1
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
2
|
PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol 2008; 45:385-93. [PMID: 18657544 DOI: 10.1016/j.yjmcc.2008.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022]
Abstract
Diabetic cardiomyopathy is characterized by structural alterations such as cardiomyocyte hypertrophy, necrosis and focal fibrosis. Hyperglycemia-induced oxidative damage may play an important role in this pathogenetic process. Recent studies have shown that poly (ADP-ribose) polymerase (PARP) is activated in response to oxidative stress and cellular damage as well, plays a role in gene expression. This study investigated mechanisms of diabetes-induced, PARP-mediated development of structural alterations in the heart. Two models of diabetic complications were used to determine the role of PARP in oxidative stress, cardiac hypertrophy and fibrosis in the heart. PARP-1 knockout (PARP(-/-)) mice and their respective controls were fed a 30% galactose diet while male Sprague-Dawley rats were injected with streptozotocin and subsequently treated with PARP inhibitor 3-aminobenzamide (ABA). The in vivo experiments were verified in in vitro models which utilized both neonatal cardiomyocytes and endothelial cells. Our results indicate that hyperhexosemia caused upregulation of extracellular matrix proteins in association with increased transcriptional co-activator p300 levels, cardiomyocyte hypertrophy and increased oxidative stress. These pathogenetic changes were not observed in the PARP(-/-) mice and diabetic rats treated with ABA. Furthermore, these changes appear to be influenced by histone deacetylases. Similar results were obtained in isolated cardiomyocytes and endothelial cells. This study has elucidated for the first time a PARP-dependent, p300-associated pathway mediating the development of structural alterations in the diabetic heart.
Collapse
|
3
|
Nguewa PA, Fuertes MA, Valladares B, Alonso C, Pérez JM. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:143-72. [PMID: 15561303 DOI: 10.1016/j.pbiomolbio.2004.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes, which show differences in structure, cellular location and functions. However, all these enzymes possess poly(ADP-ribosyl)ation activity. Overactivation of PARP enzymes has been implicated in the pathogenesis of several diseases, including stroke, myocardial infarction, diabetes, shock, neurodegenerative disorder and allergy. The best studied of these enzymes (PARP-1) is involved in the cellular response to DNA damage so that in the event of irreparable DNA damage overactivation of PARP-1 leads to necrotic cell death. Inhibitors of PARP-1 activity in combination with DNA-binding antitumor drugs may constitute a suitable strategy in cancer chemotherapy. In addition, PARP inhibitors may be also useful to restore cellular functions in several pathophysiological states and diseases. This review gives an update of the state-of-the-art concerning PARP enzymes and their exploitation as pharmacological targets in several illnesses.
Collapse
Affiliation(s)
- Paul A Nguewa
- Departamento de Parasitología, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
4
|
Weston VJ, Austen B, Wei W, Marston E, Alvi A, Lawson S, Darbyshire PJ, Griffiths M, Hill F, Mann JR, Moss PAH, Taylor AMR, Stankovic T. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling. Blood 2004; 104:1465-73. [PMID: 15142883 DOI: 10.1182/blood-2003-11-4039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate possible causes of the variable response to treatment in pediatric B-precursor acute lymphoblastic leukemia (ALL) and to establish potential novel therapeutic targets, we used ionizing radiation (IR) exposure as a model of DNA damage formation to identify tumors with resistance to p53-dependent apoptosis. Twenty-one of 40 ALL tumors responded normally to IR, exhibiting accumulation of p53 and p21 proteins and cleavage of caspases 3, 7, and 9 and of PARP1. Nineteen tumors exhibited apoptotic resistance and lacked PARP1 and caspase cleavage; although 15 of these tumors had normal accumulation of p53 and p21 proteins, examples exhibited abnormal expression of TRAF5, TRAF6, and cIAP1 after IR, suggesting increased NF-kappaB prosurvival signaling as the mechanism of apoptotic resistance. The presence of a hyperactive PARP1 mutation in one tumor was consistent with such increased NF-kappaB activity. PARP1 inhibition restored p53-dependent apoptosis after IR in these leukemias by reducing NF-kappaB DNA binding and transcriptional activity. In the remaining 4 ALL tumors, apoptotic resistance was associated with a TP53 mutation or with defective activation of p53. We conclude that increased NF-kappaB prosurvival signaling is a frequent mechanism by which B-precursor ALL tumors develop apoptotic resistance to IR and that PARP1 inhibition may improve the DNA damage response of these leukemias.
