/s0014-5793(99)01411-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The FtsH (HflB) protein of Escherichia coli is a membrane-bound ATP-dependent zinc protease. The role(s) of the N-terminal membrane-anchoring region of FtsH were studied by fusion with a maltose-binding protein (MBP) at five different N-termini of FtsH. The MBP-FtsH fusions were expressed in the cytoplasm of E. coli, and were purified as soluble proteins. The four longer constructs, which have a second transmembrane segment and the C-terminal cytoplasmic region in common, retained ATP-dependent protease activity toward heat-shock transcription factor sigma(32), and were found to be homo-oligomers. In contrast, the shortest construct which has the C-terminal cytoplasmic region but not the second transmembrane segment showed neither protease activity nor oligomerization. Therefore, the second transmembrane segment, which neighbors the C-terminal cytoplasmic region of the FtsH, participates in not only its membrane-anchoring, but also its protease activity and homo-oligomerization.
Collapse
Affiliation(s)
- S Makino
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Scheuring S, Bodor O, Röhricht RA, Müller S, Beyer A, Köhrer K. Cloning, characterisation, and functional expression of the Mus musculus SKD1 gene in yeast demonstrates that the mouse SKD1 and the yeast VPS4 genes are orthologues and involved in intracellular protein trafficking. Gene 1999; 234:149-59. [PMID: 10393249 DOI: 10.1016/s0378-1119(99)00163-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mouse SKD1 protein displays a high degree of sequence identity (62%) to the yeast Vps4 protein, which is involved in the transport of proteins out of a prevacuolar/endosomal compartment. We isolated the mouse SKD1 locus and found that the SKD1 gene is split into 11 exons covering a region of 29kb of the genome. Interestingly, the exon/intron structure reflects to a certain degree the proposed domain structure of the protein, since the 5' located coiled-coil region and the AAA domain are flanked by introns. Analysis of the promoter region, which revealed features common for 'housekeeping genes', is consistent with previous results of a mouse multi-tissue Northern blot, confirming that SKD1 is a ubiquitously expressed gene. Expression of the full-length SKD1 cDNA in a vps4 disrupted yeast strain suppressed the temperature-sensitive growth defect of the vps4 mutant strain. Overexpression of wild type and expression of mutant Vps4 and SKD1 proteins, harbouring single amino acid exchanges in their AAA domains, induced a dominant-negative vacuolar protein sorting defect in wild type yeast cells, indicating that mouse SKD1 protein and yeast Vps4p fulfil similar functions.
Collapse
Affiliation(s)
- S Scheuring
- Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universitat Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Rockel B, Walz J, Hegerl R, Peters J, Typke D, Baumeister W. Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett 1999; 451:27-32. [PMID: 10356978 DOI: 10.1016/s0014-5793(99)00431-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Valosine-containing protein-like ATPase from Thermoplasma acidophilum is a member of the superfamily of ATPases associated with a diversity of cellular activities and is closely related to CDC48 from yeast and p97 from higher eukaryotes and more distantly to N-ethylmaleimide-sensitive fusion protein. We have used electron tomography to obtain low-resolution (2-2.5 nm) three-dimensional maps of both the whole 500 kDa complex and the N-terminally truncated valosine-containing protein-like ATPase from T. acidophilum complex lacking the putative substrate binding domain.
Collapse
Affiliation(s)
- B Rockel
- Max-Planck-Institut für Biochemie, Abteilung für molekulare Strukturbiologie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Geraghty MT, Bassett D, Morrell JC, Gatto GJ, Bai J, Geisbrecht BV, Hieter P, Gould SJ. Detecting patterns of protein distribution and gene expression in silico. Proc Natl Acad Sci U S A 1999; 96:2937-42. [PMID: 10077615 PMCID: PMC15873 DOI: 10.1073/pnas.96.6.2937] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most biological information is contained within gene and genome sequences. However, current methods for analyzing these data are limited primarily to the prediction of coding regions and identification of sequence similarities. We have developed a computer algorithm, CoSMoS (for context sensitive motif searches), which adds context sensitivity to sequence motif searches. CoSMoS was challenged to identify genes encoding peroxisome-associated and oleate-induced genes in the yeast Saccharomyces cerevisiae. Specifically, we searched for genes capable of encoding proteins with a type 1 or type 2 peroxisomal targeting signal and for genes containing the oleate-response element, a cis-acting element common to fatty acid-regulated genes. CoSMoS successfully identified 7 of 8 known PTS-containing peroxisomal proteins and 13 of 14 known oleate-regulated genes. More importantly, CoSMoS identified an additional 18 candidate peroxisomal proteins and 300 candidate oleate-regulated genes. Preliminary localization studies suggest that these include at least 10 previously unknown peroxisomal proteins. Phenotypic studies of selected gene disruption mutants suggests that several of these new peroxisomal proteins play roles in growth on fatty acids, one is involved in peroxisome biogenesis and at least two are required for synthesis of lysine, a heretofore unrecognized role for peroxisomes. These results expand our understanding of peroxisome content and function, demonstrate the utility of CoSMoS for context-sensitive motif scanning, and point to the benefits of improved in silico genome analysis.
Collapse
Affiliation(s)
- M T Geraghty
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 1999; 31:833-44. [PMID: 10048027 DOI: 10.1046/j.1365-2958.1999.01221.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42 degrees C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the IpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Roggy JL, Bangs JD. Molecular cloning and biochemical characterization of a VCP homolog in African trypanosomes. Mol Biochem Parasitol 1999; 98:1-15. [PMID: 10029305 DOI: 10.1016/s0166-6851(98)00114-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Through reverse transcription-polymerase chain reaction using degenerate oligonucleotide primers, a VCP homolog was identified in African trypanosomes. Sequence analysis shows a 72 and 64% deduced amino acid identity, respectively, with mouse VCP and yeast Cdc48p. Southern analysis indicates tbVCP to have a single locus with two alleles. Antibodies generated against recombinant protein recognize a 95 kDa protein in whole cell lysates of both procyclic and bloodstream trypanosomes. There is an approximately four-fold greater expression of TbVCP protein in the procyclic stage of the trypanosome life cycle. Subcellular fractionation and immunofluorescence with anti-TbVCP antibodies indicate the majority of TbVCP to be cytoplasmically localized with a small subset associated with membranes. Sucrose velocity sedimentation and gel filtration size analysis studies suggest that TbVCP is a homohexameric particle as has been demonstrated with other VCP homologs. Also like other VCP homologs, TbVCP contains an NEM-inhibitable ATPase activity. This is the first characterization of an AAA (ATPases Associated with a variety of cellular Activities) family member in African trypanosomes.
Collapse
Affiliation(s)
- J L Roggy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 53706, USA
| | | |
Collapse
|