1
|
Weiner AC, Chen HY, Roegner ME, Watson RD. Calcium signaling and regulation of ecdysteroidogenesis in crustacean Y-organs. Gen Comp Endocrinol 2021; 314:113901. [PMID: 34530000 DOI: 10.1016/j.ygcen.2021.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Crustacean Y-organs secrete ecdysteroid molting hormones. Ecdysteroids are released in increased amount during premolt, circulate in hemolymph, and stimulate the events in target cells that lead to molting. During much of the molting cycle, ecdysteroid production is suppressed by molt-inhibiting hormone (MIH), a peptide neurohormone produced in the eyestalks. The suppressive effect of MIH is mediated by a cyclic nucleotide second messenger. A decrease in circulating MIH is associated with an increase in the hemolymphatic ecdysteroid titer during pre-molt. Nevertheless, it has long been hypothesized that a positive regulatory signal or stimulus is also involved in promoting ecdysteroidogenensis during premolt. Data reviewed here are consistent with the hypothesis that an intracellular Ca2+ signal provides that stimulus. Pharmacological agents that increase intracellular Ca2+ in Y-organs promote ecdysteroidogenesis, while agents that lower intracellular Ca2+ or disrupt Ca2+ signaling suppress ecdysteroidogenesis. Further, an increase in the hemolymphatic ecdysteroid titer after eyestalk ablation or during natural premolt is associated with an increase in intracellular free Ca2+ in Y-organ cells. Several lines of evidence suggest elevated intracellular calcium is linked to enhanced ecdysteroidogenesis through activation of Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, thereby lowering intracellular cyclic nucleotide second messenger levels and promoting ecdysteroidogenesis. Results of transcriptomic studies show genes involved in Ca2+ signaling are well represented in Y-organs. Several recent studies have focused on Ca2+ transport proteins in Y-organs. Complementary DNAs encoding a plasma membrane Ca2+ ATPase (PMCA) and a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) have been cloned from crab Y-organs. The relative abundance of PMCA and SERCA transcripts in Y-organs is elevated during premolt, a time when Ca2+ levels in Y-organs are likewise elevated. The results are consistent with the notion that these transport proteins act to maintain the Ca2+ gradient across the cell membrane and re-set the cell for future Ca2+ signals.
Collapse
Affiliation(s)
- Amanda C Weiner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hsiang-Yin Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Megan E Roegner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
2
|
Roegner ME, Roer RD, Watson RD. Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) transcript abundance in Y-organs and ecdysteroid titer in hemolymph during a molting cycle of the Blue Crab, Callinectes sapidus. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:76-80. [DOI: 10.1016/j.cbpa.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 11/25/2022]
|
3
|
Roegner ME, Chen HY, Watson RD. Molecular cloning and characterization of a sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) from Y-organs of the blue crab (Callinectes sapidus). Gene 2018; 673:12-21. [PMID: 29886036 DOI: 10.1016/j.gene.2018.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 11/27/2022]
Abstract
Existing data indicate that a Ca2+ signal stimulates ecdysteroid hormone production by crustacean molting glands (Y-organs). Ca2+ signaling is dependent on a tightly regulated Ca2+ gradient, with intracellular free Ca2+ maintained at a low basal level (typically sub-micromolar). This is achieved through the action of proteins intrinsic to the plasma membrane and the membranes of organelles. One such protein, the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), pumps Ca2+ from cytosol to the lumen of the endoplasmic reticulum. As a step toward understanding Ca2+-mediated regulation of ecdysteroidogenesis, we have begun investigating Ca2+ transport proteins in Y-organs. In studies reported here, we used a PCR-based strategy to clone from Y-organs of the blue crab (Callinectes sapidus) a cDNA encoding a putative SERCA protein. The cloned Cas-SERCA cDNA (3806 bp) includes a 3057-bp open reading frame that encodes a 1019-residue protein (Cas-SERCA). The conceptually translated protein has a predicted molecular mass of 111.42 × 103 and contains all signature domains of an authentic SERCA, including ten transmembrane domains and a phosphorylation site at aspartate 351. A homology model of Cas-SERCA closely resembles models of related SERCA proteins. Phylogenetic analysis shows Cas-SERCA clusters with SERCA proteins from other arthropods. An assessment of tissue distribution indicates the Cas-SERCA transcript is widely distributed across tissues. Studies using quantitative PCR showed Cas-SERCA transcript abundance increased significantly in Y-organs activated by eyestalk ablation, a pattern consistent with the hypothesis that Cas-SERCA functions to maintain Ca2+ homeostasis in Y-organs.
