1
|
Daack CW, Yeh D, Busch M, Kliethermes CL. GABAergic regulation of locomotion before and during an ethanol exposure in Drosophila melanogaster. Behav Brain Res 2021; 410:113369. [PMID: 34015397 DOI: 10.1016/j.bbr.2021.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Ethanol at low doses induces a locomotor stimulant response across a range of phylogenetically diverse species. In rodents, this response is commonly used as an index of ethanol's disinhibitory, anxiolytic, or reinforcing effects, and its expression is regulated by signaling through a number of conserved neurotransmitter systems. In the current experiments, we asked whether ethanol-induced locomotor stimulation in the fruit fly Drosophila melanogaster might be mediated by ionotropic GABA receptors. We measured basal and ethanol-stimulated locomotion in flies expressing RNAi directed against three known subunits of ionotropic GABA receptors, and also examined the effects of picrotoxin feeding on these behaviors. We found that RNAi-mediated knockdown of a subunit of fly ionotropic GABA receptors, RDL, in all neurons resulted in an increased ethanol-induced locomotor stimulant response, while knockdown of two other subunits, LCCH3 and GRD, did not affect the responses. The effect of pan neuronal RDL knockdown was recapitulated with selective RDL knockdown in cholinergic neurons, and increased ethanol-induced locomotor stimulation was also seen by feeding the GABAA antagonist picrotoxin to flies prior to behavioral testing. However, the increase in ethanol-stimulated locomotion in each of these experiments was largely accounted for by decreased baseline activity. Our results indicate that ionotropic GABA receptors might be a conserved mediator of the locomotor stimulant effects of ethanol, but that alternative experimental approaches will be necessary to disentangle effects of GABAergic manipulations on baseline and ethanol-stimulated locomotion in flies.
Collapse
Affiliation(s)
- Calvin W Daack
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Derek Yeh
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | - Marc Busch
- Drake University, 318 Olin Hall, 1344 27thStreet, Des Moines, IA, 50311, United States
| | | |
Collapse
|
2
|
Stürmer GD, de Freitas TC, Heberle MDA, de Assis DR, Vinadé L, Pereira AB, Franco JL, Dal Belo CA. Modulation of dopaminergic neurotransmission induced by sublethal doses of the organophosphate trichlorfon in cockroaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:56-62. [PMID: 25164203 DOI: 10.1016/j.ecoenv.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Organophosphate (OP) insecticides have been used indiscriminately, based on their high dissipation rates and low residual levels in the environment. Despite the toxicity of OPs to beneficial insects is principally devoted to the acetylcholinesterase (AChE) inhibition, the physiological mechanisms underlying this activity remain poorly understood. Here we showed the pharmacological pathways that might be involved in severe alterations in the insect locomotion and grooming behaviors following sublethal administration of the OP Trichlorfon (Tn) (0.25, 0.5 and 1 µM) in Phoetalia pallida. Tn inhibited the acetylcholinesterase activity (46±6, 38±3 and 24±6 nmol NADPH/min/mg protein, n=3, p<0.05), respectively. Tn (1 µM) also increased the walking maintenance of animals (46±5 s; n=27; p<0.05). Tn caused a high increase in the time spent for this behavior (344±18 s/30 min, 388±18 s/30 min and 228±12 s/30 min, n=29-30, p<0.05, respectively). The previous treatment of the animals with different cholinergic modulators showed that pirenzepine>atropine>oxotremorine>d-tubocurarine>tropicamide>methoctramine induced a decrease on Tn (0.5 µM)-induced grooming increase, respectively in order of potency. Metoclopramide (0.4 µM), a DA-D2 selective inhibitor decreased the Tn-induced grooming activity (158±12 s/30 min; n=29; p<0.05). Nevertheless, the effect of the selective DA-D1 receptor blocker SCH 23390 (1.85 µM) on the Tn (0.5 µM)-induced grooming increase was significative and more intense than that of metoclopramide (54±6 s/30 min; n=30; p<0.05). Taken together the results suggest that a cross-talking between cholinergic M1/M3 and dopaminergic D1 receptors at the insect nervous system may play a role in the OP-mediated behavioral alterations.
Collapse
Affiliation(s)
- Graziele Daiane Stürmer
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Thiago Carrazoni de Freitas
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Marines de Avila Heberle
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Dênis Reis de Assis
- Instituto do Cérebro do Rio Grande do Sul, Pontifícia Universidade, Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brasil
| | - Lúcia Vinadé
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Antônio Batista Pereira
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Jeferson Luis Franco
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil
| | - Cháriston André Dal Belo
- CIPBiotec, Universidade Federal do Pampa, (UNIPAMPA), Campus São Gabriel, Av. Antônio Trilha, 1847, Centro, CEP 97300-000, São Gabriel, Rio Grande do Sul, Brasil.
| |
Collapse
|
3
|
Varija Raghu S, Reiff DF, Borst A. Neurons with cholinergic phenotype in the visual system of Drosophila. J Comp Neurol 2011; 519:162-76. [PMID: 21120933 DOI: 10.1002/cne.22512] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The optic lobe of Drosophila houses about 60,000 neurons that are organized in parallel, retinotopically arranged columns. Based on the Golgi-staining method, Fischbach and Dittrich ([1989] Cell Tissue Res 258:441-475) determined that each column contains about 90 identified cells. Each of these cells is supposed to release one or two different neurotransmitters. However, for most cells the released neurotransmitter is not known. Here we characterize the vast majority of the neurons in the Drosophila optic lobe that release acetylcholine (Ach), the major excitatory neurotransmitter of the insect central nervous system. We employed a promoter specific for cholinergic neurons and restricted its activity to single or a few cells using the MARCM technique. This approach allowed us to establish an anatomical map of neurons with a cholinergic phenotype based on their branching pattern. We identified 43 different types of neurons with a cholinergic phenotype. Thirty-one of them match previously described members of nine different subgroups: Transmedullary (Tm), Transmedullary Y (TmY), Medulla intrinsic (Mi, Mt, and Pm), Bushy T (T), Translobula Plate (Tlp), and Lobula intrinsic (Lcn and Lt) neurons (Fischbach and Dittrich [1989]). Intriguingly, 12 newly identified cell types suggest that previous Golgi studies were not saturating and that the actual number of different neurons per column is higher than previously thought. This study and similar ones on other neurotransmitter systems will contribute towards a columnar wiring diagram and foster the functional dissection of the visual circuitry in Drosophila.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
4
|
Long TF, Murdock LL. Stimulation of blowfly feeding behavior by octopaminergic drugs. Proc Natl Acad Sci U S A 2010; 80:4159-63. [PMID: 16593335 PMCID: PMC394220 DOI: 10.1073/pnas.80.13.4159] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult blowflies (Phormia regina Meigen) injected with the octopaminergic drug demethylchlordimeform (10 mug per fly) exhibited enhanced proboscis extension responses when their tarsae were touched to water or aqueous sucrose. They drank more water than saline-injected control flies did but the quantity imbibed was within the normal fluid intake capacity. They became grossly hyperphagic when offered 1 M sucrose, doubling (and in some cases even tripling) their initial body weights. Three other drugs enhanced tarsal responsiveness and induced hyperphagia: DL-octopamine, clonidine (which is known to stimulate octopaminergic receptors in insects), and pargyline, a monoamine oxidase inhibitor. Yohimbine, an antagonist of one class of octopaminergic receptor in insects, prevented the hyperphagia induced by all four drugs. Dopamine, 5-hydroxytryptamine, and DL-norepinephrine failed to cause hyperphagia. These results suggest that octopaminergic receptors in the nervous system of the blowfly positively modulate feeding and drinking behavior.
