1
|
Saha B, Haizel SA, Goss DJ. Mechanistic differences in eukaryotic initiation factor requirements for eIF4GI-driven cap-independent translation of structured mRNAs. J Biol Chem 2024:107866. [PMID: 39384039 DOI: 10.1016/j.jbc.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Protein translation is globally downregulated under stress conditions. Many proteins that are synthesized under stress conditions use a cap-independent translation initiation pathway. A subset of cellular mRNAs that encode for these proteins contain stable secondary structures within their 5' untranslated region (5'UTR), and initiate cap-independent translation using elements called Cap-Independent Translation Enhancers (CITEs) or Internal Ribosome Entry Sites (IRESs) within their 5'UTRs. The interaction among initiation factors such as eIF4E, eIF4A and eIF4GI, especially in regulating the eIF4F complex during non-canonical translation initiation of different 5'UTR mRNAs, is poorly understood. Here, equilibrium-binding assays, circular dichroism studies and in vitro translation assays were employed to elucidate the recruitment of these initiation factors to the highly structured 5'UTRs of fibroblast-growth factor 9 (FGF-9) and hypoxia inducible factor 1 subunit alpha (HIF-1α) encoding mRNAs. We showed that eIF4A and eIF4E enhanced eIF4GI's binding affinity to the uncapped 5'UTR of HIF-1α mRNA, inducing conformational changes in the protein/RNA complex. In contrast, these factors have no effect on the binding of eIF4GI to the 5'UTR of FGF-9 mRNA. Recently, Izidoro, M. S. et al. reported that the interaction of 42nt unstructured RNA to human eIF4F complex is dominated by eIF4E and ATP-bound state of eIF4A. Here we show that structured 5'UTR mRNA binding mitigates this requirement. Based on these observations, we describe two possible cap-independent translation mechanisms for FGF-9 and HIF-1α encoding mRNAs employed by cells to mitigate cellular stress conditions.
Collapse
Affiliation(s)
- Baishakhi Saha
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065
| | - Solomon A Haizel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016; Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016.
| |
Collapse
|
2
|
Desroches Altamirano C, Kang MK, Jordan MA, Borianne T, Dilmen I, Gnädig M, von Appen A, Honigmann A, Franzmann TM, Alberti S. eIF4F is a thermo-sensing regulatory node in the translational heat shock response. Mol Cell 2024; 84:1727-1741.e12. [PMID: 38547866 DOI: 10.1016/j.molcel.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024]
Abstract
Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.
Collapse
Affiliation(s)
- Christine Desroches Altamirano
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Moo-Koo Kang
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Tom Borianne
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irem Dilmen
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Maren Gnädig
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
3
|
de Andrade Pantoja MH, Poleti MD, de Novais FJ, Duarte KKS, Mateescu RG, Mourão GB, Coutinho LL, Fukumasu H, Titto CG. Skin transcriptomic analysis reveals candidate genes and pathways associated with thermotolerance in hair sheep. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:435-444. [PMID: 38147121 DOI: 10.1007/s00484-023-02602-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
The skin plays an important role in thermoregulation. Identification of genes on the skin that contribute to increased heat tolerance can be used to select animals with the best performance in warm environments. Our objective was to identify candidate genes associated with the heat stress response in the skin of Santa Ines sheep. A group of 80 sheep assessed for thermotolerance was kept in a climatic chamber for 8 days at a stress level temperature of 36 °C (10 am to 04 pm) and a maintenance temperature of 28 °C (04 pm to 10 am). Two divergent groups, with seven animals each, were formed after ranking them by thermotolerance using rectal temperature. From skin biopsy samples, total RNA was extracted, quantified, and used for RNA-seq analysis. 15,989 genes were expressed in sheep skin samples, of which 4 genes were differentially expressed (DE; FDR < 0.05) and 11 DE (FDR 0.05-0.177) between the two divergent groups. These genes are involved in cellular protection against stress (HSPA1A and HSPA6), ribosome assembly (28S, 18S, and 5S ribosomal RNA), and immune response (IGHG4, GNLY, CXCL1, CAPN14, and SAA-4). The candidate genes and main pathways related to heat tolerance in Santa Ines sheep require further investigation to understand their response to heat stress in different climatic conditions and under solar radiation. It is essential to verify whether these genes and pathways are present in different breeds and to understand the relationship between heat stress and other genes identified in this study.
Collapse
Affiliation(s)
- Messy Hannear de Andrade Pantoja
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Mirele Daiana Poleti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Francisco José de Novais
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Kelly Kéffny Souza Duarte
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Gerson Barreto Mourão
- Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
4
|
Fang JC, Liu MJ. Translation initiation at AUG and non-AUG triplets in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111822. [PMID: 37574140 DOI: 10.1016/j.plantsci.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
5
|
Xu B, Gao X, Li X, Jia Y, Li F, Zhang Z. Cell cycle arrest explains the observed bulk 3D genomic alterations in response to long-term heat shock in K562 cells. Genome Res 2022; 32:1285-1297. [PMID: 35835565 PMCID: PMC9341516 DOI: 10.1101/gr.276554.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/13/2022] [Indexed: 01/03/2023]
Abstract
Heat shock is a common environmental stress, although the response of the nucleus to it remains controversial in mammalian cells. Acute reaction and chronic adaptation to environmental stress may have distinct internal rewiring in the gene regulation networks. However, this difference remains largely unexplored. Here, we report that chromatin conformation and chromatin accessibility respond differently in short- and long-term heat shock in human K562 cells. We found that chromatin conformation in K562 cells was largely stable in response to short-term heat shock, whereas it showed clear and characteristic changes after long-term heat treatment with little alteration in chromatin accessibility during the whole process. We further show in silico and experimental evidence strongly suggesting that changes in chromatin conformation may largely stem from an accumulation of cells in the M stage of the cell cycle in response to heat shock. Our results represent a paradigm shift away from the controversial view of chromatin response to heat shock and emphasize the necessity of cell cycle analysis when interpreting bulk Hi-C data.
Collapse
Affiliation(s)
- Bingxiang Xu
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China;,School of Life Science, University of Chinese Academy of Sciences, Beijing 101408, China;,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaomeng Gao
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China;,School of Life Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoli Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China;,School of Life Science, University of Chinese Academy of Sciences, Beijing 101408, China;,Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yan Jia
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China
| | - Feifei Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China;,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zhihua Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Chaoyang District, Beijing 100101, China;,School of Life Science, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Tiszlavicz Á, Gombos I, Péter M, Hegedűs Z, Hunya Á, Dukic B, Nagy I, Peksel B, Balogh G, Horváth I, Vígh L, Török Z. Distinct Cellular Tools of Mild Hyperthermia-Induced Acquired Stress Tolerance in Chinese Hamster Ovary Cells. Biomedicines 2022; 10:1172. [PMID: 35625909 PMCID: PMC9138356 DOI: 10.3390/biomedicines10051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Mild stress could help cells to survive more severe environmental or pathophysiological conditions. In the current study, we investigated the cellular mechanisms which contribute to the development of stress tolerance upon a prolonged (0-12 h) fever-like (40 °C) or a moderate (42.5 °C) hyperthermia in mammalian Chinese Hamster Ovary (CHO) cells. Our results indicate that mild heat triggers a distinct, dose-dependent remodeling of the cellular lipidome followed by the expression of heat shock proteins only at higher heat dosages. A significant elevation in the relative concentration of saturated membrane lipid species and specific lysophosphatidylinositol and sphingolipid species suggests prompt membrane microdomain reorganization and an overall membrane rigidification in response to the fluidizing heat in a time-dependent manner. RNAseq experiments reveal that mild heat initiates endoplasmic reticulum stress-related signaling cascades resulting in lipid rearrangement and ultimately in an elevated resistance against membrane fluidization by benzyl alcohol. To protect cells against lethal, protein-denaturing high temperatures, the classical heat shock protein response was required. The different layers of stress response elicited by different heat dosages highlight the capability of cells to utilize multiple tools to gain resistance against or to survive lethal stress conditions.