Collapse
Affiliation(s)
- Megan E Roegner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hsiang-Yin Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
4
|
Zhang J, Song F, Sun Y, Yu K, Xiang J. CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2018; 77:244-251. [PMID: 29621632 DOI: 10.1016/j.fsi.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
The recently emerged CRISPR/Cas9 technology is the most flexible means to produce targeted mutations at the genomic loci in a variety of organisms. In Crustaceans, molt-inhibiting hormone (MIH) is an important negative-regulatory factor and plays a key role in suppressing the molting process. However, whether precise disruption of MIH in crustacean can be achieved and successfully used to improve the development and growth has not been proved. In this research, the complementary DNA (cDNA) and genomic DNA, including flanking regions of the MIH gene (EcMIH) of ridgetail white prawn Exopalaemon carinicauda, were cloned and sequenced. Sequence analysis revealed that EcMIH was composed of three exons and two introns. Analysis by RT-PCR showed that EcMIH mainly expressed in eyestalks. During different development periods, EcMIH was highest in juvenile stage and extremely low in others but adult prawns eyestalks. In addition, we applied CRISPR/Cas9 technology to generate EcMIH knock-out (KO) prawns and then analyzed the changes in their phenotypes. We efficiently generated 12 EcMIH-KO prawns out of 250 injected one-cell stage embryos and the mutant rate reached 4.8% after embryo injection with one sgRNA targeting the second exon of EcMIH. The EcMIH-KO prawns exhibited increased the body length and shortened the metamorphosis time of larvae from mysis larva to postlarva. Meanwhile, EcMIH-KO did not cause the health problems such as early stage death or deformity. In conclusion, we successfully obtained EcMIH gene and generated EcMIH-KO prawns using CRISPR/Cas9 technology. This study will certainly lead to a wide application prospect of MIH gene in prawns breeding.
Collapse
Affiliation(s)
- Jiquan Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Fengge Song
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuying Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Kuijie Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| |
Collapse
|
5
|
Zhang X, Huang D, Jia X, Zou Z, Wang Y, Zhang Z. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain. Gen Comp Endocrinol 2018; 259:131-140. [PMID: 29170022 DOI: 10.1016/j.ygcen.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/15/2017] [Accepted: 11/18/2017] [Indexed: 11/24/2022]
Abstract
In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danping Huang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Banu MR, Christianu A, Islam MR, Ikhsan NFM, Rajaee AH. Growth and Survival of Bilateral Eyestalk Ablated Small Male Freshwater Prawn
Macrobrachium rosenbergii (DeMan). ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.527.531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Chen HY, Roer RD, Watson RD. Molecular cloning of a plasma membrane Ca2+ ATPase (PMCA) from Y-organs of the blue crab (Callinectes sapidus), and determination of spatial and temporal patterns of PMCA gene expression. Gene 2013; 522:8-17. [DOI: 10.1016/j.gene.2013.03.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/26/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
8
|
Chen HY, Dillaman RM, Roer RD, Watson RD. Stage-specific changes in calcium concentration in crustacean (Callinectes sapidus) Y-organs during a natural molting cycle, and their relation to the hemolymphatic ecdysteroid titer. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:170-3. [DOI: 10.1016/j.cbpa.2012.05.205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
|
9
|
Chang ES, Mykles DL. Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 2011; 172:323-30. [PMID: 21501612 DOI: 10.1016/j.ygcen.2011.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 01/28/2023]
Abstract
Molting is a highly complex process that requires precise coordination to be successful. We describe the early classical endocrinological experiments that elucidated the hormones and glands responsible for this process. We then describe the more recent experiments that have provided information on the cellular and molecular aspects of molting. In addition to providing a review of the scientific literature, we have also included our perspectives.