Collapse
Affiliation(s)
- T F Long
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
5
|
Wadepuhl M. Control of Grasshopper Singing Behavior by the Brain: Responses to Electrical Stimulation1. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1439-0310.1983.tb00085.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS One 2008; 3:e2110. [PMID: 18464935 PMCID: PMC2373871 DOI: 10.1371/journal.pone.0002110] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/11/2008] [Indexed: 02/01/2023] Open
Abstract
Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to γ-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABAB type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABAB receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABAA receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in α-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.
Collapse
|
7
|
Lange AB, Chan K. Dopaminergic control of foregut contractions in Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:222-230. [PMID: 17953973 DOI: 10.1016/j.jinsphys.2007.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 05/25/2023]
Abstract
Tyrosine hydroxylase-like immunoreactivity is present in cell bodies and processes in the brain and optic lobes of Locusta migratoria, with processes projecting along the frontal connectives to form a neuropile within the frontal ganglion. Immunoreactive cell bodies and processes are also evident in the hypocerebral and ventricular ganglia with processes extending over the foregut. Tyrosine hydroxylase is the rate-limiting enzyme in dopamine biosynthesis, and high-performance liquid chromatography coupled to electrochemical detection was used to confirm the presence of dopamine in the innervation to the foregut. Spontaneous foregut contractions are under the control of the ventricular ganglia and are absent when these ganglia are removed. Dopamine leads to an inhibition of both the amplitude and frequency of phasic contractions of the foregut that are produced when the ventricular ganglia are left attached. Dopamine has direct effects on the foregut muscle in the absence of the ventricular ganglia, inhibiting a proctolin-induced contraction in a dose-dependent manner.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ont., Canada L5L 1C6.
| | | |
Collapse
|
8
|
Salvaterra PM, Kitamoto T. Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Gene Expr Patterns 2007; 1:73-82. [PMID: 15018821 DOI: 10.1016/s1567-133x(01)00011-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2001] [Indexed: 11/19/2022]
Abstract
Using 7.4 kb of 5' flanking DNA from the Drosophila cholinergic gene locus to drive Gal4 expression we can visualize essentially all cholinergic neurons and neuropiles after genetic recombination with a UAS-GFP (S65T) reporter gene. In contrast to previous methods somata and neuropiles can be observed in the same samples. Fluorescence intensity is strong enough to allow observations in live animals at all developmental stages. Three-dimensional reconstructions made from confocal sections of whole-mount preparations reveal the extensive cholinergic connections among various regions of the nervous system.
Collapse
Affiliation(s)
- P M Salvaterra
- Division of Neuroscience, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | | |
Collapse
|
9
|
Pitman RM, Davis JPL. Pharmacological differentiation of responses to dopamine, octopamine and noradrenaline recorded from a cockroach motoneurone. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780240404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Iwano M, Kanzaki R. Immunocytochemical identification of neuroactive substances in the antennal lobe of the male silkworm moth Bombyx mori. Zoolog Sci 2005; 22:199-211. [PMID: 15738640 DOI: 10.2108/zsj.22.199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a first step towards understanding the functional role of neuroactive substances in the first olfactory center of the male silkworm moth Bombyx mori, we carried out an immunocytochemical identification of antennal lobe neurons. Antibodies against gamma-aminobutyric acid (GABA), FMRFamide, serotonin, tyramine and histamine were applied to detect their existence in the antennal lobe. In the present immunocytochemical study, we clarified four antenno-cerebral tracts from their origin and projection pathways to the protocerebrum, and revealed the following immunoreactive cellular organization in the antennal lobe. 1) Local interneurons with cell bodies in the lateral cell cluster showed GABA, FMRFamide and tyramine immunoreactivity. 2) Projection neurons passing through the middle antenno-cerebral tract with cell bodies in the lateral cell cluster showed GABA and FMRFamide immunoreactivity. Projection neurons passing through the outer antenno-cerebral tract with cell bodies in the lateral cell cluster showed FMRFamide immunoreactivity. 3) Centrifugal neurons passing through the inner antenno-cerebral tract b with cell bodies located outside the antennal lobe showed serotonin and tyramine immunoreactivity. Our results revealed basic distribution patterns of neuroactive substances in the antennal lobe and indicated that each projection pathway from the antennal lobe to the protocerebrum contains specific combination of neuroactive substances.
Collapse
Affiliation(s)
- Masaaki Iwano
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
11
|
Stevenson PA, Pflüger HJ, Eckert M, Rapus J. Octopamine immunoreactive cell populations in the locust thoracic-abdominal nervous system. J Comp Neurol 2004; 315:382-97. [PMID: 1373157 DOI: 10.1002/cne.903150403] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe octopamine-immunoreactive somata and their projections in the pro- meso-, meta- and pregenital abdominal-ganglia of locusts. Immunoreactive midline somata were identified as dorsal- and ventral- unpaired median (DUM- and VUM-, respectively) neurones due to their: characteristic large size and positions of somata, primary neurites in DUM-tracts giving rise to T-junctions, and bilaterally projecting axons. In the prothoracic ganglion there are most likely 8 such cells; in the meso- and metathoracic, some 20 each; and in each individual pregenital abdominal ganglion, typically 3. All appear to project to peripheral nerves and their numbers correspond to the number of peripherally projecting DUM-cells identified to date in each ganglion. We suggest that probably all peripherally projecting DUM-cells are octopaminergic in the examined ganglia. Presumptive DUM-interneurones are not octopamine-immunoreactive, but, confirming other studies, are shown to label with an antiserum to gamma-amino butyric acid (GABA). Other octopamine-immunoreactive neurones include a pair of midline, prothoracic, anterior medial cells, not necessarily DUM-cells, and a pair of ventral lateral somata in each thoracic- and the first abdominal ganglion. The latter project intersegmentally in ventral tracts. Intersegmentally projecting octopamine-immunoreactive fibers in dorsal tracts probably arise from a prothoracic DUM-cell, which leaves through suboesophageal nerves, or descending suboesophageal DUM-cells. Thus, the octopamine-immunoreactive system of thoracic and pregenital abdominal ganglia in locust comprises all peripherally projecting DUM-cells and a plurisegmental network.