Collapse
Affiliation(s)
- Ádám Tiszlavicz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zoltán Hegedűs
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - István Nagy
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Seqomics Biotechnology Ltd., 6782 Mórahalom, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| |
Collapse
|
7
|
McIntosh M, Köchling T, Latz A, Kretz J, Heinen S, Konzer A, Klug G. A major checkpoint for protein expression in Rhodobacter sphaeroides during heat stress response occurs at the level of translation. Environ Microbiol 2021; 23:6483-6502. [PMID: 34668288 DOI: 10.1111/1462-2920.15818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Temperature above the physiological optimum is a stress condition frequently faced by bacteria in their natural environments. Here, we were interested in the correlation between levels of RNA and protein under heat stress. Changes in RNA and protein levels were documented in cultures of Rhodobacter sphaeroides using RNA sequencing, quantitative mass spectrometry, western blot analysis, in vivo [35 S] methionine-labelling and plasmid-borne reporter fusions. Changes in the transcriptome were extensive. Strikingly, the proteome remained unchanged except for very few proteins. Examples include a heat shock protein, a DUF1127 protein of unknown function and sigma factor proteins from leaderless transcripts. Insight from this study indicates that R. sphaeroides responds to heat stress by producing a broad range of transcripts while simultaneously preventing translation from nearly all of them, and that this selective production of protein depends on the untranslated region of the transcript. We conclude that measurements of transcript abundance are insufficient to understand gene regulation. Rather, translation can be an important checkpoint for protein expression under certain environmental conditions. Furthermore, during heat shock, regulation at the level of transcription might represent preparation for survival in an unpredictable environment while regulation at translation ensures production of only a few proteins.
Collapse
Affiliation(s)
- Matthew McIntosh
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Thorsten Köchling
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anna Latz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Sandra Heinen
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gabriele Klug
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| |
Collapse
|
8
|
Maxwell BA, Gwon Y, Mishra A, Peng J, Nakamura H, Zhang K, Kim HJ, Taylor JP. Ubiquitination is essential for recovery of cellular activities after heat shock. Science 2021; 372:eabc3593. [PMID: 34739326 PMCID: PMC8574219 DOI: 10.1126/science.abc3593] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Eukaryotic cells respond to stress through adaptive programs that include reversible shutdown of key cellular processes, the formation of stress granules, and a global increase in ubiquitination. The primary function of this ubiquitination is thought to be for tagging damaged or misfolded proteins for degradation. Here, working in mammalian cultured cells, we found that different stresses elicited distinct ubiquitination patterns. For heat stress, ubiquitination targeted specific proteins associated with cellular activities that are down-regulated during stress, including nucleocytoplasmic transport and translation, as well as stress granule constituents. Ubiquitination was not required for the shutdown of these processes or for stress granule formation but was essential for the resumption of cellular activities and for stress granule disassembly. Thus, stress-induced ubiquitination primes the cell for recovery after heat stress.
Collapse
Affiliation(s)
- Brian A. Maxwell
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Youngdae Gwon
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- Department of Structural Biology Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Haruko Nakamura
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
9
|
A heat shock-responsive lncRNA Heat acts as a HSF1-directed transcriptional brake via m 6A modification. Proc Natl Acad Sci U S A 2021; 118:2102175118. [PMID: 34131081 DOI: 10.1073/pnas.2102175118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are key regulators of gene expression in diverse cellular contexts and biological processes. Given the surprising range of shapes and sizes, how distinct lncRNAs achieve functional specificity remains incompletely understood. Here, we identified a heat shock-inducible lncRNA, Heat, in mouse cells that acts as a transcriptional brake to restrain stress gene expression. Functional characterization reveals that Heat directly binds to heat shock transcription factor 1 (HSF1), thereby targeting stress genes in a trans-acting manner. Intriguingly, Heat is heavily methylated in the form of m6A. Although dispensable for HSF1 binding, Heat methylation is required for silencing stress genes to attenuate heat shock response. Consistently, m6A depletion results in prolonged activation of stress genes. Furthermore, Heat mediates these effects via the nuclear m6A reader YTHDC1, forming a transcriptional silencing complex for stress genes. Our study reveals a crucial role of nuclear epitranscriptome in the transcriptional regulation of heat shock response.
Collapse
|
10
|
Yan W, Mukherjee M, Zhou Y. Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition - Reevaluate the role of conductive materials. WATER RESEARCH 2020; 183:116094. [PMID: 32668350 DOI: 10.1016/j.watres.2020.116094] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Thermal hydrolysis pretreatment (THP) and anaerobic digestion (AD) integrated (THP-AD) process is a promising process for sludge management. However, the high ammonia production during the THP-AD process severely affects system's stability and performance. Conductive materials are widely reported to stimulate AD, thus they are potentially helpful in alleviating ammonia inhibition. This study investigated the effects of three widely studied conductive materials, i.e. zero-valent iron (ZVI), magnetite nanoparticles (Mag.) and powder activated carbon (PAC), on THP-AD process. Results showed that all the tested materials could effectively stimulate methanogenesis process under non-ammonia inhibition conditions. However, upon ammonia stress, these materials behaved distinctively with the best methanogenic performance in ZVI group followed by Mag. Group, and even worsened inhibition occurred in PAC group. The mechanisms behind were investigated from two levels-the reaction kinetics of each anaerobic digestion step and the responses of intracellular metabolism. It is revealed that ZVI effectively promoted all AD reactions, especially the energy unfavorable propanoate and butanoate metabolism and overall methanogenesis. In addition, ZVI likely acted as intracellular electron shuttles, and the conjunction point of ZVI to electron transfer system was identified as EtfAB: quinone oxidoreductase. On the contrary, the declined methanogenic performance in PAC group was attributed to selectively stimulated the growth of acetoclastic methanogen - Methanosaeta, which is sensitive to ammonia toxicity. The proteomic information further revealed that ammonia stress was unfavorable to the formation of direct interspecies electron transfer between syntrophic anaerobes. Overall, the present study provides fundamental knowledge about the role of different conductive materials in AD systems from intracellular proteomic level.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Manisha Mukherjee
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 639798, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
11
|
Lunin S, Khrenov M, Glushkova O, Parfenyuk S, Novoselova T, Novoselova E. Precursors of thymic peptides as stress sensors. Expert Opin Biol Ther 2020; 20:1461-1475. [PMID: 32700610 DOI: 10.1080/14712598.2020.1800636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION A large volume of data indicates that the known thymic hormones, thymulin, thymopoietin, thymosin-α, thymosin-β, and thymic humoral factor-y2, exhibit different spectra of activities. Although large in volume, available data are rather fragmented, resulting in a lack of understanding of the role played by thymic hormones in immune homeostasis. AREA COVERED Existing data compartmentalizes the effect of thymic peptides into 2 categories: influence on immune cells and interconnection with neuroendocrine systems. The current study draws attention to a third aspect of the thymic peptide effect that has not been clarified yet, wherein ubiquitous and highly abundant intranuclear precursors of so called 'thymic peptides' play a fundamental role in all somatic cells. EXPERT OPINION Our analysis indicated that, under certain stress-related conditions, these precursors are cleaved to form immunologically active peptides that rapidly leave the nucleus and intracellular spaces, to send 'distress signals' to the immune system, thereby acting as stress sensors. We propose that these peptides may form a link between somatic cells and immune as well as neuroendocrine systems. This model may provide a better understanding of the mechanisms underlying immune homeostasis, leading thereby to the development of new therapeutic regimes utilizing the characteristics of thymic peptides.
