1
|
Kim RG, Choi CY. Expression-independent consumption of substrates in cell-free expression system from Escherichia coli. J Biotechnol 2001; 84:27-32. [PMID: 11035184 DOI: 10.1016/s0168-1656(00)00326-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a cell-free expression system derived from Escherichia coli, expression is abruptly ceased after 30 min of incubation while at this time not all the substrates have been utilized in expression. Expression-independent consumption of phosphoenolpyruvate and cysteine was found in this system, which was responsible for the above sudden cessation of expression. The above consumption was at least partially due to the dephosphorylation of nucleoside triphosphates and the conversion of cysteine into gamma-glutamylcysteine, respectively. Based on these, we developed a new system employing new S30 extract of lower phosphatase activity, higher cysteine concentration, and an inhibitor of glutathione synthesis pathway. This system showed 70% enhance in productivity (179-302 microg chloramphenicolacetyltransferase protein per ml reaction mixture per hour) over the model system.
Collapse
Affiliation(s)
- R G Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University, 151-742, Seoul, South Korea
| | | |
Collapse
|
2
|
Abstract
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
3
|
Bilgin N, Ehrenberg M, Ebel C, Zaccai G, Sayers Z, Koch MH, Svergun DI, Barberato C, Volkov V, Nissen P, Nyborg J. Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate. Biochemistry 1998; 37:8163-72. [PMID: 9609712 DOI: 10.1021/bi9802869] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex formation between elongation factor Tu (EF-Tu), Phe-tRNAPhe, and GTP was analyzed by small-angle neutron and X-ray scattering methods. Both techniques show that the ternary complex consists of one EF-Tu and one aminoacyl-tRNA. No shift in stoichiometry was detected when the temperature was raised from 5 to 37 degreesC, in contrast to previous observations obtained from RNase A protection experiments [Bilgin and Ehrenberg (1995) Biochemistry34, 715-719]. A small but significant increase in the radius of gyration of the complex was observed when the temperature was decreased from 37 to 5 degreesC. The X-ray solution scattering patterns were compared with those calculated from the crystal structure of the complex formed between EF-Tu from Thermus aquaticus and Phe-tRNAPhe from yeast. The comparison shows that the solution structure of the ternary complex, formed entirely from Escherichia coli components and under translationally optimal buffer conditions, is very close to the crystal structure, formed from heterologous components under very different conditions. Furthermore, for the hybrid complex in solution there is no evidence for the formation of trimers as suggested by the crystal structure.
Collapse
Affiliation(s)
- N Bilgin
- Department of Molecular Biology, The Biomedical Center, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
5
|
Helms MK, Marriott G, Sawyer WH, Jameson DM. Dynamics and morphology of the in vitro polymeric form of elongation factor Tu from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:122-30. [PMID: 8898872 DOI: 10.1016/0304-4165(96)00054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elongation factor Tu from Escherichia coli is known to polymerize at slightly acidic pH and low ionic strength. The structure and dynamics of these aggregates have been examined using imaging and spectroscopic methodologies. Electron microscopy provides evidence for two-dimensional sheets and bundled filaments of EF-Tu, whereas fluorescence microscopy of EF-Tu covalently labeled with tetramethylrhodamine isothiocyanate showed highly branched polymers of EF-Tu several microns in diameter. These polymers were studied using quasi-elastic light scattering to determine the evolution of the translational diffusion coefficient during the polymerization process. The rotational dynamics of the aggregate were investigated using phosphorescence anisotropy of EF-Tu covalently labeled with erythrosin isothiocyanate. A high infinite-time anisotropy was observed, suggesting a lack of motion or entanglement of EF-Tu polymers. A sub-microsecond motion which was slowed in the presence of glycerol may be due to local flexibility of the polymers. The possible relevance of polymeric EF-Tu to its function in vivo is discussed.