Collapse
Affiliation(s)
- P A Stevenson
- Freie Universität Berlin, Institut für Neurobiologie, Federal Republic of Germany
| | | | | | | |
Collapse
|
12
|
Abstract
As part of continuous research on the neurobiology of the locust, the distribution and functions of neurotransmitter candidates in the nervous system have been analyzed particularly well. In the locust brain, acetylcholine, glutamate, gamma-aminobutyric acid (GABA), and the biogenic amines serotonin, dopamine, octopamine, and histamine most likely serve a transmitter function. Increasing evidence, furthermore, supports a signalling function for the gaseous molecule nitric oxide, but a role for neuroptides is so far suggested only by immunocytochemistry. Acetylcholine, glutamate, and GABA appear to be present in large numbers of interneurons. As in other insects, antennal sensory afferents might be cholinergic, while glutamate is the transmitter candidate of antennal motoneurons. GABA is regarded as the principle inhibitory transmitter of the brain, which is supported by physiological studies in the antennal lobe. The cellular distribution of biogenic amines has been analyzed particularly well, in some cases down to physiologically characterized neurons. Amines are present in small numbers of interneurons, often with large branching patterns, suggesting neuromodulatory roles. Histamine, furthermore, is the transmitter of photoreceptor neurons. In addition to these "classical transmitter substances," more than 60 neuropeptides were identified in the locust. Many antisera against locust neuropeptides label characteristic patterns of neurosecretory neurons and interneurons, suggesting that these peptides have neuroactive functions in addition to hormonal roles. Physiological studies supporting a neuroactive role, however, are still lacking. Nitric oxide, the latest addition to the list of neurotransmitter candidates, appears to be involved in early stages of sensory processing in the visual and olfactory systems.
Collapse
Affiliation(s)
- Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, Universität Marburg, D-35032 Marburg, Germany.
| |
Collapse
|
13
|
Hansson BS, Anton S. Function and morphology of the antennal lobe: new developments. ANNUAL REVIEW OF ENTOMOLOGY 2000; 45:203-31. [PMID: 10761576 DOI: 10.1146/annurev.ento.45.1.203] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The antennal lobe of insects has emerged as an excellent model for olfactory processing in the CNS. In the present review we compile data from areas where substantial progress has been made during recent years: structure-function relationships within the glomerular array, integration and blend specificity, time coding and the effects of neuroactive substances and hormones on antennal lobe processing.
Collapse
Affiliation(s)
- B S Hansson
- Department of Ecology, Lund University, Sweden.
| | | |
Collapse
|
14
|
Abstract
This review summarizes the distribution of octopamine-like immunoreactive neurons in the brain of the locust and the functional significance of a subset of them in an arousal mechanism in the visual system. A small set of identifiable octopamine-immunoreactive neurons lies in the ventromedial brain. Their cell bodies are large and readily accessible, which allows their removal and analysis of their biogenic amine content using gas-chromatography mass-spectrometry to confirm that they are genuinely octopaminergic. The neurons project from the central brain to the optic lobes where they arborize extensively in the medulla and lobula. There they release octopamine in response to multimodal input in the central brain. This evokes dishabitution in the locust's movement-detection system, suggesting an arousal mechanism.
Collapse
Affiliation(s)
- M Stern
- Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Germany.
| |
Collapse
|
15
|
Bourguet D, Raymond M, Berrada S, Fournier D. Interaction between acetylcholinesterase and choline acetyltransferase: an hypothesis to explain unusual toxicological responses. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-9063(199711)51:3<276::aid-ps268>3.0.co;2-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kokay IC, Ebert PR, Kirchhof BS, Mercer AR. Distribution of dopamine receptors and dopamine receptor homologs in the brain of the honey bee, Apis mellifera L. Microsc Res Tech 1999; 44:179-89. [PMID: 10084824 DOI: 10.1002/(sici)1097-0029(19990115/01)44:2/3<179::aid-jemt9>3.0.co;2-k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the brain of the honey bee, Apis mellifera, the radioligands [3H]-SCH23390 and [3H]-spiperone recognise D1- and D2-like receptors, respectively. In addition to being pharmacologically distinct and exhibiting significantly different expression profiles during the lifetime of the bee, [3H]-SCH23390- and [3H]-spiperone-binding sites differ markedly in their distribution within the brain. Estimates of [3H]-SCH23390-binding site density are highest in the somatal rind, whereas [3H]-spiperone-binding sites are most concentrated in the beta lobe neuropil of the mushroom bodies. Molecular cloning techniques have been used to identify two honey bee genes encoding dopamine receptor homologs. The first is the honey bee counterpart of a Drosophila D1-like dopamine receptor and is expressed in the mushroom bodies of both workers and drones. The second is related to D2-like dopamine receptors from vertebrates and is expressed in the brain of the bee, but the precise distribution of expression is not yet known.
Collapse
Affiliation(s)
- I C Kokay
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
17
|
Abstract
This review provides a summary of the cellular distribution of amine-containing neurons and the organization of aminergic pathways in the brain and suboesophageal ganglion of the honeybee. Neurons synthesizing the biogenic amines serotonin, dopamine, octopamine, and histamine are stained with well-defined polyclonal antisera. Since some of these aminergic neurons are uniquely identifiable, it is possible to follow their morphogenesis during brain development. Pharmacological studies show that aminergic mechanisms are involved in various behavioral modifications including associative learning. The immunocytochemical approach resolves at a single cell level the neural pathways that mediate adaptive behavioral changes.
Collapse
Affiliation(s)
- G Bicker
- Institut für Tierökologie und Zellbiologie, Tierärzliche Hochschule Hannover, Germany.
| |
Collapse
|
18
|
Abstract
A cDNA clone is described that encodes a novel G-protein-coupled dopamine receptor (DopR99B) expressed in Drosophila heads. The DopR99B receptor maps to 99B3-5, close to the position of the octopamine/tyramine receptor gene at 99A10-B1, suggesting that the two may be related through a gene duplication. Agonist stimulation of DopR99B receptors expressed in Xenopus oocytes increased intracellular Ca2+ levels monitored as changes in an endogenous inward Ca2+-dependent chloride current. In addition to initiating this intracellular Ca2+ signal, stimulation of DopR99B increased cAMP levels. The rank order of potency of agonists in stimulating the chloride current is: dopamine > norepinephrine > epinephrine > tyramine. Octopamine and 5-hydroxytryptamine are not active (< 100 microM). This pharmacological profile plus the second-messenger coupling pattern suggest that the DopR99B receptor is a D1-like dopamine receptor. However, the hydrophobic core region of the DopR99B receptor shows almost equal amino acid sequence identity (40-48%) with vertebrate serotonergic, alpha 1- and beta-adrenergic, and D1-like and D2-like dopaminergic receptors. Thus, this Drosophila receptor defines a novel structural class of dopamine receptors. Because DopR99B is the second dopamine receptor cloned from Drosophila, this work establishes dopamine receptor diversity in a system amenable to genetic dissection.