Collapse
Affiliation(s)
- Victoria J Weston
- Cancer Research UK Institute for Cancer Studies, Birmingham University, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nguewa PA, Fuertes MA, Alonso C, Perez JM. Pharmacological modulation of Poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol Pharmacol 2003; 64:1007-14. [PMID: 14573748 DOI: 10.1124/mol.64.5.1007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Paul A Nguewa
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 2003; 284:F608-27. [PMID: 12620919 DOI: 10.1152/ajprenal.00284.2002] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In humans and experimental models of renal ischemia, tubular cells in various nephron segments undergo necrotic and/or apoptotic cell death. Various factors, including nucleotide depletion, electrolyte imbalance, reactive oxygen species, endonucleases, disruption of mitochondrial integrity, and activation of various components of the apoptotic machinery, have been implicated in renal cell vulnerability. Several approaches to limit the injury and augment the regeneration process, including nucleotide repletion, administration of growth factors, reactive oxygen species scavengers, and inhibition of inducers and executioners of cell death, proved to be effective in animal models. Nevertheless, an effective approach to limit or prevent ischemic renal injury in humans remains elusive, primarily because of an incomplete understanding of the mechanisms of cellular injury. Elucidation of cell death pathways in animal models in the setting of renal injury and extrapolation of the findings to humans will aid in the design of potential therapeutic strategies. This review evaluates our understanding of the molecular signaling events in apoptotic and necrotic cell death and the contribution of various molecular components of these pathways to renal injury.
Collapse
Affiliation(s)
- Babu J Padanilam
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA.
| |
Collapse
|
7
|
Song JH, Shin SH, Wang W, Ross GM. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells. Exp Neurol 2001; 169:425-37. [PMID: 11358456 DOI: 10.1006/exnr.2001.7680] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ascorbate is a reducing agent, but it is also known to oxidize cellular components under specific conditions. The mechanism of this oxidative action, however, is not well established. Ascorbate treatment increased lipid peroxide content in PC12 cells, but did not increase quantities of lipid peroxide when homogenates of PC12 cells were treated with ascorbate, suggesting that cellular integrity is required for ascorbate to generate lipid peroxidation. However, dehydroascorbate increased lipid peroxide production in both intact PC12 cells and the cell homogenates. These differential effects of ascorbate and dehydroascorbate on intact cells versus homogenates suggest that the dehydroascorbate in cytosol induces an oxidative stress. Ascorbate in culture medium is rapidly oxidized to dehydroascorbate, which is transported into cells by a glucose transporter (GLUT). The GLUT antagonists wortmannin and cytochalasin B, or a high concentration of glucose, blocked (14)C uptake (from ascorbate) in a time-dependent manner and suppressed lipid peroxide production in PC12 cells. These observations support the concept that ascorbate is oxidized to dehydroascorbate, which is transported into cells via GLUT. The dehydroascorbate induces oxidative stress. The oxidative stress triggered apoptosis according to ceramide production, caspase-3 activation, and TUNEL. We have concluded that ascorbate is taken up after oxidation to dehydroascorbate via a "dehydroascorbate transporter" (GLUT), and the dehydroascorbate generates an oxidative stress which triggers apoptosis. These studies have significant implications for conditions under which a high concentration of ascorbate in a tissue is released during a period of hypoxia (e.g., stroke) and taken up during a reperfusion period as dehydroascorbate. Inhibiting uptake of dehydroascorbate may offer novel therapeutic strategies to alleviate brain damage during a reperfusion period.
Collapse
Affiliation(s)
- J H Song
- Department of Physiology, Botterell Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
8
|
Kondratyev A, Gale K. Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:216-24. [PMID: 10686342 DOI: 10.1016/s0169-328x(99)00292-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. Recent studies have implicated apoptotic processes in this seizure-related injury. Because activation of caspase-3-like cysteine proteases plays a crucial role in mammalian neuronal apoptosis, we explored the possibility that activation of caspase-3 is involved in the neuronal apoptotic cell death that occurs in rat brain following SE induced by systemic kainic acid. Caspase-3 activity was determined immunocytochemically using CM1 antibodies specific for catalytically active subunit (p17) of the enzyme. We found an induction of caspase-3 activity in rhinal cortex and amygdala at 24 h after SE. To determine whether activation of caspase-3-like proteases is a necessary component of the injury process, we delivered a caspase-3 inhibitor, z-DEVD-fmk, into the lateral ventricle prior to, and following SE. z-DEVD-fmk treatment substantially attenuated apoptotic cell death after SE, both in hippocampus and rhinal cortex, as evaluated by analysis of internucleosomal DNA fragmentation and neuronal nuclear morphology. Our findings implicate caspase-3 cysteine protease in the neurodegenerative response to SE and suggest that this degeneration can be attenuated by inhibition of caspase-3-like enzyme activity.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA.
| | | |
Collapse
|
9
|
Mahajan PB, Zuo Z. Purification and cDNA cloning of maize Poly(ADP)-ribose polymerase. PLANT PHYSIOLOGY 1998; 118:895-905. [PMID: 9808734 PMCID: PMC34800 DOI: 10.1104/pp.118.3.895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/1998] [Accepted: 08/10/1998] [Indexed: 05/22/2023]
Abstract
Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.