Collapse
Affiliation(s)
- M K Helms
- Department of Biochemistry and Biophysics, University of Hawaii, Honolulu 96822, USA
| | | | | | | |
Collapse
|
6
|
Bosch L, Vijgenboom E, Zeef LA. A revised bacterial polypeptide chain elongation cycle with a stepwise increase in restriction of unwanted ternary complexes by the ribosome. Biochemistry 1996; 35:12647-51. [PMID: 8841107 DOI: 10.1021/bi952925a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Bosch
- Department of Biochemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
7
|
Abstract
Protein synthesis in both eukaryotic and prokaryotic cells is a complex process requiring a large number of macromolecules: initiation factors, elongation factors, termination factors, ribosomes, mRNA, amino-acylsynthetases and tRNAs. This review focuses on our current knowledge of protein synthesis in higher plants.
Collapse
Affiliation(s)
- K S Browning
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712, USA
| |
Collapse
|
8
|
Abstract
The past year has brought some notable advances in our understanding of the structure and function of elongation factors (EFs) involved in protein biosynthesis. The structures of the ternary complex of aminoacylated tRNA with EF-Tu.GTP and of the complex EF-Tu.EF-Ts have been determined. Within the same period, new cryo-electron microscopy reconstructions of ribosome particles have been obtained.
Collapse
Affiliation(s)
- J Nyborg
- Department of Molecular and Structural Biology, University of Aarhus, Denmark.
| | | |
Collapse
|
9
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
10
|
Czworkowski J, Moore PB. The elongation phase of protein synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:293-332. [PMID: 8768078 DOI: 10.1016/s0079-6603(08)60366-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Czworkowski
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
11
|
Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 1995; 270:1464-72. [PMID: 7491491 DOI: 10.1126/science.270.5241.1464] [Citation(s) in RCA: 652] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of the ternary complex consisting of yeast phenylalanyl-transfer RNA (Phe-tRNAPhe), Thermus aquaticus elongation factor Tu (EF-Tu), and the guanosine triphosphate (GTP) analog GDPNP was determined by x-ray crystallography at 2.7 angstrom resolution. The ternary complex participates in placing the amino acids in their correct order when messenger RNA is translated into a protein sequence on the ribosome. The EF-Tu-GDPNP component binds to one side of the acceptor helix of Phe-tRNAPhe involving all three domains of EF-Tu. Binding sites for the phenylalanylated CCA end and the phosphorylated 5' end are located at domain interfaces, whereas the T stem interacts with the surface of the beta-barrel domain 3. The binding involves many conserved residues in EF-Tu. The overall shape of the ternary complex is similar to that of the translocation factor, EF-G-GDP, and this suggests a novel mechanism involving "molecular mimicry" in the translational apparatus.
Collapse
Affiliation(s)
- P Nissen
- Department of Biostructural Chemistry, Institute of Chemistry, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
12
|
Rodnina MV, Pape T, Fricke R, Wintermeyer W. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem Cell Biol 1995; 73:1221-7. [PMID: 8722040 DOI: 10.1139/o95-132] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mechanism of elongation factor Tu (EF-Tu) catalyzed aminoacyl-tRNA (aa-tRNA) binding to the A site of the ribosome was studied. Two types of complexes of EF-Tu with GTP and aa-tRNA, EF-Tu.GTP-aa-tRNA (ternary) and (EF-Tu.GTP)2.aa-tRNA (quinternary), can be formed in vitro depending on the conditions. On interaction with the ribosomal A site, generally only one molecule of GTP is hydrolysed per aa-tRNA bound and peptide bond formed. The second GTP molecule from the quinternary complex is hydrolyzed only during translation of an oligo(U) tract in the presence of EF-G. The first step in the interaction between the ribosome and the ternary complex is the codon-independent formation of an initial complex. In the absence of codon recognition, the aa-tRNA-EF-Tu complex does not enter further steps of A site binding and remains in the initial binding state. Despite the rapid formation of the initial complex, the rate constant of GTP hydrolysis in the noncognate complex is four orders of magnitude lower compared with the cognate complex. This, together with the results of time-resolved fluorescence measurements, suggests that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements that result in a conformational change of EF-Tu, presumably involving the effector region, which, in turn, triggers GTP hydrolysis and the subsequent steps of A site binding.