Collapse
|
19
|
Abstract
In vitro binding experiments using the vertebrate D1 dopamine receptor ligand [3H]SCH23390 and the vertebrate D2 dopamine receptor ligand [3H]spiperone were conducted on membrane preparations of honey bee (Apis mellifera) brain. Specific binding of [3H]SCH23390 was saturable and reversible. Analysis of saturation data gave an apparent Kd of 6.3 +/- 1.0 nM and Bmax of 1.9 +/- 0.2 pmol/mg protein for a single class of binding sites. The specificity of high affinity [3H]SCH23390 binding was confirmed in displacement experiments using a range of dopaminergic antagonists and agonists. The rank order of potency for antagonists was: R(+)-SCH23390 > cis-(Z)-flupentixol > or = chlorpromazine > fluphenazine > S(+)-butaclamol > spiperone. R(+/-)-SKF38393 and dopamine were the most effective agonists tested. [3H]SCH23390 labels a site in bee brain that is similar, but not identical to the vertebrate D1 dopamine receptor subtype. [3H]Spiperone also bound with high affinity to bee brain homogenates. Scatchard analysis of [3H]spiperone saturation data revealed a curvilinear plot suggesting binding site heterogeneity. The high affinity site had a apparent Kd of 0.11 +/- 0.02 nM and Bmax of 9.2 +/- 0.5 fmol/mg protein. The calculated values for the low affinity site were a Kd of 19.9 nM and Bmax of 862 fmol/mg protein. Kinetic analyses also indicated that [3H]spiperone recognises a heterogeneous population of sites in bee brain. Furthermore, agonist competition studies revealed a phenolaminergic as well as a dopaminergic component to [3H]spiperone binding in bee brain. The rank order of potency of dopaminergic antagonists in competing for [3H]spiperone binding was: spiperone > fluphenazine > S(+)-butaclamol > domperidone > R(+)-SCH23390 > S(-)-sulpiride.
Collapse
Affiliation(s)
- I C Kokay
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
20
|
Abstract
The roles of acetylcholine, dopamine, octopamine, tyramine, 5-hydroxytryptamine, histamine, glutamate, 4-aminobutanoic acid (gamma-aminobutyric acid) and a range of peptides as insect neurotransmitters are evaluated in terms of the criteria used to identify transmitters. Of the biogenic amines considered, there is good evidence that acetylcholine, dopamine, octopamine, 5-hydroxytryptamine, and histamine should be considered to be neurotransmitters, but the case for tyramine is less convincing at the moment. The evidence supporting neurotransmitter roles for glutamate and gamma-aminobutyric acid at specific insect synapses is overwhelming, but much work remains to be undertaken before the full significance of these molecules in the insect nervous system is appreciated. Attempts to characterise biogenic amine and amino acid receptors using pharmacological and molecular biological techniques have revealed considerable differences between mammalian and insect receptors. The number of insect neuropeptides isolated and identified has increased spectacularly in recent years, but genuine physiological or biochemical functions can be assigned to very few of these molecules. Of these, only proctolin fulfills the criteria expected of a neurotransmitter, and the recent discovery of proctolin receptor antagonists should enable the biology of this pentapeptide to be explored fully.
Collapse
Affiliation(s)
- R H Osborne
- Department of Biology, University of the West of England, Bristol, UK
| |
Collapse
|
21
|
Yasuyama K, Kitamoto T, Salvaterra PM. Localization of choline acetyltransferase-expressing neurons in the larval visual system of Drosophila melanogaster. Cell Tissue Res 1995; 282:193-202. [PMID: 8565051 DOI: 10.1007/bf00319111] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5' flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.
Collapse
Affiliation(s)
- K Yasuyama
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
22
|
Granholm AC, Price ML, Owen MD. Tyrosine hydroxylase in the cerebral ganglia of the American cockroach (Periplaneta americana L.): an immunohistochemical study. Cell Tissue Res 1995; 282:49-57. [PMID: 8581926 DOI: 10.1007/bf00319132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the non-glomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado HSC, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
23
|
The distribution of neurones immunoreactive for ?-tyrosine hydroxylase, dopamine and serotonin in the ventral nerve cord of the cricket, Gryllus bimaculatus. Cell Tissue Res 1995. [DOI: 10.1007/bf00318362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Raeber AJ, Muramoto T, Kornberg TB, Prusiner SB. Expression and targeting of Syrian hamster prion protein induced by heat shock in transgenic Drosophila melanogaster. Mech Dev 1995; 51:317-27. [PMID: 7547477 DOI: 10.1016/0925-4773(95)00379-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To evaluate the fruit fly as a model for studying neurodegenerative diseases caused by prions, transgenic flies were generated by introducing the Syrian hamster prion protein (SHaPrP) gene into the Drosophila melanogaster germ line by P element-mediated transformation. Nine transgenic lines were isolated; induction of transgenes that had been placed under the control of the Drosophila heat shock promoter, hsp 70, resulted in the synthesis of full-length SHaPrP. The relative molecular weight of the recombinant protein was lower than that of authentic SHaPrP due to incomplete processing of Asn-linked CHOs. To determine the cellular localization of SHaPrP, Drosophila Schneider line 2 cells were transfected with the same constructs used for fly transformation. Heat shock induced SHaPrP was anchored to the surface of S2 cells by a glycolipid, demonstrating that the carboxy-terminal glycolipidation signal of SHaPrP is recognized by this evolutionarily distant host. When SHaPrP was synthesized in transgenic flies constitutively by subjecting them to heat pulses continuously, no difference in their lifespans compared with controls was detected. Furthermore, expression of SHaPrP for 20 days did not produce protease resistant SHaPrP, which is the major and possibly only component of the infectious prion. In contrast to transgenic mice overexpressing SHaPrP, which develop a profound neuromyopathy, no disease phenotype was associated with expression of SHaPrP over the entire lifespan of transgenic flies.
