Henderson DM. Lost, hidden, broken, cut-estimating and interpreting the shapes and masses of damaged assemblages of plesiosaur gastroliths.
PeerJ 2024;
12:e17925. [PMID:
39234235 PMCID:
PMC11373562 DOI:
10.7717/peerj.17925]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Background
Gastroliths are stones of uncertain purpose that are commonly found inside the rib cages of plesiosaur fossils worldwide. Gastroliths from four Alberta (Canada) plesiosaurs were studied to determine both their shapes and masses, and their mass fractions relative to body mass. One animal's set of gastroliths was 100% complete and fully visible, but the others showed varying degrees of loss, damage or obscuration, so estimations of their original states were needed.
Methods
The studied animals were: Albertonectes vanderveldei, Fluvionectes sloanae, Nichollssaura borealis and Wapuskanectes betsynichollsae. The animals come from three different palaeoenvironments: open marine, near shore marine, and fluvial. Gastrolith shapes were classified as either xiphoid, cylindrical, discoidal or spherical based on observed and/or estimated dimensions. Although not all methods could be applied in all cases, gastrolith shapes and masses were estimated four different ways: (1) direct measurement and weighing of a subset and predicting the properties of the remaining obscured and hidden stones; (2) measuring triaxial ellipsoid dimensions of free stones to calculate volumes and multiplying by the mass density of chert; (3) measuring two visible triaxial dimensions of embedded stones, estimating the hidden third dimension three different ways, and then determining volumes and masses by calculation; and (4) predicting the density and mass of a densely packed cluster of small gastroliths using geometrical arguments.
Results
Total gastrolith mass never exceeded 0.2% of body mass in any plesiosaur, and is consistent with the idea that the amounts of gastroliths recovered with plesiosaurs would be ineffective as ballast. The largest plesiosaur in the sample had the largest single gastrolith and total gastrolith mass increases with body size. The shape characteristics of the gastroliths were different for different environments, but compositionally they are dominated by black cherts. A possible common source for the gastroliths was identified for the two geographically close and near-contemporanous Nichollssaura and Wapuskanectes.
Collapse