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University Witten/Herdecke, Germany
| | | | | | | |
Collapse
|
13
|
Alexander C, Bilgin N, Lindschau C, Mesters JR, Kraal B, Hilgenfeld R, Erdmann VA, Lippmann C. Phosphorylation of elongation factor Tu prevents ternary complex formation. J Biol Chem 1995; 270:14541-7. [PMID: 7782317 DOI: 10.1074/jbc.270.24.14541] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The elongation factor Tu (EF-Tu) is a member of the GTP/GDP-binding proteins and interacts with various partners during the elongation cycle of protein biosynthesis thereby mediating the correct binding of amino-acylated transfer RNA (aa-tRNA) to the acceptor site (A-site) of the ribosome. After GTP hydrolysis EF-Tu is released in its GDP-bound state. In vivo, EF-Tu is post-translationally modified by phosphorylation. Here we report that the phosphorylation of EF-Tu by a ribosome associated kinase activity is drastically enhanced by EF-Ts. The antibiotic kirromycin, known to block EF-Tu function, inhibits the modification. This effect is specific, since kirromycin-resistant mutants do become phosphorylated in the presence of the antibiotic. On the other hand, phosphorylated wild-type EF-Tu does not bind kirromycin. Most interestingly, the phosphorylation of EF-Tu abolishes its ability to bind aa-tRNA. In the GTP conformation the site of modification is located at the interface between domains 1 and 3 and is involved in a strong interdomain hydrogen bond. Introduction of a charged phosphate group at this position will change the interaction between the domains, leading to an opening of the molecule reminiscent of the GDP conformation. A model for the function of EF-Tu phosphorylation in protein biosynthesis is presented.
Collapse
Affiliation(s)
- C Alexander
- Institut für Biochemie, Freie Universität Berlin, Dahlem, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nissen P, Reshetnikova L, Siboska G, Polekhina G, Thirup S, Kjeldgaard M, Clark BF, Nyborg J. Purification and crystallization of the ternary complex of elongation factor Tu:GTP and Phe-tRNA(Phe). FEBS Lett 1994; 356:165-8. [PMID: 7805830 DOI: 10.1016/0014-5793(94)01254-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Elongation factor Tu (EF-Tu) is the most abundant protein in prokaryotic cells. Its general function in protein biosynthesis is well established. It is a member of the large family of G-proteins, all of which bind guanosine phosphates (GDP or GTP) as cofactors. In its active GTP bound state EF-Tu binds aminoacylated tRNA (aa-tRNA) forming the ternary complex EF-Tu:GTP:aa-tRNA. The ternary complex interacts with the ribosome where the anticodon on tRNA recognises a codon on mRNA, GTPase activity is induced and inactive EF-Tu:GDP is released. Here we report the successful crystallization of a ternary complex of Thermus aquaticus EF-Tu:GDPNP and yeast Phe-tRNA(Phe) after its purification by HPLC.
Collapse
MESH Headings
- Chromatography, Gel
- Chromatography, High Pressure Liquid
- Crystallization
- Crystallography, X-Ray
- Electrophoresis, Polyacrylamide Gel
- Guanosine Triphosphate/chemistry
- Guanosine Triphosphate/isolation & purification
- Guanosine Triphosphate/metabolism
- Guanylyl Imidodiphosphate/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/isolation & purification
- Peptide Elongation Factor Tu/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/isolation & purification
- RNA, Transfer, Phe/metabolism
- Saccharomyces cerevisiae/metabolism
- Thermus/metabolism
Collapse
Affiliation(s)
- P Nissen
- Department of Biostructural Chemistry, University of Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|