Collapse
Affiliation(s)
- A J Raeber
- Department of Neurology, University of California, San Francisco 94143-0518, USA
| | | | | | | |
Collapse
|
25
|
Ammermüller J, Oltrogge M, Janssen-Bienhold U. Neurotensin-like immunoreactivity in locust supraesophageal ganglion and optic lobes. Brain Res 1994; 636:40-8. [PMID: 8156409 DOI: 10.1016/0006-8993(94)90173-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A substance immunoreactive to antibodies directed against bovine neurotensin (NT) was localized in neurons in the supraesophageal ganglion (SEG) and optic lobes of larval and adult Locusta migratoria L. Two large somata were located in the caudal cortex, ventral to the calyces and symmetrical to the median of the SEG. Four smaller somata also in the caudal cortex were located as two symmetrical pairs at the level of the central body. These somata formed a diffuse network of varicose fibers from the superior lateral to the ventro-lateral protocerebrum between the pedunculi and frontal cortical region. Some fibers crossed the median to the contralateral sides of the SEG. Another pair of immunoreactive somata whose terminating processes remained unclear was found at the level of the antennal lobes. Intrinsic networks of fibers were labeled in the accessory medulla and in layer 4/5 of the medulla. These fibers originated from 8-10 small somata near the dorso-frontal rim of the medulla. All larval stages contained these NT-like immunoreactive structures. Results from isoelectric focusing and press-blot analysis of SEG homogenates, synthetic neurotensin and neurotensin fragments indicate that this substance is similar to bovine neurotensin(1-13).
Collapse
Affiliation(s)
- J Ammermüller
- Department of Biology, University of Oldenburg, Germany
| | | | | |
Collapse
|
26
|
|
27
|
Sun XJ, Tolbert LP, Hildebrand JG. Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study. J Comp Neurol 1993; 338:5-16. [PMID: 8300899 DOI: 10.1002/cne.903380103] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The two antennal lobes, the primary olfactory centers of the brain, of the moth Manduca sexta each contain one neuron that displays serotonin immunoreactivity. The neuron projects out of the antennal lobe and sends branches into ipsi- and contralateral protocerebral areas. An axon-like process extends from the contralateral protocerebrum to, and terminates in, the contralateral antennal lobe. In order to begin to investigate the possible role of this unique neuron in olfactory information processing, we have used laser scanning confocal microscopic and electron microscopic immunocytochemical techniques to study the ramification pattern, ultrastructural characteristics, and synaptic connections of the neuron in the antennal lobes of female adult Manduca sexta. The neuron ramifies extensively in the antennal lobe contralateral to the cell body. The ramifications, mainly in the base and center of each glomerulus, do not overlap with those of the sensory axons from the antenna. This finding suggests that the serotonin-immunoreactive neuron may not receive direct input from sensory neurons, and that it may modulate the activity of the neurons of the antennal lobe rather than that of the sensory neurons. In the electron microscope, the neuron exhibits large dense-cored vesicles and small, clear round vesicles. In the antennal lobe ipsilateral to the cell body, the primary neurite of the serotonin-immunoreactive neuron is unbranched and lacks detectable synaptic connections. The ramifications in the contralateral antennal lobe, however, participate in synaptic connections. At very low frequency, contralateral branches form synapses onto unlabeled processes and also receive synapses from unidentified neurons in the glomeruli, indicating that the neuron may participate directly in synaptic processing of olfactory information. The high ratio of output to input synapses made by the serotonin-immunoreactive processes in the contralateral antennal lobe is consistent with the idea that this neuron may receive synaptic input via its bilateral branches in the protocerebrum and then send information to the contralateral antennal lobe where the neuron may exert feedback or modulatory influences on olfactory information processing in the glomeruli.
Collapse
Affiliation(s)
- X J Sun
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
28
|
Nässel DR. Insect myotropic peptides: differential distribution of locustatachykinin- and leucokinin-like immunoreactive neurons in the locust brain. Cell Tissue Res 1993; 274:27-40. [PMID: 8242709 DOI: 10.1007/bf00327982] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Locustatachykinin I is one of four closely related myotropic neuropeptides isolated from brain and corpora-cardiaca complexes of the locust Locusta migratoria. Antiserum was raised against locustatachykinin I for use in immunocytochemistry. It was found that the antiserum recognizes also locustatachykinin II and hence probably also the other two locustatachykinins due to their similarities in primary structure. Locustatachykinin-like immunoreactive (LomTK-LI) neurons were mapped in the brain of the locust, L. migratoria. A total of approximately 800 LomTK-LI neurons were found with cell bodies distributed in the proto-, deuto- and tritocerebrum, in the optic lobes and in the frontal ganglion. Processes of these neurons innervate most of the synaptic neuropils of the brain and optic lobes, as well as the frontal ganglion and hypocerebral ganglion. The widespread distribution of LomTK-LI neurons in the locust brain indicates an important role of the locustatachykinins in signal transfer or regulation thereof. As a comparison neurons were mapped with an antiserum against the cockroach myotropic peptide leucokinin I. This antiserum, which probably recognizes the native peptide locustakinin, labels a population of about 140 neurons distinct from the LomTK-LI neurons (no colocalized immunoreactivity). These neurons have cell bodies that are distributed in the proto- and tritocerebrum and in the optic lobe. The processes of the leucokinin-like immunoreactive (LK-LI) neurons do not invade as large areas in neuropil as the LomTK-LI neurons do and some neuropils, e.g. the mushroom bodies, totally lack innervation by LK-LI fibers. In some regions, however, the processes of the LomTK-LI and LK-LI neurons are superimposed: most notably in the central body and optic lobes. A functional relation between the two types of neuropeptide in the locust brain can, however, not be inferred from the present findings.
Collapse
Affiliation(s)
- D R Nässel
- Department of Zoology, Stockholm University, Sweden
| |
Collapse
|
29
|
Schuster R, Phannavong B, Schröder C, Gundelfinger ED. Immunohistochemical localization of a ligand-binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster. J Comp Neurol 1993; 335:149-62. [PMID: 8227511 DOI: 10.1002/cne.903350202] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of two subunits of nicotinic acetylcholine receptors in the developing and the differentiated central nervous system of Drosophila melanogaster was studied. With subunit-specific antibodies raised against the ligand-binding alpha-like subunit ALS and the putative non-ligand-binding subunit ARD, we find both ALS-like and ARD-like immunoreactivity widely distributed in most neuropiles of the optic lobes, the protocerebrum, the deutocerebrum and the thoracic ganglion of the adult fly. With a single exception, namely in the lamina of the visual system, the antigens recognized by the two types of antibodies are colocalized. This observation is consistent with previous immunoprecipitation data indicating that the ALS and ARD proteins are integral components of the same hetero-oligomeric receptor that binds the nicotinic antagonist alpha-bungarotoxin with high affinity. During embryonic development ARD-like immunoreactivity is first detectable in approximately 10 hour old embryos. Both subunits are consistently detected in the central nervous system of the late embryo, the three larval stages, and all prepupal and pupal stages. During metamorphosis the optic stalk is transiently immunoreactive with anti-ARD, but not with anti-ALS antiserum. Although in larvae and adults, immunoreactivity with both types of antibodies is most abundant in synaptic regions, in embryos and pupae strong staining of cortical cell body layers is observed, in particular with anti-ARD antisera. As these developmental periods coincide with strong accumulation of ARD transcripts, the cell body staining may reflect newly synthesized and assembled receptors, while the functional ARD- and ALS-containing receptor may be destined for synapses.