Collapse
Affiliation(s)
- Sergey Lunin
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Maxim Khrenov
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Olga Glushkova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Svetlana Parfenyuk
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - Tatyana Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| | - E Novoselova
- Laboratory of Reception Mechanisms, Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS , Pushchino, Russia
| |
Collapse
|
12
|
Elvira R, Cha SJ, Noh GM, Kim K, Han J. PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci 2020; 21:ijms21030845. [PMID: 32013014 PMCID: PMC7037073 DOI: 10.3390/ijms21030845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental high-temperature heat exposure is linked to physiological stress such as disturbed protein homeostasis caused by endoplasmic reticulum (ER) stress. Abnormal proteostasis in neuronal cells is a common pathological factor of Parkinson’s disease (PD). Chronic heat stress is thought to induce neuronal cell death during the onset and progression of PD, but the exact role and mechanism of ER stress and the activation of the unfolded protein response (UPR) remains unclear. Here, we showed that chronic heat exposure induces ER stress mediated by the PKR-like eukaryotic initiation factor 2α kinase (PERK)/eIF2α phosphorylation signaling pathway in Drosophila neurons. Chronic heat-induced eIF2α phosphorylation was regulated by PERK activation and required for neuroprotection from chronic heat stress. Moreover, the attenuated protein synthesis by eIF2α phosphorylation was a critical factor for neuronal cell survival during chronic heat stress. We further showed that genetic downregulation of PERK, specifically in dopaminergic (DA) neurons, impaired motor activity and led to DA neuron loss. Therefore, our findings provide in vivo evidence demonstrating that chronic heat exposure may be a critical risk factor in the onset of PD, and eIF2α phosphorylation mediated by PERK may contribute to the protection of DA neurons against chronic heat stress in Drosophila.
Collapse
Affiliation(s)
- Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Sun Joo Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Gyeong-Mu Noh
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| |
Collapse
|
13
|
Abstract
Efficient viral gene expression is threatened by cellular stress response programmes that rapidly reprioritize the translation machinery in response to varied environmental assaults, including virus infection. This results in inhibition of bulk synthesis of housekeeping proteins and causes the aggregation of messenger ribonucleoprotein complexes into cytoplasmic foci that are known as stress granules, which can entrap viral mRNAs. There is accumulating evidence for the antiviral nature of stress granules, which is supported by the discovery of many viral factors that interfere with stress granule formation and/or function. This Review focuses on recent advances in our understanding of the role of translation inhibition and stress granules in antiviral immune responses.
Collapse
|
14
|
Ryu HW, Won HR, Lee DH, Kwon SH. HDAC6 regulates sensitivity to cell death in response to stress and post-stress recovery. Cell Stress Chaperones 2017; 22:253-261. [PMID: 28116619 PMCID: PMC5352599 DOI: 10.1007/s12192-017-0763-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) plays an important role in stress responses such as misfolded protein-induced aggresomes, autophagy, and stress granules. However, precisely how HDAC6 manages response during and after cellular stress remains largely unknown. This study aimed to investigate the effect of HDAC6 on various stress and post-stress recovery responses. We showed that HIF-1α protein levels were reduced in HDAC6 knockout (KO) MEFs compared to wild-type (WT) MEFs in hypoxia. Furthermore, under hypoxia, HIF-1α levels were also reduced following rescue with either a catalytically inactive or a ubiqiutin-binding mutant HDAC6. HDAC6 deacetylated and upregulated the stability of HIF-1α, leading to activation of HIF-1α function under hypoxia. Notably, both the deacetylase and ubiquitin-binding activities of HDAC6 contributed to HIF-1α stabilization, but only deacetylase activity was required for HIF-1α transcriptional activity. Suppression of HDAC6 enhanced the interaction between HIF-1α and HSP70 under hypoxic conditions. In addition to hypoxia, depletion of HDAC6 caused hypersensitivity to cell death during oxidative stress and post-stress recovery. However, HDAC6 depletion had no effect on cell death in response to heat shock or ionizing radiation. Overall, our data suggest that HDAC6 may serve as a critical stress regulator in response to different cellular stresses.
Collapse
Affiliation(s)
- Hyun-Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hye-Rim Won
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea.
| |
Collapse
|
15
|
Żwirowski S, Kłosowska A, Obuchowski I, Nillegoda NB, Piróg A, Ziętkiewicz S, Bukau B, Mogk A, Liberek K. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J 2017; 36:783-796. [PMID: 28219929 DOI: 10.15252/embj.201593378] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.
Collapse
Affiliation(s)
- Szymon Żwirowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Nadinath B Nillegoda
- Center for Molecular Biology, University of Heidelberg (ZMBH), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Artur Piróg
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Szymon Ziętkiewicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Bernd Bukau
- Center for Molecular Biology, University of Heidelberg (ZMBH), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology, University of Heidelberg (ZMBH), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
17
|
Welc SS, Morse DA, Mattingly AJ, Laitano O, King MA, Clanton TL. The Impact of Hyperthermia on Receptor-Mediated Interleukin-6 Regulation in Mouse Skeletal Muscle. PLoS One 2016; 11:e0148927. [PMID: 26872389 PMCID: PMC4752463 DOI: 10.1371/journal.pone.0148927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
In inflammatory cells, hyperthermia inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) gene expression and protein secretion. Since hyperthermia alone stimulates IL-6 in skeletal muscle, we hypothesized that it would amplify responses to other receptor-mediated stimuli. IL-6 regulation was tested in C2C12 myotubes and in soleus during treatment with epinephrine (EPI) or LPS. In EPI-treated myotubes (100 ng/ml), 1 h exposure at 40.5°C-42°C transiently increased IL-6 mRNA compared to EPI treatment alone at 37°C. In LPS-treated myotubes (1 μg/ml), exposure to 41°C-42°C also increased IL-6 mRNA. In isolated mouse soleus, similar amplifications of IL-6 gene expression were observed in 41°C, during both low (1 ng/ml) and high dose (100 ng/ml) EPI, but only in high dose LPS (1 μg/ml). In myotubes, heat increased IL-6 secretion during EPI exposure but had no effect or inhibited secretion with LPS. In soleus there were no effects of heat on IL-6 secretion during either EPI or LPS treatment. Mechanisms for the effects of heat on IL-6 mRNA were explored using a luciferase-reporter in C2C12 myotubes. Overexpression of heat shock factor-1 (HSF-1) had no impact on IL-6 promoter activity during EPI stimulation, but elevated IL-6 promoter activity during LPS stimulation. In contrast, when the activator protein-1 (AP-1) element was mutated, responses to both LPS and EPI were suppressed in heat. Using siRNA against activating transcription factor-3 (ATF-3), a heat-stress-induced inhibitor of IL-6, no ATF-3-dependent effects were observed. The results demonstrate that, unlike inflammatory cells, hyperthermia in muscle fibers amplifies IL-6 gene expression to EPI and LPS. The effect appears to reflect differential engagement of HSF-1 and AP-1 sensitive elements on the IL-6 gene, with no evidence for involvement of ATF-3. The functional significance of increased IL-6 mRNA expression during heat may serve to overcome the well-known suppression of protein synthetic pathways occurring during heat shock.
Collapse
Affiliation(s)
- Steven S. Welc
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
| | - Deborah A. Morse
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
| | - Alex J. Mattingly
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
| | - Orlando Laitano
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
- Federal University of Vale do São Francisco, Physical Education School, Petrolina, Brazil
| | - Michelle A. King
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
| | - Thomas L. Clanton
- University of Florida, Department of Applied Physiology & Kinesiology, College of Health and Human Performance, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
18
|
Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P. Translation from the 5' untranslated region shapes the integrated stress response. Science 2016; 351:aad3867. [PMID: 26823435 DOI: 10.1126/science.aad3867] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translated regions distinct from annotated coding sequences have emerged as essential elements of the proteome. This includes upstream open reading frames (uORFs) present in mRNAs controlled by the integrated stress response (ISR) that show "privileged" translation despite inhibited eukaryotic initiation factor 2-guanosine triphosphate-initiator methionyl transfer RNA (eIF2·GTP·Met-tRNA(i )(Met)). We developed tracing translation by T cells to directly measure the translation products of uORFs during the ISR. We identified signature translation events from uORFs in the 5' untranslated region of binding immunoglobulin protein (BiP) mRNA (also called heat shock 70-kilodalton protein 5 mRNA) that were not initiated at the start codon AUG. BiP expression during the ISR required both the alternative initiation factor eIF2A and non-AUG-initiated uORFs. We propose that persistent uORF translation, for a variety of chaperones, shelters select mRNAs from the ISR, while simultaneously generating peptides that could serve as major histocompatibility complex class I ligands, marking cells for recognition by the adaptive immune system.