Collapse
Affiliation(s)
- Ernest S Chang
- Bodega Marine Laboratory, University of California-Davis, Bodega Bay, CA 94923, USA.
| | | |
Collapse
|
10
|
Allayie SA, Ravichandran S, Bhat BA. Hormonal regulatory role of eyestalk factors on growth of heart in mud crab, Scylla serrata. Saudi J Biol Sci 2011; 18:283-6. [PMID: 23961136 DOI: 10.1016/j.sjbs.2011.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022] Open
Abstract
The present study was attempted to know the growth regulation of eyestalk factors on the growth of heart in Scylla serrata using eyestalk extractions and bilateral eyestalk ablations. The bilateral eyestalk ablation led to the maximum growth indices of the heart ((H) indices) to 0.162 and 0.158 in ablated male and female, respectively, in comparison to 0.153 and 0.167 in the control male and female and 0.147 and 0.157 in injected male and female, respectively. The data have shown that the heart of male crabs grows faster than female crabs. The study has also shown that bilateral eyestalk ablation resulted in a significant increase in the heart indices in males and has least effect on the growth of the female heart. The results presented strongly support a potential role of the eyestalk factors and molting hormone regulating the growth of the heart in S. serrata.
Collapse
Affiliation(s)
- Sartaj Ahmad Allayie
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608502, India
| | | | | |
Collapse
|
11
|
Chen HY, Watson RD. Changes in intracellular calcium concentration in crustacean (Callinectes sapidus) Y-organs: relation to the hemolymphatic ecdysteroid titer. ACTA ACUST UNITED AC 2010; 315:56-60. [DOI: 10.1002/jez.646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Nakatsuji T, Lee CY, Watson RD. Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:139-48. [DOI: 10.1016/j.cbpa.2008.10.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
13
|
Nakatsuji T, Han DW, Jablonsky MJ, Harville SR, Muccio DD, Watson RD. Expression of crustacean (Callinectes sapidus) molt-inhibiting hormone in Escherichia coli: characterization of the recombinant peptide and assessment of its effects on cellular signaling pathways in Y-organs. Mol Cell Endocrinol 2006; 253:96-104. [PMID: 16790313 DOI: 10.1016/j.mce.2006.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/10/2006] [Accepted: 05/12/2006] [Indexed: 11/24/2022]
Abstract
A neuropeptide, molt-inhibiting hormone (MIH), negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in Escherichia coli. Bacteria were transformed with an expression plasmid containing a cDNA insert encoding MIH. After induction of protein synthesis, recombinant MIH (recMIH) was detected in the insoluble fraction of cell lysates. The insoluble recMIH was refolded and purified by reversed-phase high performance liquid chromatography (RP-HPLC). The refolded peptide was MIH-immunoreactive and comigrated with native MIH on RP-HPLC. Mass and CD spectral analyses showed the mass number and secondary structure of the recombinant peptide were as predicted for MIH. Bioassays showed recMIH dose-dependently suppresses ecdysteroid synthesis by Y-organs. The combined results suggest that recMIH is properly folded. In subsequent experiments, recMIH was used to assess cellular signaling pathways linked to MIH-mediated suppression of ecdysteroidogenesis. Incubation of Y-organs with recMIH produced an increase in intracellular cGMP content, but had no effect on intracellular cAMP. Further, a cGMP analog significantly suppressed ecdysteroid production, but neither cAMP analogs nor an activator of adenylyl cyclase had a detectable effect on ecdysteroidogenesis. The results are consistent with the hypothesis that MIH-induced suppression of ecdysteroidogenesis in Y-organs of C. sapidus is mediated by a cGMP second messenger. We anticipate recMIH will be a useful tool for additional studies of the cellular actions and physiological functions of MIH.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
14
|
Okumura T, Ohira T, Katayama H, Nagasawa H. In vivoEffects of a Recombinant Molt-Inhibiting Hormone on Molt Interval and Hemolymph Ecdysteroid Level in the Kuruma Prawn, Marsupenaeus japonicus. Zoolog Sci 2005; 22:317-20. [PMID: 15795494 DOI: 10.2108/zsj.22.317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the function of molt-inhibiting hormone (MIH) in vivo, we examined the effects of injecting of a recombinant MIH on the molt interval and hemolymph ecdysteroid level in the kuruma prawn, Marsupenaeus japonicus. The injection of recombinant MIH significantly prolonged the molt interval (9.0 +/-0.4 days in the control group, 9.5+/-0.5 days in the 2500 ng/g-body weight/injection-group, mean+/-SD), and significantly decreased the hemolymph ecdysteroid level (ratio of levels between after and before injection: 1.94+/-1.09 in the control and 1.28+/-0.39 in the 3000 ng/g-body weight/injection-group, mean+/-SD). These results conclusively show the inhibitory effects of MIH on molting in vivo.