Collapse
Affiliation(s)
- R Schuster
- ZMNH, Center for Molecular Neurobiology, University of Hamburg, Germany
| | | | | | | |
Collapse
|
30
|
Boyan G, Williams L, Meier T. Organization of the commissural fibers in the adult brain of the locust. J Comp Neurol 1993; 332:358-77. [PMID: 7687257 DOI: 10.1002/cne.903320308] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The brain (supraoesophageal ganglion) is the most complex of the segmental ganglia composing the nerve cord of the locusts Schistocerca gregaria and Locusta migratoria. In this paper, we describe the ground plan of the commissures crossing the midline of the brain and propose a nomenclature with the aim of making a complex neuropil more understandable at the level of individual neurons. For developmental and comparative reasons the neuroarchitecture of the brain is related to the neural axis, not to the body axis. We have identified 73 commissural fiber bundles belonging to the adult brain, and these are named according to their location (ventral, dorsal, anterior, posterior, medial) with respect to the central complex as reference point. Reconstructions of identified neurons from intracellular stainings, cobalt backfills, or immunohistochemical studies demonstrate the various configurations in which fibers cross the brain.
Collapse
Affiliation(s)
- G Boyan
- Zoologisches Institut, Universität Basel, Switzerland
| | | | | |
Collapse
|
31
|
Watson AHD. The distribution of dopamine-like immunoreactivity in the thoracic and abdominal ganglia of the locust (Schistocerca gregaria). Cell Tissue Res 1992. [DOI: 10.1007/bf00381886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Jagota A, Habibulla M. Neuronal maps of the frontal ganglion of the cockroach, Periplaneta americana, prepared by heavy metal iontophoresis. J Morphol 1992; 213:287-94. [PMID: 1383554 DOI: 10.1002/jmor.1052130302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons in whole mount preparations of the frontal ganglion (FG) of the cockroach, Periplaneta americana, were mapped with the aid of cobalt chloride staining and silver intensification techniques. Eighty-six neurons were counted in the FG after staining with reduced methylene blue. The cell size ranged between 20 to 35 microns in diameter. Of the somata located in the FG, 44 were found to contribute their fibers to the nervus recurrens, 26 to the right frontal commissure, 28 to the left frontal commissure, and 6 to the nervus connectivus. In addition, a few neurons presumably from the tritocerebral region also contribute their fibers in the formation of nervus connectivus. The present study has helped delineate the neuronal connections of the FG with the brain and neuroendocrine system (corpora cardiaca and corpora allata). This information will be useful in facilitating the positioning of microelectrodes in our future electrophysiological experiments.
Collapse
Affiliation(s)
- A Jagota
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
33
|
Wendt B, Homberg U. Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 1992; 321:387-403. [PMID: 1506476 DOI: 10.1002/cne.903210307] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Catecholamine-induced histofluorescence studies have suggested a rich innervation of the locust brain by dopamine-containing neurons. To provide a basis for future studies on dopamine action in this insect, the location and morphology of neurons reacting with antisera against dopamine were investigated in the supraoesophageal ganglion of the locust, Schistocerca gregaria. In each brain hemisphere, about 100 interneurons in the midbrain and approximately 3,000 cells in the optic lobe show dopamine-like immunoreactivity. All major areas of the brain except the calyces of the mushroom body, the antennal lobe, large parts of the lobula, and some areas in the inferior lateral protocerebrum contain immunoreactive neuronal processes. The arborization patterns of most dopamine-immunoreactive cell types could be identified through detailed reconstructions. The central body exhibits the most intense immunostaining. It is innervated by at least 40 pairs of dopamine-immunoreactive neurons belonging to three different cell types. Additional arborizations of these neurons are in the superior protocerebrum and in the lateral accessory lobes. A group of 4 immunoreactive neurons with ramifications in the antennal mechanosensory and motor center gives rise to a dense meshwork of varicose fibers in the pedunculus and parts of the alpha- and beta-lobes of the mushroom body. Other cell types innervate the ventrolateral protocerebrum, the inferior protocerebrum and the posterior optic tubercles. Three descending neurons originating in the tritocerebrum exhibit dopamine-like immunoreactivity. In the optic lobe, about 3,000 columnar intrinsic neurons of the medulla and a group of centrifugal tangential cells with arborizations in the medulla and lamina are dopamine-immunoreactive.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Wendt
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | |
Collapse
|
34
|
Nässel DR, Elekes K. Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 1992; 267:147-67. [PMID: 1346506 DOI: 10.1007/bf00318701] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there was, however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.
Collapse
Affiliation(s)
- D R Nässel
- Department of Zoology, Stockholm University, Sweden
| | | |
Collapse
|
35
|
Sch�rmann FW, Sandeman R, Sandeman D. Dense-core vesicles and non-synaptic exocytosis in the central body of the crayfish brain. Cell Tissue Res 1991. [DOI: 10.1007/bf00340872] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
5-Hydroxytryptamine metabolism in nervous tissue of two acridids, Oedipoda caerulescens and Paracinema tricolor: A comparative study. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90109-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Nyhof-Young J, Orchard I. Tyrosine hydroxylase-like immunoreactivity in the brain of fifth instar Rhodnius prolixus Stål (Hemiptera: Reduviidae). J Comp Neurol 1990; 302:322-9. [PMID: 1981216 DOI: 10.1002/cne.903020210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The distribution of tyrosine hydroxylase-like immunoreactivity was mapped in whole-mount preparations of the brain of fifth instar Rhodnius prolixus Stål. Immunoreactivity was limited to neuronal cell bodies and processes, which were distributed over both ventral and dorsal surfaces of the CNS. The brain, excluding the optic lobes, contained about 160 tyrosine hydroxylase-like immunoreactive cells. Each optic lobe contained two groups of small round cell bodies, which were too numerous to count. The wide distribution of immunoreactivity suggests that tyrosine hydroxylase is present in neurons with diverse central functions. Tyrosine hydroxylase is the rate-limiting enzyme in catecholamine synthesis in vertebrates. A comparison of a map of the distribution of catecholamine-induced fluorescence obtained using the glyoxylic-acid technique (Flanagan; J. Insect Physiol. 30(9):697-704, 1984) with that generated for tyrosine hydroxylase reveals considerable overlap between the two systems, suggesting that tyrosine hydroxylase is used in the catecholamine pathway in this insect. The mapping of these reactive neurons is an important step for identification of unique tyrosine hydroxylase-containing neurons, and is our initial step in the analysis of identified catecholamine-containing neurons in R. prolixus.