Collapse
Affiliation(s)
- Shelley R Starck
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA. Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Keling Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Shodiya
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 2015; 526:591-4. [PMID: 26458103 PMCID: PMC4851248 DOI: 10.1038/nature15377] [Citation(s) in RCA: 927] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
The most abundant mRNA post-transcriptional modification is N6-methyladenosine (m6A) that has broad roles in RNA biology1-5. In mammalian cells, the asymmetric distribution of m6A along mRNAs leaves relatively less methylation in the 5′ untranslated region (5′UTR) compared to other regions6,7. However, whether and how 5′UTR methylation is regulated is poorly understood. Despite the crucial role of the 5′UTR in translation initiation, very little is known whether m6A modification influences mRNA translation. Here we show that in response to heat shock stress, m6A is preferentially deposited to the 5′UTR of newly transcribed mRNAs. We found that the dynamic 5′UTR methylation is a result of stress-induced nuclear localization of YTHDF2, a well characterized m6A “reader”. Upon heat shock stress, the nuclear YTHDF2 preserves 5′UTR methylation of stress-induced transcripts by limiting the m6A “eraser” FTO from demethylation. Remarkably, the increased 5′UTR methylation in the form of m6A promotes cap-independent translation initiation, providing a mechanism for selective mRNA translation under heat shock stress. Using Hsp70 mRNA as an example, we demonstrate that a single site m6A modification in the 5′UTR enables translation initiation independent of the 5′ end m7G cap. The elucidation of the dynamic feature of 5′UTR methylation and its critical role in cap-independent translation not only expands the breadth of physiological roles of m6A, but also uncovers a previously unappreciated translational control mechanism in heat shock response.
Collapse
Affiliation(s)
- Jun Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xiangwei Gao
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Xingqian Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York City, New York 10065, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Zhang X, Gao X, Coots RA, Conn CS, Liu B, Qian SB. Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nat Struct Mol Biol 2015; 22:404-10. [PMID: 25866880 PMCID: PMC4424103 DOI: 10.1038/nsmb.3010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
In response to stress, cells attenuate global protein synthesis but permit efficient translation of mRNAs encoding heat-shock proteins (HSPs). Although decades have passed since the first description of the heat-shock response, how cells achieve translational control of HSP synthesis remains enigmatic. Here we report an unexpected role for mitochondrial ribosomal protein L18 (MRPL18) in the mammalian cytosolic stress response. MRPL18 bears a downstream CUG start codon and generates a cytosolic isoform in a stress-dependent manner. Cytosolic MRPL18 incorporates into the 80S ribosome and facilitates ribosome engagement on mRNAs selected for translation during stress. MRPL18 knockdown has minimal effects on mitochondrial function but substantially dampens cytosolic HSP expression at the level of translation. Our results uncover a hitherto-uncharacterized stress-adaptation mechanism in mammalian cells, which involves formation of a 'hybrid' ribosome responsible for translational regulation during the cytosolic stress response.
Collapse
Affiliation(s)
- Xingqian Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Xiangwei Gao
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Ryan Alex Coots
- 1] Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [2] Graduate Field of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Crystal S Conn
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| | - Botao Liu
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| | - Shu-Bing Qian
- 1] Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [2] Graduate Field of Nutritional Sciences, Cornell University, Ithaca, New York, USA. [3] Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Aditi, Folkmann AW, Wente SR. Cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol Biol Cell 2015; 26:1476-90. [PMID: 25694449 PMCID: PMC4395128 DOI: 10.1091/mbc.e14-11-1523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
When eukaryotic cells respond to stress, gene expression pathways change to selectively export and translate subsets of mRNAs. Translationally repressed mRNAs accumulate in cytoplasmic foci known as stress granules (SGs). SGs are in dynamic equilibrium with the translational machinery, but mechanisms controlling this are unclear. Gle1 is required for DEAD-box protein function during mRNA export and translation. We document that human Gle1 (hGle1) is a critical regulator of translation during stress. hGle1 is recruited to SGs, and hGLE1 small interfering RNA-mediated knockdown perturbs SG assembly, resulting in increased numbers of smaller SGs. The rate of SG disassembly is also delayed. Furthermore, SG hGle1-depletion defects correlate with translation perturbations, and the hGle1 role in SGs is independent of mRNA export. Interestingly, we observe isoform-specific roles for hGle1 in which SG function requires hGle1A, whereas mRNA export requires hGle1B. We find that the SG defects in hGle1-depleted cells are rescued by puromycin or DDX3 expression. Together with recent links of hGLE1 mutations in amyotrophic lateral sclerosis patients, these results uncover a paradigm for hGle1A modulating the balance between translation and SGs during stress and disease.
Collapse
Affiliation(s)
- Aditi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Andrew W Folkmann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
22
|
Abstract
A comprehensive understanding of RNA structure will provide fundamental insights into the cellular function of both coding and non-coding RNAs. Although many RNA structures have been analysed by traditional biophysical and biochemical methods, the low-throughput nature of these approaches has prevented investigation of the vast majority of cellular transcripts. Triggered by advances in sequencing technology, genome-wide approaches for probing the transcriptome are beginning to reveal how RNA structure affects each step of protein expression and RNA stability. In this Review, we discuss the emerging relationships between RNA structure and the regulation of gene expression.
Collapse
|
23
|
Liu B, Qian SB. Translational reprogramming in cellular stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:301-15. [PMID: 24375939 DOI: 10.1002/wrna.1212] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 01/19/2023]
Abstract
Cell survival in changing environments requires appropriate regulation of gene expression, including translational control. Multiple stress signaling pathways converge on several key translation factors, such as eIF4F and eIF2, and rapidly modulate messenger RNA (mRNA) translation at both the initiation and the elongation stages. Repression of global protein synthesis is often accompanied with selective translation of mRNAs encoding proteins that are vital for cell survival and stress recovery. The past decade has seen significant progress in our understanding of translational reprogramming in part due to the development of technologies that allow the dissection of the interplay between mRNA elements and corresponding binding proteins. Recent genome-wide studies using ribosome profiling have revealed unprecedented proteome complexity and flexibility through alternative translation, raising intriguing questions about stress-induced translational reprogramming. Many surprises emerged from these studies, including wide-spread alternative translation initiation, ribosome pausing during elongation, and reversible modification of mRNAs. Elucidation of the regulatory mechanisms underlying translational reprogramming will ultimately lead to the development of novel therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Botao Liu
- Graduate Field of Genetics, Genomics, and Development, Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
24
|
Lewis MK, Jamison JT, Dunbar JC, DeGracia DJ. mRNA redistribution during permanent focal cerebral ischemia. Transl Stroke Res 2013; 4:604-17. [PMID: 24323415 PMCID: PMC3864703 DOI: 10.1007/s12975-013-0274-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
Translation arrest occurs in neurons following focal cerebral ischemia and is irreversible in penumbral neurons destined to die. Following global cerebral ischemia, mRNA is sequestered away from 40S ribosomal subunits as mRNA granules, precluding translation. Here, we investigated mRNA granule formation using fluorescence in situ histochemistry out to 8 h permanent focal cerebral ischemia using middle cerebral artery occlusion in Long Evans rats with and without diabetes. Neuronal mRNA granules colocalized with PABP, HuR, and NeuN, but not 40S or 60S ribosomal subunits, or organelle markers. The volume of brain with mRNA granule-containing neurons decreased exponentially with ischemia duration, and was zero after 8 h permanent focal cerebral ischemia or any duration of ischemia in diabetic rats. These results show that neuronal mRNA granule response has a limited range of insult intensity over which it is expressed. Identifying the limits of effective neuronal stress response to ischemia will be important for developing effective stroke therapies.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/metabolism
- Brain Ischemia/complications
- Brain Ischemia/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- ELAV Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Infarction, Middle Cerebral Artery/complications
- Male
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Poly(A)-Binding Proteins/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Time Factors
Collapse
Affiliation(s)
- Monique K. Lewis
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Jill T. Jamison
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Joseph C. Dunbar
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA
| | - Donald J. DeGracia
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Ave, Detroit, MI 48201, USA. Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 2013; 32:1451-68. [PMID: 23604074 DOI: 10.1038/emboj.2013.87] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/18/2013] [Indexed: 11/09/2022] Open
Abstract
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein-folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide-associated complex). Under non-stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome-associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re-localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation-prone polyglutamine-expansion proteins and Aβ-peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.