Collapse
Affiliation(s)
- Takuji Okumura
- National Research Institute of Aquaculture, Fisheries Research Agency, Nansei, Mie, Japan.
| | | | | | | |
Collapse
|
15
|
Nakatsuji T, Sonobe H. Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish, Procambarus clarkii. Gen Comp Endocrinol 2004; 135:358-64. [PMID: 14723887 DOI: 10.1016/j.ygcen.2003.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In crustaceans, molt-inhibiting hormone (MIH) has been proposed to regulate molting by inhibiting the secretion of ecdysteroids from the Y-organ. Thus, MIH titer in the hemolymph should be inversely related to ecdysteroid titers during the molt cycle. However, it has not been demonstrated whether the MIH titer in the hemolymph changes during the molt cycle. The purpose of this study was to determine the changes in the MIH titers in the hemolymph during the molt cycle of the American crayfish, Procambarus clarkii, and to discuss the role of MIH in regulation of molting. As predicted by the hypothesis, the hemolymph MIH titer was high at the intermolt stage when the hemolymph ecdysteroid titer was low, and the MIH titer decreased to a basal level at the early premolt stage when the hemolymph ecdysteroid titer began to increase slightly. At the middle premolt stage when the hemolymph ecdysteroid titer increased, the MIH titer was restored to a level as high as that during the intermolt stage. This is in contradiction to the hypothesis. However, the Y-organs at this stage scarcely responded to MIH both in vitro and in vivo. The present findings suggest that ecdysteroid secretion from the Y-organ may be regulated not only by changes in the hemolymph MIH titer, but also by changes in the responsiveness of the Y-organ to MIH.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Life and Functional Material Science, Graduate School of Natural Sciences, Konan University, Kobe 658-8501, Japan
| | | |
Collapse
|
16
|
SHIH TUNGWEI, SUZUKI YUZURU, NAGASAWA HIROMICHI, AIDA KATSUMI. Immunohistochemical and morphological studies of hyperglycemic hormone-and molt-inhibiting hormone-producing cells in the eyestalk of kuruma prawn,Penaeus japonicus, in relation to molting. INVERTEBR REPROD DEV 2003. [DOI: 10.1080/07924259.2003.9652515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Watson RD, Lee KJ, Borders KJ, Dircksen H, Lilly KY. Molt-inhibiting hormone immunoreactive neurons in the eyestalk neuroendocrine system of the blue crab, Callinectes sapidus. ARTHROPOD STRUCTURE & DEVELOPMENT 2001; 30:69-76. [PMID: 18088946 DOI: 10.1016/s1467-8039(01)00024-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Revised: 06/11/2001] [Accepted: 06/22/2001] [Indexed: 05/25/2023]
Abstract
The production of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated by a neuropeptide, molt-inhibiting hormone. It is generally agreed that molt-inhibiting hormone is produced and released by the eyestalk neuroendocrine system. In the present study, immunocytochemical methods were used to detect molt-inhibiting hormone immunoreactive neurons in eyestalk ganglia of the blue crab, Callinectes sapidus. The primary antiserum used was generated against molt-inhibiting hormone of the green shore crab, Carcinus maenas. A preliminary Western blot analysis indicated the antiserum binds molt-inhibiting hormone of Callinectes sapidus. Using confocal and conventional immunofluorescence microscopy, molt-inhibiting hormone immunoreactivity was visualized in whole mounts and thin sections of Callinectes sapidus eyestalk ganglia. Immunoreactivity was detected in 15-25 neurosecretory cell bodies in the medulla terminalis X-organ, their associated axons and collateral branches, and their axon terminals in the neurohemal sinus gland. The cellular organization of molt-inhibiting hormone immunoreactive neurons in blue crabs is generally similar to that reported for other crab species. The combined results suggest the cellular structure of the molt-inhibiting hormone neuroendocrine system is highly conserved among brachyurans.