Collapse
Affiliation(s)
- J Nyhof-Young
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
38
|
Salecker I, Distler P. Serotonin-immunoreactive neurons in the antennal lobes of the American cockroach Periplaneta americana: light- and electron-microscopic observations. HISTOCHEMISTRY 1990; 94:463-73. [PMID: 2283309 DOI: 10.1007/bf00272608] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.
Collapse
Affiliation(s)
- I Salecker
- Institut für Zoologie, Universität Regensburg, Federal Republic of Germany
| | | |
Collapse
|
39
|
Distler P. GABA-immunohistochemistry as a label for identifying types of local interneurons and their synaptic contacts in the antennal lobes of the American cockroach. HISTOCHEMISTRY 1990; 93:617-26. [PMID: 2329059 DOI: 10.1007/bf00272204] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synaptic contacts between GABA-immunoreactive neurons, antennal receptor fibers and non-GABA-immunoreactive neurons in the glomerular neuropil of the antennal lobes have been identified by means of a combination of (i) immunohistochemical labeling and (ii) labeling of afferent fibers of the antenna by experimentally induced degeneration. Characteristic contacts of these neurons are: a) Serially arranged polysynaptic contacts between degenerated antennal fibers, GABA-immunoreactive neurons and non-GABA-immunoreactive neurons. b) Monosynaptic contacts between degenerated antennal fibers and non-GABA-immunoreactive neurons. c) Reciprocal synaptic contacts between immunostained and non-stained neurons and synaptic contacts between individual GABA-immunoreactive neurons. d) Synaptic output contacts of GABA-immunoreactive neurons with degenerated antennal fibers. GABA-immunoreactive neuron profiles in the glomeruli are assigned to multiglomerular local interneurons (Distler 1989a); non-immunolabeled profiles may be assigned to projection neurons and other not yet identified interneurons.
Collapse
Affiliation(s)
- P Distler
- Institut für Zoologie, Universität Regensburg, Federal Republic of Germany
| |
Collapse
|
40
|
Distler P. Synaptic connections of dopamine-immunoreactive neurons in the antennal lobes of Periplaneta americana. Colocalization with GABA-like immunoreactivity. HISTOCHEMISTRY 1990; 93:401-8. [PMID: 2323954 DOI: 10.1007/bf00315858] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dopamine-like immunoreactivity was demonstrated histochemically in about ten local interneurons in the antennal lobe of Periplaneta americana. The somata of these neurons are within the ventrolateral group of cell bodies. Additional immunohistochemical tests revealed that the same neurons also have a GABA-like immunoreactivity. Immunohistochemical dopamine staining (preembedding) of preparations in which the antennal receptor fibers had been caused to degenerate showed that in the glomerular neuropil these antennal fibers form output synapses on dopamine-immunoreactive neurons. The latter form output synapses on unstained neuron profiles.
Collapse
Affiliation(s)
- P Distler
- Institut für Zoologie, Universität Regensburg, Federal Republic of Germany
| |
Collapse
|
41
|
Punzo F. The hemolymph composition and neurochemistry of the spider wasp, Pepsis formosa (say) (hymenoptera, pompilidae). ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0300-9629(90)90702-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Huff R, Furst A, Mahowald AP. Drosophila embryonic neuroblasts in culture: autonomous differentiation of specific neurotransmitters. Dev Biol 1989; 134:146-57. [PMID: 2471659 DOI: 10.1016/0012-1606(89)90085-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isolated neuroblasts from gastrula-stage Drosophila embryos divide and differentiate in vitro to produce clonally derived clusters of neurons. Both serotonin and dopamine are expressed within these cultures in patterns that are similar to their distributions in vivo. Clusters containing serotonergic neurons are generally distinct from those with dopaminergic neurons, suggesting that different neuroblasts produce neurons with these phenotypes. The appearance of each transmitter correlates with transcription of dopa decarboxylase in the transmitter-positive cells. The developmental program leading to the appearance of either serotonergic or dopaminergic neurons is different for each transmitter type. Thus, serotonergic cells are progeny of early neuroblast divisions, whereas dopaminergics arise throughout the lineage. Inhibition of cell division, but not nuclear division, with cytochalasin B demonstrates that the expression of the serotonin phenotype requires a determined number of DNA replications. These experiments establish that neuroblasts, as soon as they are formed during early gastrulation events in Drosophila, are already determined for the subsequent expression of transmitter phenotype.
Collapse
Affiliation(s)
- R Huff
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
43
|
Barber RP, Sugihara H, Lee M, Vaughn JE, Salvaterra PM. Localization of Drosophila neurons that contain choline acetyltransferase messenger RNA: an in situ hybridization study. J Comp Neurol 1989; 280:533-43. [PMID: 2496152 DOI: 10.1002/cne.902800404] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In situ hybridization with radiolabeled complementary RNA (cRNA) probes was used to determine the location of the messenger RNA (mRNA) encoding choline acetyltransferase (ChAT) in Drosophila nervous system. Areas in the cell-rich cortical regions of the cerebrum and optic lobes hybridized with substantial concentrations of the probe. This contrasted with the cell-sparse neuropil areas where no significant concentrations of probe were observed. Although most of the cortical regions were substantially labeled, there were regions within all of the areas where labeling was sparse or nonexistent. For example in the lamina, even though the monopolar cell layer appeared to be heavily labeled, there were some neuronal profiles that were not associated with the probe. Moreover, the epithelial glia that form an arch of cell profiles subjacent to the monopolar cells were not labeled, nor were amacrine neurons in the apex of the lamina near the external optic chiasma. The highest concentration of probe (approximately 140 grains/400 microns2) was observed in the laminar monopolar cell region and the cerebral cortical rind. The next most heavily labeled region (approximately 90 grains/400 microns2) occurred over cortical cells of the medulla-lobula. In the peripheral nervous system, label over the antennal sensory neurons amounted to about 75 grains/400 microns2, and the retinular cell layer of the compound eye exhibited about 60 grains/400 microns2. The control probe did not hybridize in significant quantities in either cellular or noncellular regions. This study presents evidence that large numbers of Drosophila cortical and primary sensory neurons contain the messenger RNA necessary for the production of ChAT, the acetylcholine-synthesizing enzyme. Further, our findings provide baseline information for use in ontogenetic studies of cholinergic neurons in Drosophila, and they also provide normative data for studying the effects of mutant alleles at the Cha or Ace loci upon the transcription of ChAT messenger RNA.