Collapse
Affiliation(s)
- Janine Kirstein-Miles
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
26
|
Matsuura H, Takenami S, Kubo Y, Ueda K, Ueda A, Yamaguchi M, Hirata K, Demura T, Kanaya S, Kato K. A computational and experimental approach reveals that the 5'-proximal region of the 5'-UTR has a Cis-regulatory signature responsible for heat stress-regulated mRNA translation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:474-83. [PMID: 23314753 DOI: 10.1093/pcp/pcs189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Translation of specific plant mRNAs is differentially regulated under certain abiotic stress conditions such as heat, oxygen deprivation and dehydration. The majority of transcripts exhibit varying degrees of translational repression, whereas a subset of transcripts escape such repression and remain actively translated. The underlying mechanisms that mediate this control, and in particular the identities of the regulatory RNA elements involved, remain poorly understood. Using a combined computational and experimental approach, we identified a novel cis-regulatory element in the 5'-untranslated region (5'-UTR) that affects differential translation in response to heat stress (HS) in Arabidopsis thaliana. First, we selected a set of genes with distinct translational responses to HS, based on our previously reported genome-wide data regarding changes in polysome loading induced by HS in A. thaliana cultured cells. We evaluated the 5'-UTRs of these messages for their ability to mediate expression, when fused to reporter mRNAs, in protoplasts under HS. The data from the reporter assay and the nucleotide sequences of the 5'-UTRs tested were used to define regulatory elements in the 5'-UTRs, with the help of a partial least square (PLS) regression model. The computational analysis using PLS and subsequent experimental characterization of a series of 5'-UTR mutants provided evidence that the 5'-proximal sequence of the 5'-UTR is a primary and position-dependent determinant of 5'-UTR-mediated differential translation in response to HS. Finally, we discuss the possible mechanism underlying HS regulation of differential mRNA translation.
Collapse
Affiliation(s)
- Hideyuki Matsuura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease. J Neurochem 2013; 124:880-93. [PMID: 23121022 PMCID: PMC6762020 DOI: 10.1111/jnc.12080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023]
Abstract
Rapamycin, an inhibitor of target-of-rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)-like deficits, reduces amyloid-beta (Aβ) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control- and rapamycin-treated PDAPP mice. Proteins with reported chaperone-like activity were overrepresented among proteins up-regulated in rapamycin-fed PDAPP mice and the master regulator of the heat-shock response, heat-shock factor 1, was activated. This was accompanied by the up-regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin-fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B-crystallin, however, was unchanged, and the cap-dependent translation inhibitor 4E-BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre-existing mRNAs as a consequence of inhibition of cap-dependent translation. The effects of rapamycin on the reduction of Aβ, up-regulation of chaperones, and amelioration of AD-like cognitive deficits were recapitulated by transgenic over-expression of heat-shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target-of-rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098.
Collapse
Affiliation(s)
- Anson Pierce
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natalia Podlutskaya
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jonathan J. Halloran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A. Hussong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pei-Yi Lin
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Raquel Burbank
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew J. Hart
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
28
|
Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY. Genome-wide measurement of RNA folding energies. Mol Cell 2012; 48:169-81. [PMID: 22981864 DOI: 10.1016/j.molcel.2012.08.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun J, Conn CS, Han Y, Yeung V, Qian SB. PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J Biol Chem 2010; 286:6791-800. [PMID: 21177857 DOI: 10.1074/jbc.m110.172882] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein synthesis is a key regulated cellular process that links nutrient availability and organismal growth. It has long been known that some cellular proteins continue to be synthesized under conditions where global translation is severely compromised. One prominent example is the selective translation of heat shock proteins (Hsps) under stress conditions. Although the transcriptional regulation of Hsp genes has been well established, neither the specific translation-promoting features nor the regulatory mechanism of the translation machinery have been clearly defined. Here we show that the stress-induced preferential translation of Hsp70 mRNA is negatively regulated by PI3K-mTORC1 signaling. Despite the transcriptional up-regulation, the translation of Hsp70 mRNA is deficient in cells lacking tuberous sclerosis complex 2. Conversely, Hsp70 synthesis is enhanced under the reduced PI3K-mTORC1 signaling. We found that the 5' UTR of Hsp70 mRNA contributes to cap-independent translation without exhibiting typical features of internal ribosome entry site. Our findings imply a plausible mechanism for how persistent PI3K-mTORC1 signaling favors the development of age-related pathologies by attenuating stress resistance.
Collapse
Affiliation(s)
- Jun Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Zhou M, Zhang A, Lin B, Liu J, Xu LX. Study of heat shock response of human umbilical vein endothelial cells (HUVECs) using cDNA microarray. Int J Hyperthermia 2009; 23:225-58. [PMID: 17523017 DOI: 10.1080/02656730701295441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Genetic response of human umbilical vein cells (HUVECs) to heat shock was studied using gene expression analysis. HUVECs were subjected to heat treatment at 44 degrees C and 55 degrees C for 1 h, respectively. Four hours after the treatment, gene expression of the treated cells and control cells (37 degrees C) were profiled using cDNA microarray. Data were analyzed using bioinformatics tools, and the results were verified by real-time quantitative PCR experiment. It has been shown that a large number of genes were regulated indicating global response to heat treatment at the genetic level.
Collapse
Affiliation(s)
- M Zhou
- Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Ubiquitin-mediated proteolysis of HuR by heat shock. EMBO J 2009; 28:1271-82. [PMID: 19322201 DOI: 10.1038/emboj.2009.67] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 02/23/2009] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein HuR regulates the stability and translation of numerous mRNAs encoding stress-response and proliferative proteins. Although its post-transcriptional influence has been linked primarily to its cytoplasmic translocation, here we report that moderate heat shock (HS) potently reduces HuR levels, thereby altering the expression of HuR target mRNAs. HS did not change HuR mRNA levels or de novo translation, but instead reduced HuR protein stability. Supporting the involvement of the ubiquitin-proteasome system in this process were results showing that (1) HuR was ubiquitinated in vitro and in intact cells, (2) proteasome inhibition increased HuR abundance after HS, and (3) the HuR kinase checkpoint kinase 2 protected against the loss of HuR by HS. Within a central, HS-labile approximately 110-amino-acid region, K182 was found to be essential for HuR ubiquitination and proteolysis as mutant HuR(K182R) was left virtually unubiquitinated and was refractory to HS-triggered degradation. Our findings reveal that HS transiently lowers HuR by proteolysis linked to K182 ubiquitination and that HuR reduction enhances cell survival following HS.