Collapse
Affiliation(s)
- R D Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
18
|
Watson RD, Lee KJ, Shihong Q, Ming L, Heidi R U, Robert D R, Eugene S. Molecular Cloning, Expression, and Tissue Distribution of Crustacean Molt-Inhibiting Hormone1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0407:mceatd]2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
GROSS PAULS, KNOWLTON ROBERTE. Effects of timed eyestalk ablation on molting in larvae of the snapping shrimp, Alpheus heterochaelisSay. INVERTEBR REPROD DEV 1997. [DOI: 10.1080/07924259.1997.9672612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
High-affinity binding of putative moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) to membrane-bound receptors on the Y-organ of the shore crab
Carcinus maenus. Proc Biol Sci 1997. [DOI: 10.1098/rspb.1993.0008] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Webster SG. Amino acid sequence of putative moult-inhibiting hormone from the crab Carcinus maenas. Proc Biol Sci 1991; 244:247-52. [PMID: 1679945 DOI: 10.1098/rspb.1991.0078] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Putative moult-inhibiting hormone (MIH) was isolated from sinus glands of the shore crab Carcinus maenas, and its primary structure determined by automated Edman degradation of endoproteinase derived peptide fragments. MIH is a 78 residue neuropeptide (deduced molecular mass 9181 Da) with three disulphide bridges and unblocked N- and C-termini. MIH shows some homology to the crustacean hyperglycemic hormone (CHH) neuropeptide family. However, consideration of the roles of various members of this group, together with sequence information recently reported, strongly suggests that these neuropeptides may be multifunctional.
Collapse
Affiliation(s)
- S G Webster
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, U.K
| |
Collapse
|
22
|
Huberman A, Aguilar MB. A neuropeptide with molt-inhibiting hormone activity from the sinus gland of the mexican crayfish Procambarus bouvieri (Ortmann). ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0305-0491(89)90085-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Naya Y, Kishida K, Sugiyama M, Murata M, Miki W, Ohnishi M, Nakanishi K. Endogenous inhibitor of ecdysone synthesis in crabs. EXPERIENTIA 1988; 44:50-2. [PMID: 3350119 DOI: 10.1007/bf01960242] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Attempts to isolate the molt-inhibiting hormone (MIH) of crustaceans from crab eyestalks (ES) resulted in the characterization of xanthurenic acid as an inhibitor of ecdysone biosynthesis in the cultured Y-organ-complex (YOC) homogenate. It was also found that 3-hydroxy-L-kynurenine present in the ES is transformed into xanthurenic acid in the YOC and body fluid. Its mode of inhibitory action in ecdysone biosynthesis is probably inactivation of cytochrome P-450.
Collapse
Affiliation(s)
- Y Naya
- Suntory Institute for Bioorganic Research, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting hormone and hyperglycemic hormone in the eyestalk of brachyuran crustaceans. Cell Tissue Res 1988. [DOI: 10.1007/bf00215441] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Chang ES, Bruce MJ, Newcomb RW. Purification and amino acid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus. Gen Comp Endocrinol 1987; 65:56-64. [PMID: 3803902 DOI: 10.1016/0016-6480(87)90222-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A peptide was isolated and purified from sinus glands of the lobster, Homarus americanus, that was able to decrease circulating titers of ecdysteroids and increase the molt interval of eyestalk-ablated juvenile lobsters. This molt-inhibiting activity was demonstrated to consist of two very closely related peptides by means of high-performance liquid chromatography and gel electrophoresis. By means of amino acid analyses, a molecular weight of approximately 8700 was obtained.
Collapse
|
26
|
Webster SG. Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterization of the putative molt-inhibiting hormone (MIH). Gen Comp Endocrinol 1986; 61:237-47. [PMID: 3956985 DOI: 10.1016/0016-6480(86)90201-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using simple culture techniques, the effects of neurosecretory tissue, sinus gland-conditioned media, and sinus gland extracts upon the biosynthesis of ecdysteroids by Carcinus maenas Y-organs in vitro were investigated. The sinus glands were found to be a major source of a factor which profoundly repressed ecdysteroid synthesis and which did not appear to be species-specific within other brachyurans examined (Liocarcinus, Cancer). It is suggested that the inhibitory factor is produced by the neurosecretory tissues of the medulla terminalis. It is argued that the inhibitory factor is the putative molt-inhibiting hormone (MIH). Partial characterization revealed that MIH is a heat-stable, trypsin-sensitive neuropeptide, eluting on a Sephadex G-50 gel in a range of approximately 6-14 kDa. By consideration of the dose-response characteristics, it is estimated that MIH may be active in the subpicomolar range.
Collapse
|
27
|
Purification, characterisation and amino acid composition of the putative moult-inhibiting hormone (MIH) ofCarcinus maenas (Crustacea, Decapoda). J Comp Physiol B 1986. [DOI: 10.1007/bf00692738] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|