Collapse
Affiliation(s)
- R P Barber
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | | | | | |
Collapse
|
44
|
Ikeda K, Salvaterra PM. Immunocytochemical study of a temperature-sensitive choline acetyltransferase mutant of Drosophila melanogaster. J Comp Neurol 1989; 280:283-90. [PMID: 2494238 DOI: 10.1002/cne.902800209] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using a monoclonal antibody to choline acetyltransferase (ChAT), we have identified immunoreactive synaptic terminals in the neuropil regions of the cephalic ganglion of Drosophila melanogaster. This study demonstrates the distribution of antibody-labeled structures within the optic lobe, and then investigates the immunoreactivity altered by mutation in two temperature-sensitive ChAT alleles, chats-1 and chats-2. The general structure of the optic lobe was first observed by means of the silver impregnation technique. Then the presence of ChAT immunoreactivity was determined by the application of antibody [1G4] conjugated with HRP to frozen sections, followed by the 3,3'-diamino-benzidine tetratinct layers, which correspond to the three synaptic layers of the laminarneurons, in the medulla. Also, staining appeared in four distinct layers in the lobula. In addition, weaker staining was observed in the lamina, which corresponds to the retinula cell terminals. Somal layers were not stained. In Canton-S (wild-type), the three medullar layers stain distinctly at both 19 degrees C and 30 degrees C. In chats-1 at 19 degrees C, the stain appeared in the same layers as that of Canton-S, but with somewhat lower density. In chats-2 at 19 degrees C, the density of the stain was even lower. The densities of the stain in these mutants were further decreased after exposing the flies to 30 degrees C. The decreases were dependent on the length of exposure to the higher temperature. The decrease in stain of the specimens obtained after 24 hours exposure to 30 degrees C was clearly recognizable in both chats-1 and chats-2.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Ikeda
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | |
Collapse
|
45
|
Schäfer S, Rehder V. Dopamine-like immunoreactivity in the brain and suboesophageal ganglion of the honeybee. J Comp Neurol 1989; 280:43-58. [PMID: 2918095 DOI: 10.1002/cne.902800105] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distribution of dopamine in the brain and suboesophageal ganglion of the honeybee Apis mellifera was investigated by means of immunocytochemistry with a well-characterized antiserum against dopamine. The binding of the antiserum in paraffin serial sections was studied with the peroxidase-antiperoxidase method. Dopamine-like immunoreactive neurons are present in most parts of the brain and in the suboesophageal ganglion. Only the optic lobes are devoid of label. There are ca. 330 dopamine immunoreactive somata in each brain hemisphere plus respective suboesophageal hemiganglion, which is less than 0.1% of the entire neuronal population. Most of the labelled somata are situated within three clusters: one below the lateral calyx and two in the anterior-ventral protocerebrum. Other labelled somata lie dispersed or in small groups around the protocerebral bridge, below the optic tubercles, proximal to the ventral rim of the lobula, and in the lateral and ventral somatal rind of the suboesophageal ganglion. Similar to neurons that react with an antiserum against serotonin, the fine processes of dopamine immunoreactive fibers have a varicose appearance which is typical for aminergic neurons. In addition to the neuronal staining, dopamine-like immunoreactivity is also present in the sheath surrounding the brain and in the retina, where it is not restricted to any particular cell type. A detailed account is given for those neurons and groups of neurons that could be traced and reconstructed in some detail. A common feature of all dopamine immunoreactive fibers is that each fiber invades large volumes of neuropil, suggesting that dopamine is more important in mediating distant rather than local neural interactions.
Collapse
Affiliation(s)
- S Schäfer
- Institut für Tierphysiologie-Neurobiologie, Freien Universität Berlin, Federal Republic of Germany
| | | |
Collapse
|
46
|
Granger NA, Homberg U, Henderson P, Towle A, Lauder JM. Serotonin-immunoreactive neurons in the brain of Manduca sexta during larval development and larval-pupal metamorphosis. Int J Dev Neurosci 1989; 7:55-72. [PMID: 2711869 DOI: 10.1016/0736-5748(89)90044-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The developing serotonergic system of the tobacco hornworm, Manduca sexta, has been studied immunocytochemically in whole mount preparations of brain-retrocerebral complexes. The distribution of serotonin-immunoreactive cell bodies, fibers and terminal fields has been analysed during larval and larval-pupal development using a specific rabbit antiserum against serotonin-hemocyanin conjugates. The serotonergic system was conserved from the fourth to the fifth larval stadium, with minimal changes occurring until the onset of pupal development. At this time, alterations in the distribution of serotonin-immunoreactive cells and processes were observed, including the apparent disappearance of some cell bodies and terminals. Nevertheless, the overall appearance of this system in the pupal brain was not significantly different from that in the larva. The larval pattern was characterized by eight bilateral groups of cell bodies which sent thick bridges of fibers across the midline, a feature strikingly similar to the serotonergic system in vertebrate embryos. In addition, three bilateral immunoreactive fields of arborization were observed around and ventral to these cell groups, together with regions of serotonin immunoreactivity in the medial and lateral protocerebral lobes. The central body, larval antennal centers, larval accessory lobes, and the tritocerebrum were also immunoreactive. Fibrous networks of serotonergic processes were usually observed around nerves emanating from the brain, including the connectives from the brain to the corpus cardiacum and corpus allatum. Smaller varicosities were observed in the interior of these neurohemal and glandular organs, and a network of 5-HT fibers was occasionally found around the corpus cardiacum and corpus allatum. The possible relationship of serotonin to cerebral neuroendocrine functions during the postembryonic development of M. sexta is discussed.
Collapse
Affiliation(s)
- N A Granger
- Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill 27514
| | | | | | | | | |
Collapse
|
47
|
Fuchs E, Dustmann J, Stadler H, Schürmann F. Neuroactive compounds in the brain of the honeybee during imaginal life. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0742-8413(89)90065-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Baker JR, Pitman RM. Localization of biogenic amine-containing neurones in the ventral nerve cord of the cockroach (Periplaneta Americana). ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0742-8413(89)90047-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Toutant JP. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol 1989; 32:423-46. [PMID: 2660188 DOI: 10.1016/0301-0082(89)90031-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J P Toutant
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
50
|
Pitman RM, Baker JR. Dopamine responses recorded from a common inhibitory motoneurone of the cockroach (Periplaneta Americana). ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0742-8413(89)90048-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|