Collapse
|
32
|
Ma S, Bhattacharjee RB, Bag J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J 2008; 276:552-70. [DOI: 10.1111/j.1742-4658.2008.06803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Matsuura H, Shinmyo A, Kato K. Preferential translation mediated by Hsp81-3 5'-UTR during heat shock involves ribosome entry at the 5'-end rather than an internal site in Arabidopsis suspension cells. J Biosci Bioeng 2008; 105:39-47. [PMID: 18295718 DOI: 10.1263/jbb.105.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/11/2007] [Indexed: 11/17/2022]
Abstract
Translational inhibition of most mRNAs and preferential translation of mRNAs coding heat shock proteins (Hsps) occur in most cells under heat shock stress. For most Hsp mRNAs, preferential translation in heat-shocked cells is conferred by their 5'-untranslated regions (5'-UTRs). However, the preferential translation directed by 5'-UTRs during heat shock remains mostly unknown in plants. Here, we found that the mRNA of Hsp81-3, which is an Arabidopsis Hsp90 family gene, continued to be associated with polysomes in heat-shocked Arabidopsis suspension-cultured cells. The Hsp81-3 5'-UTR was found to contribute to the efficient translation of capped reporter mRNAs in heat-shocked Arabidopsis protoplasts using a transient expression assay. Further characterization of the Hsp81-3 5'-UTR revealed that the anterior half of the 5'-UTR is important for the efficient translation in heat-shocked protoplasts. Moreover, the Hsp81-3 5'-UTR was highly capable of enhancing translation from uncapped reporter mRNAs relative to the 5'-UTR of a housekeeping gene in both normal and heat-shocked protoplasts. These Hsp81-3 5'-UTR-directed translations both in capped and uncapped reporter mRNAs were substantially reduced by the insertion of an upstream AUG at the 5'-end of the 5'-UTR, indicating that ribosomes are recruited to the 5'-end of the Hsp81-3 5'-UTR regardless of temperature and the presence or absence of the cap structure. These results suggest that the preferential translation of Hsp81-3 mRNA in heat-shocked Arabidopsis cells involves a ribosome scanning from the 5'-end of the 5'-UTR rather than ribosome entry to the internal site.
Collapse
Affiliation(s)
- Hideyuki Matsuura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
34
|
Jamison JT, Kayali F, Rudolph J, Marshall M, Kimball SR, DeGracia DJ. Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience 2008; 154:504-20. [PMID: 18456413 DOI: 10.1016/j.neuroscience.2008.03.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/14/2008] [Accepted: 03/15/2008] [Indexed: 12/13/2022]
Abstract
Although persistent translation arrest correlates with the selective vulnerability of post-ischemic hippocampal cornu ammonis 1 (Ammon's horn) (CA1) neurons, the mechanism of persistent translation arrest is not fully understood. Using fluorescent in situ hybridization and immunofluorescence histochemistry, we studied colocalization of polyadenylated mRNAs [poly(A)] with the following mRNA binding factors: eukaryotic initiation factor (eIF) 4G (translation initiation factor), HuR (ARE-containing mRNA stabilizing protein), poly-adenylated mRNA binding protein (PABP), S6 (small ribosomal subunit marker), T cell internal antigen (TIA-1) (stress granule marker), and tristetraprolin (TTP) (processing body marker). We compared staining in vulnerable CA1 and resistant CA3 from 1 to 48 h reperfusion, following 10 min global ischemia in the rat. In both CA1 and CA3 neurons, cytoplasmic poly(A) mRNAs redistributed from a homogenous staining pattern seen in controls to granular structures we term mRNA granules. The mRNA granules abated after 16 h reperfusion in CA3, but persisted in CA1 neurons to 48 h reperfusion. Protein synthesis inhibition correlated precisely with the presence of the mRNA granules. In both CA1 and CA3, the mRNA granules colocalized with eIF4G and PABP, but not S6, TIA-1 or TTP, indicating that they were neither stress granules nor processing bodies. Colocalization of HuR in the mRNA granules correlated with translation of 70 kDa inducible heat shock protein, which occurred early in CA3 (8 h) and was delayed in CA1 (36 h). Thus, differential compartmentalization of mRNA away from the 40S subunit correlated with translation arrest in post-ischemic neurons, providing a concise mechanism of persistent translation arrest in post-ischemic CA1.
Collapse
Affiliation(s)
- J T Jamison
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
36
|
Tamura M, Kajikawa M, Okada N. Functional splice sites in a zebrafish LINE and their influence on zebrafish gene expression. Gene 2007; 390:221-31. [PMID: 17174483 DOI: 10.1016/j.gene.2006.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/21/2022]
Abstract
Long interspersed elements (LINEs) are transposable elements that exist in many kinds of eukaryotic genomes, where they have a large effect on genome evolution. There are several thousands to hundreds of thousands of LINE copies in each eukaryotic genome. LINE elements are amplified by a mechanism called retrotransposition, in which a LINE-encoded protein reverse transcribes (copies) its own RNA. We previously isolated two retrotransposition-competent LINEs, ZfL2-1 and ZfL2-2, from zebrafish. Although it has generally been thought that LINEs do not have 'introns' (because the LINE RNA is used as the template during retrotransposition), we now show that these two LINEs contain multiple putative functional splice sites. We further show that at least one pair of these splice sites is actually functional in zebrafish cells. Moreover, some of these splice sites are coupled with the splicing signal of a host endogenous gene, thereby generating a new chimeric spliced mRNA variant for this gene. Our results suggest the possible role of these LINE splice sites in modulating retrotransposition and host gene expression.
Collapse
Affiliation(s)
- Masato Tamura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | |
Collapse
|
37
|
Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L. Heat Shock Factor 2 (HSF2) Contributes to Inducible Expression of hsp Genes through Interplay with HSF1. J Biol Chem 2007; 282:7077-86. [PMID: 17213196 DOI: 10.1074/jbc.m607556200] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock response is a defense reaction activated by proteotoxic damage induced by physiological or environmental stress. Cells respond to the proteotoxic damage by elevated expression of heat shock proteins (Hsps) that function as molecular chaperones and maintain the vital homeostasis of protein folds. Heat shock factors (HSFs) are the main transcriptional regulators of the stress-induced expression of hsp genes. Mammalian HSF1 was originally identified as the transcriptional regulator of the heat shock response, whereas HSF2 has not been implicated a role in the stress response. Previously, we and others have demonstrated that HSF1 and HSF2 interact through their trimerization domains, but the functional consequence of this interaction remained unclear. We have now demonstrated on chromatin that both HSF1 and HSF2 were able to bind the hsp70 promoter not only in response to heat shock but also during hemin-induced differentiation of K562 erythroleukemia cells. In both cases an intact HSF1 was required in order to reach maximal levels of promoter occupancy, suggesting that HSF1 influences the DNA binding activity of HSF2. The functional consequence of the HSF1-HSF2 interplay was demonstrated by real-time reverse transcription-PCR analyses, which showed that HSF2 was able to modulate the HSF1-mediated expression of major hsp genes. Our results reveal, contrary to the predominant model, that HSF2 indeed participates in the transcriptional regulation of the heat shock response.
Collapse
Affiliation(s)
- Päivi Ostling
- Department of Biochemistry, Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
38
|
Sonna LA, Sawka MN, Lilly CM. Exertional heat illness and human gene expression. PROGRESS IN BRAIN RESEARCH 2007; 162:321-46. [PMID: 17645926 DOI: 10.1016/s0079-6123(06)62016-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness. Here we discuss the systemic physiology of exertional hyperthermia and exertional heat illness, and compare the results of several recent microarray studies performed in vitro on human cells subjected to heat shock and in vivo on samples obtained from subjects performing exercise or suffering from exertional heat injury. From these comparisons, a concept of overlapping component responses emerges. Namely, some of the gene expression changes observed in peripheral blood mononuclear cells during exertional heat injury can be accounted for by normal cellular responses to heat, exercise, or both; others appear to be specific to the disease state itself. If confirmed in future studies, these component responses might provide a better understanding of adaptive and pathological responses to exercise and exercise-induced hyperthermia, help find new ways of identifying individuals at risk for exertional heat illness, and perhaps even help find rational molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Larry A Sonna
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
39
|
Kugel JF, Goodrich JA. Beating the heat: A translation factor and an RNA mobilize the heat shock transcription factor HSF1. Mol Cell 2006; 22:153-4. [PMID: 16630884 DOI: 10.1016/j.molcel.2006.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cells respond to stress via orchestrated modifications in gene expression; in a recent publication in Nature, Shamovsky et al. (2006) report that an RNA and a translation factor regulate the activity of a transcriptional activator essential to the mammalian heat shock response.