Collapse
Affiliation(s)
- P B Mahajan
- Department of Crop Protection, Trait and Technology Development, Pioneer Hi-Bred International, Johnston, Iowa 50131, USA.
| | | |
Collapse
|
10
|
Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 1997. [PMID: 9295387 DOI: 10.1523/jneurosci.17-19-07415.1997] [Citation(s) in RCA: 436] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the temporal profile of apoptosis after fluid percussion-induced traumatic brain injury (TBI) in rats and investigated the potential pathophysiological role of caspase-3-like proteases in this process. DNA fragmentation was observed in samples from injured cortex and hippocampus, but not from contralateral tissue, beginning 4 hr after TBI and continuing for at least 3 d. Double labeling of brain with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and an antibody directed to neuronal nuclear protein identified apoptotic neurons with high frequency in both traumatized rat cortex and hippocampus. Cytosolic extracts from injured cortex and hippocampus, but not from contralateral or control tissue, induced internucleosomal DNA fragmentation in isolated nuclei with temporal profiles consistent with those of DNA fragmentation observed in vivo. Caspase-3 mRNA levels, estimated by semiquantitative RT-PCR, were elevated fivefold in ipsilateral cortex and twofold in hippocampus by 24 hr after TBI. Caspase-1 mRNA content also was increased after trauma, but to a lesser extent in cortex. Increased caspase-3-like, but not caspase-1-like, enzymatic activity was found in cytosolic extracts from injured cortex. Intracerebroventricular administration of z-DEVD-fmk-a specific tetrapeptide inhibitor of caspase-3-before and after injury markedly reduced post-traumatic apoptosis, as demonstrated by DNA electrophoresis and TUNEL staining, and significantly improved neurological recovery. Together, these results implicate caspase-3-like proteases in neuronal apoptosis induced by TBI and suggest that the blockade of such caspases can reduce post-traumatic apoptosis and associated neurological dysfunction.
Collapse
|
12
|
Miranda EA, de-Murcia G, Ménissier-de-Murcia J. Large-scale production and purification of recombinant protein from an insect cell/baculovirus system in Erlenmeyer flasks: application to the chicken poly(ADP-ribose) polymerase catalytic domain. Braz J Med Biol Res 1997; 30:923-8. [PMID: 9361719 DOI: 10.1590/s0100-879x1997000800002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A simple and inexpensive shaker/Erlenmeyer flask system for large-scale cultivation of insect cells is described and compared to a commercial spinner system. On the basis of maximum cell density, average population doubling time and overproduction of recombinant protein, a better result was obtained with a simpler and less expensive bioreactor consisting of Erlenmeyer flasks and an ordinary shaker waterbath. Routinely, about 90 mg of pure poly(ADP-ribose) polymerase catalytic domain was obtained for a total of 3 x 10(9) infected cells in three liters of culture.
Collapse
Affiliation(s)
- E A Miranda
- Ecole Supérieure de Biotechnologie de Strasbourg, UPR 9003 du CNRS, France.
| | | | | |
Collapse
|
13
|
Ruf A, Mennissier de Murcia J, de Murcia G, Schulz GE. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc Natl Acad Sci U S A 1996; 93:7481-5. [PMID: 8755499 PMCID: PMC38770 DOI: 10.1073/pnas.93.15.7481] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The crystal structures of the catalytic fragment of chicken poly(ADP-ribose) polymerase [NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] with and without a nicotinamide-analogue inhibitor have been elucidated. Because this enzyme is involved in the regulation of DNA repair, its inhibitors are of interest for cancer therapy. The inhibitor shows the nicotinamide site and also suggests the adenosine site. The enzyme is structurally related to bacterial ADP-ribosylating toxins but contains an additional alpha-helical domain that is suggested to relay the activation signal issued on binding to damaged DNA.
Collapse
Affiliation(s)
- A Ruf
- Institut für Organische Chemie und Biochemie, Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|