Collapse
Affiliation(s)
- Jennifer F Kugel
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
40
|
Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature 2006; 440:556-60. [PMID: 16554823 DOI: 10.1038/nature04518] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 12/15/2005] [Indexed: 12/16/2022]
Abstract
The heat-shock transcription factor 1 (HSF1) has an important role in the heat-shock response in vertebrates by inducing the expression of heat-shock proteins (HSPs) and other cytoprotective proteins. HSF1 is present in unstressed cells in an inactive monomeric form and becomes activated by heat and other stress stimuli. HSF1 activation involves trimerization and acquisition of a site-specific DNA-binding activity, which is negatively regulated by interaction with certain HSPs. Here we show that HSF1 activation by heat shock is an active process that is mediated by a ribonucleoprotein complex containing translation elongation factor eEF1A and a previously unknown non-coding RNA that we term HSR1 (heat shock RNA-1). HSR1 is constitutively expressed in human and rodent cells and its homologues are functionally interchangeable. Both HSR1 and eEF1A are required for HSF1 activation in vitro; antisense oligonucleotides or short interfering (si)RNA against HSR1 impair the heat-shock response in vivo, rendering cells thermosensitive. The central role of HSR1 during heat shock implies that targeting this RNA could serve as a new therapeutic model for cancer, inflammation and other conditions associated with HSF1 deregulation.
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
41
|
van Kollenburg B, Thomas AAM, Vermeulen G, Bertrand GAM, van Berkel CGM, Pronk JC, Proud CG, van der Knaap MS, Scheper GC. Regulation of protein synthesis in lymphoblasts from vanishing white matter patients. Neurobiol Dis 2006; 21:496-504. [PMID: 16185887 DOI: 10.1016/j.nbd.2005.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/02/2005] [Accepted: 08/26/2005] [Indexed: 01/08/2023] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is an inherited childhood white matter disorder, caused by mutations in the genes encoding eukaryotic initiation factor 2B (eIF2B). The present study showed that, while the eIF2B activity was reduced in VWM lymphoblasts, the expression levels of the eIF2B subunits were similar to control lymphoblast lines. The mutations in eIF2B did not affect the interaction with eIF2. Strikingly, no apparent differences for the regulation of protein synthesis, measured by [35S]-methionine incorporation, were found between control and VWM lymphoblasts. Western blotting showed that, in some VWM cells, exposure to heat shock caused a decrease in the expression of specific eIF2B subunits. Most importantly, the increase in phosphorylation of eIF2alpha in response to heat shock was lower in VWM lymphoblasts than in control cells. These findings could form part of the explanation for the episodes of rapid and severe deterioration in VWM patients that are precipitated by febrile infections.
Collapse
Affiliation(s)
- Barbara van Kollenburg
- Dept. of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shamovsky I, Gershon D. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Mech Ageing Dev 2005; 125:767-75. [PMID: 15541771 DOI: 10.1016/j.mad.2004.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An attenuated response to stress is characteristic of senescence. Heat shock (HS), a significant form of stress, is delayed and reduced in aging organisms. In the response to heat shock, heat shock factor 1 (HSF-1) is activated by trimerization of its monomeric subunits. This then initiates the transcription of a series of heat shock genes (hsp genes) that encode chaperone proteins protective against heat stress. Using a promoter binding electromobility shift assay (EMSA), we have found no activation of this transcription factor in the brains of old (36 months) rats in response to exposure to 41 degrees C for 1h while strong activation is elicited in young (6 months) animals. Since brains of young and old rats had approximately the same amount of HSF-1 subunits, we anticipated the presence of auxiliary regulatory factors essential for the activation of HSF-1 and the initiation of heat shock gene transcription. We describe three novel auxiliary factors--the proteins I-HSF [HSF inhibitor] and elongation factor-1 alpha (EF-1alpha) and a large non-coding RNA (HSR)--that participate in regulation and activation of HSF-1 in early stages of heat shock gene transcription. I-HSF inhibits trimerization of HSF-1 at normal temperatures. HSR and EF-1alpha form a complex with HSF-1 and facilitate its trimerization and binding to heat shock element (HSE) in the promoters of hsps. It is proposed that structural changes in any one or a combination of these factors in response to heat shock may contribute to the age-associated attenuation in the response to stress.
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
43
|
Kondo H, Harano R, Nakaya M, Watabe S. Characterization of goldfish heat shock protein-30 induced upon severe heat shock in cultured cells. Cell Stress Chaperones 2005; 9:350-8. [PMID: 15633293 PMCID: PMC1065274 DOI: 10.1379/csc-55r.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20 degrees C to 35 degrees C and 40 degrees C, the growth rate was increased at 35 degrees C as compared with that at 20 degrees C, but no cell growth was observed at 40 degrees C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40 degrees C. Therefore, the temperature shift to 40 degrees C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35 degrees C, the temperature shift to 40 degrees C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)-30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40 degrees C, whereas Hsp70 mRNA was slightly accumulated at 35 degrees C. These results indicated that Hsp30 might have important functions under severe heat stress condition.
Collapse
Affiliation(s)
- Hidehiro Kondo
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 1138657, Japan
| | | | | | | |
Collapse
|
44
|
Datta B, Datta R. Mutation at the acidic residue-rich domain of eukaryotic initiation factor 2 (eIF2alpha)-associated glycoprotein p67 increases the protection of eIF2alpha phosphorylation during heat shock. Arch Biochem Biophys 2003; 413:116-22. [PMID: 12706348 DOI: 10.1016/s0003-9861(03)00092-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein p67 protects eIF2alpha phosphorylation from kinases. The N-terminal lysine-rich domains increase this activity and the acidic residue-rich domain inhibits it. Conserved amino acid residues D251, D262, E364, and E459 are involved in this inhibition. During heat shock, the overall protein synthesis rate decreases due to the increased levels of eIF2alpha phosphorylation. In this study, we examined whether the above inhibition is also found during heat shock. Indeed, the acidic residue-rich domain mutant (D6/2) showed a decreased level of eIF2alpha phosphorylation, and its second-site alanine substitutions at D251, D262, and E459 reversed this effect, whereas second-site alanine substitution at H331 and E364 residues further augmented it. A high-molecular-weight phosphoprotein and at least two faster-migrating phosphoproteins were detected by the monospecific polyclonal antibody against eIF2alpha(P) form in rat tumor hepatoma cells constitutively expressing the double mutant D6/2+D251A. Although the levels of p67 mutants were unaffected during heat shock, those of p67 and p67-deactivating enzyme varied. Furthermore, the overall rate of protein synthesis correlated with the level of eIF2alpha phosphorylation. Taken together, these results suggest that the lysine-rich domains and conserved amino acid residues of p67 are involved in the regulation of eIF2alpha phosphorylation during heat shock.
Collapse
Affiliation(s)
- Bansidhar Datta
- Department of Chemistry, Kent State University, OH 44242, USA.
| | | |
Collapse
|
45
|
Han B, Zhang JT. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 2002; 22:7372-84. [PMID: 12370285 PMCID: PMC135655 DOI: 10.1128/mcb.22.21.7372-7384.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5' untranslated region (5'-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5'-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5'-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPbeta. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5'-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5'-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and I.U. Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
46
|
Romagnolo B, Jiang M, Kiraly M, Breton C, Begley R, Wang J, Lund J, Kim SK. Downstream targets of let-60 Ras in Caenorhabditis elegans. Dev Biol 2002; 247:127-36. [PMID: 12074557 DOI: 10.1006/dbio.2002.0692] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Caenorhabditis elegans, let-60 Ras controls many cellular processes, such as differentiation of vulval epithelial cells, function of chemosensory neurons, and meiotic progression in the germ line. Although much is known about the let-60 Ras signaling pathway, relatively little is understood about the target genes induced by let-60 Ras signaling that carry out terminal effector functions leading to morphological change. We have used DNA microarrays to identify 708 genes that change expression in response to activated let-60 Ras.
Collapse
Affiliation(s)
- Béatrice Romagnolo
- Department of Developmental Biology and Genetics, Stanford University Medical School, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sonna LA, Gaffin SL, Pratt RE, Cullivan ML, Angel KC, Lilly CM. Effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J Appl Physiol (1985) 2002; 92:2208-20. [PMID: 11960976 DOI: 10.1152/japplphysiol.01002.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of heat shock on gene expression by normal human cells. Peripheral blood mononuclear cells (PBMCs) were obtained from healthy adults. Paired samples from each subject were subjected to either 20 min of heat shock (43 degrees C) or control (37 degrees C) conditions and then returned to 37 degrees C. RNA was isolated 160 min later, and five representative samples were analyzed on Affymetrix gene chip arrays containing approximately 12,600 probes. A biologically meaningful effect was defined as a statistically significant, twofold or greater difference in expression of sequences that were detected in all five experiments under control (downregulated sequences) or heat shock (upregulated sequences) conditions. Changes occurred in 395 sequences (227 increased by heat shock, 168 decreased), representing 353 Unigene numbers, in every functional category previously implicated in the heat shock response. By RT-PCR, we confirmed the findings for one upregulated sequence (Rad, a G protein) and one downregulated sequence (osteopontin, a cytokine). We conclude that heat shock causes extensive gene expression changes in PBMCs, affecting all functional categories of the heat shock response.
Collapse
Affiliation(s)
- Larry A Sonna
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Laxminarayana B, Krishna VM, Janaki N, Ramaiah KVA. Translation and phosphorylation of wheat germ lysate: phosphorylation of wheat germ initiation factor 2 by casein kinase II and in N-ethylmaleimide-treated lysates. Arch Biochem Biophys 2002; 400:85-96. [PMID: 11913974 DOI: 10.1006/abbi.2002.2763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previously, we observed that N-ethylmaleimide (NEM), a thiol-alkylating agent, was found to stimulate the phosphorylation of several proteins in translating wheat germ (WG) lysates, including the phosphorylation of alpha, the p41-42 doublet subunit, and beta, the p36 subunit, of the WG initiation factor 2 (eIF2). We find now that NEM increases phosphorylation of several proteins significantly in lysates which are moderate or low in their translation compared to optimally active lysates. Heat treatment, which stimulates oxidation of protein sulfhydryls, decreases the translation and phosphorylation ability of WG lysates. The decrease in phosphorylation, but not translation, that occurs in heat-treated lysates is prevented very efficiently by NEM and partially by reducing agents such as dithiothreitol (DTT) and GSH. DTT prevents, however, completely the loss of sulfhydryl content of heat-treated WG lysates and does not at all prevent heat-induced inhibition of translation. In contrast, DTT prevents completely the diamide-induced translational inhibition and also the loss of sulfhydryl content. These findings therefore suggest that in addition to the maintenance of sulfhydryl groups, heat-labile proteins and their interactions with other proteins play an important role in overall translation and phosphorylation. It is also observed here that heat treatment stimulates the phosphorylation of rabbit reticulocyte eIF2 alpha but not the alpha subunit (p41-42 doublet) of WG eIF2. A phosphospecific anti-eIF2 alpha antibody recognizes the WG eIF2 alpha(P) that is phosphorylated by an authentic eIF2 alpha kinase such as double-stranded RNA-dependent protein kinase, but it is unable to recognize the eIF2 alpha that is phosphorylated in NEM-treated lysates. These findings therefore suggest that phosphorylation of WG eIF2 alpha in NEM-treated lysates occurs on a site different from the serine 51 residue that is phosphorylated by authentic eIF2 alpha kinases. In addition, it also suggests that WG eIF2 alpha, unlike reticulocyte eIF2 alpha, is phosphorylated by eIF2 alpha kinases and also by other kinases. Consistent with this idea, it has been observed here that casein kinase II (CKII) phosphorylates WG eIF2 alpha and the phosphorylation is enhanced by NEM in vitro and in lysates. The phosphopeptide analysis suggests that WG eIF2 alpha has separate phosphorylation sites for CKII and heme-regulated eIF2 alpha kinase (a well-characterized mammalian eIF2 alpha kinase), and NEM-induced phosphorylation in WG lysates resembles CKII-mediated phosphorylation.
Collapse
Affiliation(s)
- Burela Laxminarayana
- Department of Biochemistry, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh, India
| | | | | | | |
Collapse
|
49
|
Brostrom MA, Mourad F, Brostrom CO. Regulated expression of GRP78 during vasopressin-induced hypertrophy of heart-derived myocytes. J Cell Biochem 2001; 83:204-17. [PMID: 11573238 DOI: 10.1002/jcb.1219] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the development of cellular hypertrophy is widely believed to involve Ca(2+) signaling, potential supporting roles for sequestered Ca(2+) in this process have not been explored. H9c2 cardiomyocytes respond to arginine vasopressin with an initial mobilization of Ca(2+) stores and reduced rates of mRNA translation followed by repletion of Ca(2+) stores, up-regulation of translation beyond initial rates, and the development of hypertrophy. Rates of synthesis of the endoplasmic reticulum (ER) chaperones, GRP78 and GRP94, were found to increase preferentially at early times of vasopressin treatment. Total GRP78 content increased 2- to 3-fold within 8 h after which the chaperone was subject to post-translational modification. Preferential synthesis of GRP78 and the increase in chaperone content both occurred at pM vasopressin concentrations and were abolished at supraphysiologic Ca(2+) concentrations. Co-treatment with phorbol myristate acetate decreased vasopressin-dependent Ca(2+) mobilization and slowed appearance of new GRP78 molecules in response to the hormone, whereas 24 h pretreatment with phorbol ester prolonged vasopressin-dependent Ca(2+) mobilization and further increased rates of GRP78 synthesis in response to the hormone. Findings did not support a role for newly synthesized GRP78 in translational up-regulation by vasopressin. However up-regulation, which does not depend on Ca(2+) sequestration, appeared to expedite chaperone expression. This report provides the first evidence that a Ca(2+)-mobilizing hormone at physiologic concentrations signals increased expression of GRP78. Translational tolerance to depletion of ER Ca(2+) stores, typifying a robust ER stress response, did not accompany vasopressin-induced hypertrophy.
Collapse
Affiliation(s)
- M A Brostrom
- Department of Pharmacology, U.M.D.N.J.-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
50
|
Nika J, Rippel S, Hannig EM. Biochemical analysis of the eIF2beta gamma complex reveals a structural function for eIF2alpha in catalyzed nucleotide exchange. J Biol Chem 2001; 276:1051-6. [PMID: 11042214 DOI: 10.1074/jbc.m007398200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor eIF2 is a heterotrimer that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Initiation requires hydrolysis of eIF2-bound GTP, which releases an eIF2.GDP complex that is recycled to the GTP form by the nucleotide exchange factor eIF2B. The alpha-subunit of eIF2 plays a critical role in regulating nucleotide exchange via phosphorylation at serine 51, which converts eIF2 into a competitive inhibitor of the eIF2B-catalyzed exchange reaction. We purified a form of eIF2 (eIF2betagamma) completely devoid of the alpha-subunit to further study the role of eIF2alpha in eIF2 function. These studies utilized a yeast strain genetically altered to bypass a deletion of the normally essential eIF2alpha structural gene (SUI2). Removal of the alpha-subunit did not appear to significantly alter binding of guanine nucleotide or Met-tRNA(i)(Met) ligands by eIF2 in vitro. Qualitative assays to detect 43 S initiation complex formation and eIF5-dependent GTP hydrolysis revealed no differences between eIF2betagamma and the wild-type eIF2 heterotrimer. However, steady-state kinetic analysis of eIF2B-catalyzed nucleotide exchange revealed that the absence of the alpha-subunit increased K(m) for eIF2betagamma.GDP by an order of magnitude, with a smaller increase in V(max). These data indicate that eIF2alpha is required for structural interactions between eIF2 and eIF2B that promote wild-type rates of nucleotide exchange. We suggest that this function contributes to the ability of the alpha-subunit to control the rate of nucleotide exchange through reversible phosphorylation.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | | |
Collapse
|